高中数学概率 重点问题探讨
高中数学第十章概率典型例题(带答案)

高中数学第十章概率典型例题单选题1、“某彩票的中奖概率为1100”意味着( )A .购买彩票中奖的可能性为1100 B .买100张彩票能中一次奖 C .买100张彩票一次奖也不中 D .买100张彩票就一定能中奖 答案:A分析:根据概率的定义,逐项判定,即可求解.对于A 中,根据概率的定义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,由某彩票的中奖概率为1100,可得购买彩票中奖的可能性为1100,所以A 正确;对于B 、C 中,买任何1张彩票的中奖率都是1100,都具有偶然性,可能中奖,还可能中奖多次,也可能不中奖,故B 、C 错误;对于D 选项、根据彩票总数目远大于100张,所以买100张也不一定中一次奖,故D 错误. 故选:A.2、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( ) A .249B .649C .17D .27 答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.3、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.4、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.由题意,知{0<P(A)<1 0<P(B)<1P(A)+P(B)≤1,即{0<2−a<10<3a−4<12a−2≤1,解得43<a≤32,所以实数a的取值范围为(43,32].故选:A.5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、下列各对事件中,不互为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”答案:C分析:利用对立事件和相互独立事件的概念求解.解:对于选项A,事件M={2,4,6},事件N={3,6},事件MN={6},基本事件空间Ω={1,2,3,4,5,6},所以P(M)=36=12,P(N)=26=13,P(MN)=16=12×13,即P(MN)=P(N)P(M),因此事件M与事件N是相互独立事件;对于选项B,袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”,则事件M发生与否与N无关,同时,事件N发生与否与M无关,则事件M与事件N是相互独立事件;对于选项C,袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N “第二次摸到黑球”, 则事件M 发生与否和事件N 有关,故事件M 和事件N 与不是相互独立事件;对于选项D ,甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”,则事件M 发生与否与N 无关,同时,事件N 发生与否与M 无关,则事件M 与事件N 是相互独立事件; 故选:C.7、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18,所以提问的学生恰好为女生的概率是38+18=12. 故选:C.8、某学校共有教职工120人,对他们进行年龄结构和受教育程度的调查,其结果如下表:60% B .该教职工具有研究生学历的概率超过50% C .该教职工的年龄在50岁以上的概率超过10%D .该教职工的年龄在35岁及以上且具有研究生学历的概率超过10% 答案:D分析:根据表中数据,用频率代替概率求解.A.该教职工具有本科学历的概率p=75120=58=62.5%>60%,故错误;B.该教职工具有研究生学历的概率p=45120=38=37.5%<50%,故错误;C.该教职工的年龄在50岁以上的概率p=10120=112≈8.3%<10%,故错误;D.该教职工的年龄在35岁及以上且具有研究生学历的概率p=15120=18=12.5%>10%,故正确.小提示:本题主要考查概率的求法,还考查了分析求解问题的能力,属于基础题.多选题9、下列有关古典概型的说法中,正确的是()A.试验的样本空间的样本点总数有限B.每个事件出现的可能性相等C.每个样本点出现的可能性相等D.已知样本点总数为n,若随机事件A包含k个样本点,则事件A发生的概率P(A)=kn答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC正确;每个事件不一定是样本点,可能包含若干个样本点,所以B不正确;根据古典概型的概率计算公式可知D正确.故选:ACD10、某学校为调查学生迷恋电子游戏情况,设计如下调查方案,每个被调查者先投掷一枚骰子,若出现向上的点数为3的倍数,则如实回答问题“投掷点数是不是奇数?”,反之,如实回答问题“你是不是迷恋电子游戏?”.已知被调查的150名学生中,共有30人回答“是”,则下列结论正确的是()A.这150名学生中,约有50人回答问题“投掷点数是不是奇数?”B.这150名学生中,必有5人迷恋电子游戏C.该校约有5%的学生迷恋电子游戏D.该校约有2%的学生迷恋电子游戏答案:AC分析:先由题意计算出回答问题一的人数50人,再计算出回答问题一“是”的人数25人,故可得到回答问题二“是”的人数5人,最后逐一分析四个选项即可.由题意可知掷出点数为3的倍数的情况为3,6,故掷出点数为3的倍数的概率为13,故理论上回答问题一的人数为150×13=50人.掷出点数为奇数的概率为12,理论上回答问题一的50人中有25人回答“是”,故回答问题二的学生中回答“是”的人数为30-25=5人.对于A, 抽样调查的这150名学生中,约有50人回答问题一,故A正确.对于B, 抽样调查的这150名学生中,约有5人迷恋电子游戏,“必有”过于绝对,故B错.对于C,抽样调查的150名学生中,50名学生回答问题一,故有100名学生回答问题二,有5名学生回答“是”,故该校迷恋电子游戏的学生约为5100=5%,故C正确.对于D,由C可知该校迷恋电子游戏的学生约为5100=5%,故D错.故选:AC.11、不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而不对立的事件有()A.2张卡片都不是红色B.2张卡片恰有一张红色C.2张卡片至少有一张红色D.2张卡片都为绿色答案:ABD分析:列举出所有情况,然后再利用互斥事件和对立事件的定义判断.解:6张卡片中一次取出2张卡片的所有情况有:“2张都为红色”、“2张都为绿色”、“2张都为蓝色”、“1张为红色1张为绿色”、“1张为红色1张为蓝色”、“1张为绿色1张为蓝色”,选项中给出的四个事件中与“2张都为红色”互斥而非对立的事件是:“2张都不是红色”,“2张恰有一张红色”,“2张都为绿色”,其中“2张至少一张为红色”包含事件“2张都为红色”,二者并非互斥.故选:ABD.12、设A,B分别为随机事件A,B的对立事件,已知0<P(A)<1,0<P(B)<1,则下列说法正确的是()A.P(B|A)+P(B|A)=1B.P(B|A)+P(B|A)=0C.若A,B是相互独立事件,则P(A|B)=P(A)D.若A,B是互斥事件,则P(B|A)=P(B)答案:AC分析:计算得AC正确;当A,B是相互独立事件时,P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B 是互斥事件,得P(B|A)=0,而P(B)∈(0,1),故D错误.解:P(B|A)+P(B|A)=P(AB)+P(AB)P(A)=P(A)P(A)=1,故A正确;当A,B是相互独立事件时,则P(B|A)+P(B|A)=2P(B)≠0,故B错误;因为A,B是相互独立事件,则P(AB)=P(A)P(B),所以P(A|B)=P(AB)P(B)=P(A),故C正确;因为A,B是互斥事件,P(AB)=0,则根据条件概率公式P(B|A)=0,而P(B)∈(0,1),故D错误.故选:AC.13、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是()A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B成立;在C中,至少一个白球与至多有一个红球,能同时发生,故C不成立;在D中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D成立;故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 填空题14、甲、乙两队进行篮球决赛,采取三场二胜制(当一队赢得二场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以2:1获胜的概率是_____. 答案:0.3解析:甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜,利用独立事件的概率乘法公式和概率的加法公式能求出甲队以2:1获胜的概率. 甲队的主客场安排依次为“主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 甲队以2:1获胜的是指甲队前两场比赛中一胜一负,第三场比赛甲胜, 则甲队以2:1获胜的概率是:P =0.6×0.5×0.6+0.4×0.5×0.6=0.3. 所以答案是:0.3.小提示:本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.15、已知事件A ,B ,C 相互独立,若P (AB )=16,P(BC)=14,P(ABC)=112,则P (A )=______. 答案:13分析:根据相互独立事件的概率公式,列出P (A ),P (B ),P(C),P(B)的等式,根据对立逐一求解,可求出P (A )的值.根据相互独立事件的概率公式,可得{ P (A )P (B )=16P(B)P (C )=14P (A )P (B )P(C)=112,所以P (A )=13. 所以答案是:13.16、在一个口袋中有大小和质地相同的4个白球和3个红球,若不放回的依次从口袋中每次摸出一个球,直到摸出2个红球就停止,则连续摸4次停止的概率等于______.答案:935分析:根据题设写出基本事件,再应用互斥事件加法公式求概率.由题意知,连续依次摸出的4个球分别是:白白红红,白红白红,红白白红共3种情况,第一种摸出“白白红红”的概率为47×36×35×12=335,第二种摸出“白红白红”的概率为47×36×35×12=335,第三种摸出“红白白红”的概率为37×46×35×12=335,所以连续摸4次停止的概率等于935.所以答案是:935解答题17、数学兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整,在扇形统计图中表示“现金”支付的扇形圆心角的度数为多少?(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.答案:(1)条形统计图见解析,90∘;(2)不同,理由见解析;(3)13.分析:(1)由两幅图可知,用现金、支付宝、其他支付共有人数110人,所占比例为1-15%-30%=55%,可得共调查了多少人,再根据用银行卡、微信支付的百分比可得答案(2)根据原数据的众数所在的分类为微信,加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝可得答案;(3)将微信记为A 、支付宝记为B 、银行卡记为C ,画出树状图根据古典概型概率计算公式可得答案. (1)由条形统计图可知,用现金、支付宝、其他支付共有人数110人, 所占比例为1-15%-30%=55%,所以共调查了1100.55=200人,所以用银行卡支付的人有200×0.15=30人,用微信支付的人有200×0.3=60人, 用现金支付所占比例为50200=0.25,所以0.25×360∘=90∘,在扇形统计图中表示“现金”支付的扇形圆心角的度数为90°,补全统计图如图所示:(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝. (3)将微信记为A 、支付宝记为B 、银行卡记为C ,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种, ∴两人恰好选择同一种支付方式的概率为39=13.18、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求:(Ⅰ)三人都合格的概率;34(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人. 分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13 设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(ABC)=P(A)⋅P(B)⋅P(C)=35×14×23=110.(Ⅲ)恰有两人合格的概率:P 2=P(ABC)+P(ABC)+P(ABC)=25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1−P 0−P 2−P 3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。
高中数学概率问题

高中数学概率问题
概率是测量事件发生可能性的数学工具。
概率通常用一个介于0和1之间的数来表示。
0意味着事件不可能发生,1意味着事件一定会发生。
以下是一些基本的概率概念,仅供参考:
事件概率:事件发生的可能性。
独立事件:一个事件的发生不会影响另一个事件的发生。
互斥事件:两个事件不包括共同的事件。
条件概率:在已知某些事件发生的情况下,另一事件发生的概率。
组合与排列:在概率论中,组合和排列是两个重要的概念,用于计算可能的数量。
以下是一些基本的概率公式:
独立事件的概率乘法规则:P(A∩B) = P(A) ×P(B)
互斥事件的概率加法规则:P(A∪B) = P(A) + P(B)
条件概率的公式:P(B|A) = P(A∩B) / P(A)
组合公式:C(n, k) = n! / (k!(n-k)!)
排列公式:P(n, k) = n! / (n-k)!。
解题技巧如何运用概率统计解决高中数学问题

解题技巧如何运用概率统计解决高中数学问题在高中数学学习中,概率统计是一个重要的分支,帮助我们解决各种问题。
运用概率统计的解题技巧可以帮助我们更好地理解和应用数学知识,提高解题效率。
本文将介绍一些常见的解题技巧,并通过实例来说明如何运用概率统计解决高中数学问题。
一、求概率的基本原理1. 事件的概率在解决概率问题时,首先需要确定事件的概率。
事件的概率可以通过计算有利结果的个数除以总结果的个数来得到。
例如,某次抛硬币的结果是正面或反面,正反两面的概率都是1/2.2. 事件的互斥与独立两个事件是互斥事件时,它们不能同时发生,例如掷骰子时出现1和出现2是互斥事件。
而两个事件是独立事件时,一个事件的发生不会对另一个事件的发生产生影响。
例如两次抛硬币的结果是独立事件。
3. 事件的和与积若事件A与事件B互斥,则事件A和事件B的概率和为A和B分别发生的概率之和。
若事件A与事件B独立,则事件A和事件B的概率积为A和B分别发生的概率之积。
二、掷骰子问题的解决方法掷骰子是一类常见的概率统计问题,下面通过几个实例来演示如何运用概率统计解决掷骰子问题。
1. 求某数出现的概率某骰子六个面上的数字为1、2、3、4、5、6。
求掷一次该骰子,出现奇数的概率。
解析:骰子各个数字出现的概率相等,都为1/6,奇数的数字有1、3、5,所以出现奇数的概率为(1+1+1)/6=3/6=1/2.2. 求两个数之和的概率某骰子六个面上的数字为1、2、3、4、5、6。
求掷两次该骰子,两个数之和为5的概率。
解析:假设第一次掷得的数字为a,第二次掷得的数字为b。
要使得两个数之和为5,只有两种可能,(1,4)和(2,3)。
每一种可能出现的概率都是1/6 * 1/6 = 1/36,所以两个数之和为5的概率为1/36 *2 = 1/18.三、概率统计在排列组合问题中的运用概率统计在排列组合问题中也起到重要的作用,下面将通过几个实例展示运用概率统计解决排列组合问题的方法。
全国通用版高中数学第十章概率总结(重点)超详细

(名师选题)全国通用版高中数学第十章概率总结(重点)超详细单选题1、如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是()A.0.999B.0.981C.0.980D.0.729答案:B解析:求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解.由题意,开关1、2在某段时间内均正常工作的概率P1=0.9×0.9=0.81,开关3正常工作的概率P2=0.9,故该系统正常工作的概率P=1−(1−P1)(1−P2)=1−(1−0.81)×(1−0.9)=0.981,所以该系统的可靠性为0.981.故选:B.2、抛掷一枚质地均匀的正方体骰子,若事件A=“向上的点数为3”,B=“向上的点数为6”,C=“向上的点数为3或6”,则有()A.A⊆B B.C⊆B C.A∩B=C D.A∪B=C答案:D分析:根据事件的关系、和事件、积事件的定义逐一判断四个选项的正误,即可得出正确选项对于A :事件A =“向上的点数为3”发生,事件B =“向上的点数为6”一定不发生,故选项A 不正确;对于B :事件C =“向上的点数为3或6”发生,事件B =“向上的点数为6”不一定发生,但事件B =“向上的点数为6”发生,事件C =“向上的点数为3或6” 一定发生,所以B ⊆C ,故选项B 不正确;对于C :事件A 和事件B 不能同时发生,A ∩B =∅,故选项C 不正确;对于D :事件A =“向上的点数为3”或事件B =“向上的点数为6”发生,则事件C =“向上的点数为3或6”发生,故选项D 正确;故选:D3、设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.4、若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A .15B .310C .35D .12答案:B分析:由古典概率模型的计算公式求解.样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为310 .故选:B.5、若随机事件A,B 满足P (AB )=16,P (A )=23,P (B )=14,则事件A 与B 的关系是( ) A .互斥B .相互独立C .互为对立D .互斥且独立答案:B分析:利用独立事件,互斥事件和对立事件的定义判断即可解:因为P (A )=23, P (B )=14, 又因为P (AB )=16≠0,所以有P (AB )=P (A )P (B ),所以事件A 与B 相互独立,不互斥也不对立 故选:B.6、已知100件产品中有5件次品,从这100件产品中任意取出3件,设E 表示事件“3件产品 全不是次品”,F 表示事件“3件产品全是次品”,G 表示事件“3件产品中至少有1件是 次品”,则下列结论正确的是( )A .F 与G 互斥B .E 与G 互斥但不对立C .E,F,G 任意两个事件均互斥D .E 与G 对立答案:D分析:列出基本事件,再结合互斥事件,对立事件的定义即可判断.设1表示取到正品, 0 表示取到次品,所有事件Ω={(1,1,1),(1,1,0),(1,0,0),(0,0,0)}.则E = {(1,1,1)},F = {(0,0,0)},G = {(1,1,0),(1,0,0),(0,0,0)}F ∩G =F, 故F 与G 不互斥,故A,C 错E ∩G =∅,E ∪G =Ω, 故E 与G 互斥且对立,故B 错,D 正确故选:D7、等可能地从集合{1,2,3}的所有子集中任选一个,选到非空真子集的概率为( )A .78B .34C .1516D .14答案:B分析:写出集合{1,2,3}的所有子集,再利用古典概率公式计算作答.集合{1,2,3}的所有子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},共8个,它们等可能,选到非空真子集的事件A 有:{1},{2},{3},{1,2},{1,3},{2,3},共6个,所以选到非空真子集的概率为P(A)=68=34. 故选:B8、如图,开关K 1,K 2被称为双联开关,K 1可以与a ,b 点相连,概率分别为12,K 2可以与c ,d 点相连,概率分别为12,普通开关K 3要么与e 点相连(闭合),要么悬空(断开),概率也分别为12.若各开关之间的连接情况相互独立,则电灯L 1不亮的概率是( )A .18B .14C .34D .78答案:C分析:利用对立事件,结合相互独立事件概率计算公式,计算出所求概率.先考虑对立事件“电灯L 1亮”:首先需要“K 3与e 点相连”,同时满足“K 1与a 点相连且K 2与c 点相连”或“K 1与b 点相连且K 2与d 点相连”,因此电灯L 1亮的概率P =12×(12×12+12×12)=14,故电灯L 1不亮的概率为34. 故选:C9、以下现象中不是随机现象的是( ).A .在相同的条件下投掷一枚均匀的硬币两次,正反两面都出现B .明天下雨C .连续两次抛掷同一骰子,两次都出现2点D .平面四边形的内角和是360°答案:D分析:根据随机现象的定义进行判断即可.因为平面四边形的内角和是360°是一个确定的事实,而其他三个现象都是随机出现的,所以选项D 不符合题意,故选:D10、下列事件:(1)在标准大气压下,水加热到100℃沸腾;(2)平面三角形的内角和是180°;(3)骑车到十字路口遇到红灯;(4)某人购买福利彩票5注,均未中奖;(5)没有水分,种子发芽了.其中随机事件的个数是( ).A .1B .2C .3D .4答案:B分析:根据随机事件的定义进行判断即可.事件(1)是基本事实,因此是确定事件;事件(2)是基本事实,因此它是确定事件;事件(3、(4)是随机出现,是随机事件;事件(5)是不可能事件,故选:B11、先后两次抛掷同一个骰子,将得到的点数分别记为a ,b ,则a ,b ,4能够构成等腰三角形的概率是( )A .16B .12C .1336D .718 答案:D分析:利用乘法原理求出基本事件总数,然后按照分类讨论的方法求出a ,b ,4能够构成等腰三角形的基本事件数,然后利用古典概型的概率公式求解即可.由乘法原理可知,基本事件的总数是36,结合已知条件可知,当a =1时,b =4符合要求,有1种情况;当a =2时,b =4符合要求,有1种情况;当a =3时,b =3,4符合要求,有2种情况;当a =4时,b =1,2,3,4,5,6符合要求,有6种情况;当a =5时,b =4,5符合要求,有2种情况;当a =6时,b =4,6符合要求,有2种情况,所以能构成等腰三角形的共有14种情况,故a ,b ,4能够构成等腰三角形的概率P =1436=718.故选:D.12、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A .1999B .11000C .9991000D .12 答案:D每一次出现正面朝上的概率相等都是12,故选D.填空题13、新冠肺炎疫情发生后,我国加紧研发新型冠状病毒疫苗,某医药研究所成立疫苗研发项目,组建甲、乙两个疫苗研发小组,且两个小组独立开展研发工作.已知甲小组研发成功的概率为23,乙小组研发成功的概率为12.在疫苗研发成功的情况下,是由甲小组研发成功的概率为__________.答案:45##0.8 分析:根据对立事件,相互独立事件及条件概率公式直接计算即可.设事件A 为“疫苗研发成功”,即甲、乙两个小组至少有一个小组研发成功,其概率为:P (A )=1−(1−23)×(1−12)=56,事件B 为“甲小组研发成功”,则P (B )=P (AB )=23,所以P (B |A )=P (AB )P (A )=2356=45, 所以答案是:45.14、现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m 不放回,再从余下的卡片中取一张记作n .则点P (m,n )在第二象限的概率为______.答案:16分析:列出所有可能的情况,根据古典概型的方法求解即可由题,点P(m,n)所有可能的情况为(−1,0),(−1,−2),(−1,3),(0,−1),(0,−2),(0,3),(−2,−1),(−2,0),(−2,3),(3,−1),(3,0),(3,−2)共12种情况,其中在第二象限的为(−2,3),(−1,3),故点P(m,n)在第二象限的概率为212=16所以答案是:1615、台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的概率是________.答案:0.902解析:根据题意,设甲、乙、丙预报准确依次记为事件A,B,C,不准确分别记为A,B,C,则至少两颗预报准确的事件有AB C,A B C,A BC,ABC,分别求出这四个事件的概率,求和即可得解.设甲、乙、丙预报准确依次记为事件A,B,C,不准确分别记为A,B,C,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P(A)=0.2,P(B)=0.3,P(C)=0.1,至少两颗预报准确的事件有AB C,A B C,A BC,ABC,这四个事件两两互斥且独立.所以至少两颗预报准确的概率为P=P(A∩B∩C)+P(A∩B∩C)+P(A∩B∩C)+P(A∩B∩C)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.所以答案是:0.902.16、银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,如果记得密码的最后1位是偶数,则第2次按对的概率是______.答案:15##0.2 分析:利用古典概型的概率公式求概率.连续按两个不同的偶数共有5×4种不同的按法,其中第二次才按对的按法有4种,所以事件记得密码的最后1位是偶数,则第2次按对的概率P =420=15, 所以答案是:15.17、设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率和B 发生A 不发生的概率相同,则事件A 发生的概率为___________.答案:23 分析:由题意根据相互独立事件的概率乘法公式,列出方程组,解方程组即可求解由题意可知,P (A B ̅)=P (A )⋅P (B ̅)=19,P (A )⋅P (B )=P (A )⋅P (B ̅), 设P (A )=x ,P (B )=y ,则{(1−x )(1−y )=19(1−x )y =x (1−y ),即{(1−x )2=19x =y 所以1−x =13或1−x =−13 解得x =23或x =43(舍去),所以P (A )=23, 所以答案是:23解答题18、甲、乙进行射击比赛,两人轮流朝一个靶射击,若击中靶心得3分,击中靶心以外的区域得1分,两人得分之和大于或等于6分即结束比赛,且规定最后射击的人获胜,假设他们每次击中靶心的概率均为14且不会脱靶,经过抽签,甲先射击.(1)求甲需要射击三次的概率.(2)比赛结束时两人得分之差最大为多少?求这个最大值发生的概率.(3)求乙获胜的概率.答案:(1)81256;(2)364;(3)8471024.分析:(1)依题意甲需要射击三次,则两人前四次射击均只得1分,根据相互独立事件的概率公式计算可得;(2)比赛结束时,两人得分之差最大为5分,即甲3分,乙1分,甲3分,再根据相互独立事件的概率公式计算可得;(3)要使乙获胜,即到乙射击之和积分之和恰好满足大于或等于6分,分四种情况讨论,分别计算所对应的概率,最后相加即可;解:(1)甲需要射击三次,则两人前四次射击均只得1分,所以甲需要射击三次的概率为(34)4=81256. (2)比赛结束时,两人得分之差最大为5分,他们得分情况为:甲3,乙1,甲3,所以这个最大值发生的概率为14×34×14=364.(3)根据他们轮流射击的得分,分四种情况:①甲3,乙3,概率为(14)2=116;②甲1,乙1,甲1,乙3,概率为(34)3×14=27256; ③前三次射击中有一次3分,两次1分,概率为C 31×14×(34)2=2764; ④前五次射击均得1分,概率为(34)5=2431024.所以乙获胜的概率为116+27256+2764+2431024=8471024.19、为了促进电影市场快速回暖,各地纷纷出台各种优惠措施.某影院为回馈顾客,拟通过抽球兑奖的方式对观影卡充值满200元的顾客进行减免,规定每人在装有4个白球、2个红球的抽奖箱中一次抽取两个球.已知抽出1个白球减20元,抽出1个红球减40元.(1)求某顾客所获得的减免金额为40元的概率;(2)若某顾客去影院充值并参与抽奖,求其减免金额低于80元的概率.答案:(1)25;(2)1415. 分析:(1)求出抽取两个球的所有情况,再得出所获得的减免金额为40元的情况,即可得出概率;(2)先求出顾客所获得的减免金额为80元的概率,即可求出低于80元的概率.(1)设4个白球为a ,b ,c ,d ,2个红球为e ,f ,事件A 为顾客所获得的减免金额为40元, 则一共可抽取{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共15种情况,A ={ab,ac,ad,bc,bd,cd},共6种情况,所以顾客所获得的减免金额为40元的概率为P =615=25. (2)设事件B 为顾客所获得的减免金额为80元,则B ={ef},共1种情况,所以顾客所获得的减免金额为80元的概率为P(B)=115,故减免金额低于80元的概率P =1−P(B)=1415.20、从含有两件正品a 1,a 2和一件次品b 的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A 为“取出两件产品中恰有一件次品”,写出事件A ;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题. 答案:(1){(a 1,a 2),(a 1,b ),(a 2,b ),(a 2,a 1),(b ,a 1),(b ,a 2)};(2)A ={(a 1,b ),(a 2,b ),(b ,a 1),(b ,a 2)};(3)第一问:{(a 1,a 1),(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,a 2),(a 2,b ),(b ,a 1),(b ,a 2),(b ,b )};第二问:A ={(a 1,b ),(a 2,b ),(b ,a 1),(b ,a 2)}.分析:(1)用列举法写出即可;(2)用列举法写出即可;(3)用列举法写出即可.(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b,a1),(b,a2)}. (2)A={(a1,b),(a2,b),(b,a1),(b,a2)}.(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b)}.②A={(a1,b),(a2,b),(b,a1),(b,a2)}.。
高中数学的归纳概率与统计中的常见问题解决方法

高中数学的归纳概率与统计中的常见问题解决方法数学作为一门重要的学科,数学的归纳概率与统计是其中的一个重要分支。
在高中阶段,学生们接触到了更加深入的数学知识,归纳概率与统计也就成为了他们学习的一部分。
然而,由于这门知识的抽象性和复杂性,高中生在学习归纳概率与统计时常常会遇到一些困惑和问题。
本文将针对这些常见问题,提供解决的方法和建议。
一、概率问题的解决方法概率是归纳概率与统计的重要内容之一,也是一个较为复杂的概念。
在解决概率问题时,需要考虑以下几点:1.明确问题:首先,我们要明确问题的背景和要求,确定所求的概率是条件概率还是简单概率,并理清题目中给出的已知条件。
2.列出样本空间:针对问题的要求,将可能出现的结果进行归纳整理,并列出样本空间。
3.分析事件:根据问题的条件和要求,归纳分析在样本空间中满足条件的事件,形成概率的分析思路。
4.使用概率公式:根据题目的要求,选择合适的概率公式进行计算,如基本概率公式、条件概率公式等。
5.注意条件约束:在解决概率问题时,需要特别注意条件约束。
确保在计算概率时不遗漏或重复考虑某些情况。
通过以上步骤的分析和计算,我们可以较为准确地解决概率问题,得出符合题目要求的概率值。
二、统计问题的解决方法统计是归纳概率与统计的另一个重要内容,也是一个较为实际的应用领域。
在解决统计问题时,需要注意以下几点:1.数据收集和整理:首先,我们需要收集问题中所给出的数据,并对数据进行整理和归纳,形成方便分析的数据表格或图表。
2.确定统计指标:根据问题的要求,确定需要计算的统计指标,如均值、方差、中位数等。
3.计算统计指标:根据问题中给出的数据和统计指标的计算公式,进行计算。
可以使用手工计算,也可以借助计算机或统计软件来进行计算。
4.数据分析和解释:在完成统计指标的计算后,需要对结果进行分析和解释。
比较不同样本之间的统计指标差异,找出规律和特点。
5.结论与应用:根据统计结果,得出相应的结论,并根据实际情况进行应用。
高中数学概率知识点总结

高中数学概率知识点总结一、概率的基本概念1.1 概率的定义在日常生活中,我们经常会遇到很多不确定的事件,比如掷骰子的结果、抽奖的中奖情况等等。
而概率就是用来描述这些不确定事件发生的可能性的。
概率可以理解为某件事情发生的可能性大小,通常用一个介于0和1之间的数值来表示,其中0表示不可能发生,1表示一定会发生。
1.2 样本空间和事件在进行概率计算时,通常需要确定一个样本空间,即所有可能发生的结果的集合。
比如掷一枚骰子,样本空间为{1,2,3,4,5,6}。
事件则是样本空间的一个子集,表示我们关心的那部分结果。
比如“出现奇数点数”的事件为{1,3,5}。
1.3 古典概率和频率概率古典概率是指在所有可能结果等可能时,事件发生的概率即为事件发生的次数与样本空间元素总数的比值。
而频率概率是指在实际观察中,某一事件发生的次数与总次数的比值。
古典概率适用于理论计算,而频率概率适用于实际观测。
1.4 概率的性质概率具有以下几个重要性质:(1)非负性:任何事件的概率都大于等于0;(2)规范性:全集事件的概率为1;(3)可列可加性:对于两个互不相容的事件,它们的概率之和等于这两个事件并起来的概率。
二、概率的计算方法2.1 古典概率的计算在古典概率中,当每个事件发生的可能性相等时,概率等于事件发生的次数除以总事件数,即P(A)=n(A)/n(S)。
2.2 几何概率的计算几何概率是通过几何模型中的面积、长度或体积来计算概率的方法。
比如说,在一个正方形的面积中,事件发生的可能性可以表示为事件的面积与总面积的比值。
2.3 频率概率的计算频率概率是通过实验次数和事件发生次数的比值来计算概率的方法,即P(A)=n(A)/n。
2.4 排列和组合排列是指从n个不同元素中取出m个元素,按一定的次序排成一列,不同元素的个数为n!/(n-m)!。
组合是指从n个不同元素中取出m个元素,不考虑次序的情况,不同元素的个数为n!/(m!(n-m)!)。
22 高中数学概率的问题

专题22高中数学概率的问题【知识总结】1.古典概型的概率公式P (A )=事件A 包含的样本点数试验的样本点总数. 2.独立重复试验如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 3.相互独立事件同时发生的概率:若A ,B 相互独立,则P (AB )=P (A )·P (B ).4.互斥事件至少有一个发生的概率:若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).5.条件概率公式设A ,B 为随机事件,且P(A)>0,则P (B |A )=P (AB )P (A ). 【高考真题】1.(2022·全国乙理)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 ____________.2.(2022·全国甲理) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 3.(2022·全国甲文) 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A .15B .13C .25D .23 4.(2022·新高考Ⅰ) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16 B .13 C .12 D .235.(2022·全国乙理) 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、 乙、丙比赛获胜的概率分别为123, , p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则( ) A .p 与该棋手和甲、乙、丙的比赛次序无关 B .该棋手在第二盘与甲比赛,p 最大 C .该棋手在第二盘与乙比赛,p 最大 D .该棋手在第二盘与丙比赛,p 最大【题型分类】题型一 古典概型1.(2021·全国甲)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .452.已知多项选择题的四个选项A ,B ,C ,D 中至少有两个选项正确,规定:如果选择了错误选项就不得 分.若某题的正确答案是ABC ,某考生随机选了两个选项,则其得分的概率为( )A .12B .310C .16D .3113.有4个大小、形状相同的小球,装在一个不透明的袋子中,小球上分别标有数字1,2,3,4.现每次有放 回地从中随机取出一个小球,直到标有偶数的球都取到过就停止.小明用随机模拟的方法估计恰好在第4次停止摸球的概率,利用计算机软件产生随机数,每1组中有4个数字,分别表示每次摸球的结果,经随机模拟产生了以下21组随机数:1314 1234 2333 1224 3322 1413 31244321 2341 2413 1224 2143 4312 24121413 4331 2234 4422 3241 4331 4234由此可以估计恰好在第4次停止摸球的概率为( )A .23B .13C .27D .5214.从4双不同尺码的鞋子中随机抽取3只,则这3只鞋子中任意两只都不成双的概率为( )A .114B .37C .47D .345.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个 五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A .16B .110C .112D .1206.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的 上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为________.7.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分 为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .11168.“六艺”出自《周礼·地官司徒·保氏》,是指礼、乐、射、御、书、数.已知某人觉得“君子不学礼无 以立”,而其两个孩童对“数”均有浓厚兴趣,该人依据自己能力,只能为每个孩童选择六艺中的四艺进行培养,若要令该人和两个孩童对所选的四艺都满意,那么两个孩童至少有一个选到“御”的概率为( )A .12B .34C .59D .459.甲、乙、丙三人被系统随机地预约到A ,B ,C 三家医院接种新冠疫苗,每家医院恰有1人预约.已知 A 医院接种的是只需要打一针的腺病毒载体新冠疫苗,B 医院接种的是需要打两针的灭活新冠疫苗,C 医院接种的是需要打三针的重组蛋白新冠疫苗,问:甲不接种只打一针的腺病毒载体新冠疫苗且丙不接种需要打三针的重组蛋白新冠疫苗的概率等于( )A .13B .23C .12D .1910.北斗导航系统由55颗卫星组成,于2020年6月23日完成全球组网部署,全面投入使用.北斗七星自古是我国人民辨别方向判断季节的重要依据,北斗七星分别为天枢、天璇、天玑、天权、玉衡、开阳、摇光,其中玉衡最亮,天权最暗,一名天文爱好者从七颗星中随机选两颗进行观测,则玉衡和天权至少一颗被选中的概率为( )A .1021B .1121C .1142D .521题型二 相互独立事件与独立重复试验11.(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立12.某国产杀毒软件的比赛规则为每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是56,35,34,13,且各轮考核能否通过互不影响,则( )A .该软件通过考核的概率为18B .该软件在第三轮考核被淘汰的概率为18C .该软件至少能够通过两轮考核的概率为23D .在此次比赛中该软件平均考核了6524轮13.甲、乙两个球队进行篮球决赛,采取五局三胜制(共赢得三场比赛的队伍获胜,最多比赛五局),每场球赛无平局.根据前期比赛成绩,甲队的主场安排为“主客主主客”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以3∶2获胜的概率为________.14.小明在做一个与扔质地均匀的正六面体骰子有关的游戏,规定:若骰子1点或2点向上,则小明前进1步,若骰子3点或4点向上,则小明前进2步,若骰子5点或6点向上,则小明前进3步.小明连续扔了三次骰子,则他一共前进了8步的概率是( )A .127B .227C .19D .2915.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为p 1和p 2,则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能16.(多选)甲、乙两人练习射击,命中目标的概率分别为12和13,甲、乙两人各射击一次,下列说法正确的 是( )A .目标恰好被命中一次的概率为12+13B .目标恰好被命中两次的概率为12×13C .目标被命中的概率为12×23+12×13D .目标被命中的概率为1-12×2317.甲、乙两人进行象棋比赛,采取五局三胜制(当一人先赢3局时获胜,比赛结束).棋局以红棋与黑棋对阵,两人执色轮流交换,执红棋者先走.假设甲执红棋时取胜的概率为23,执黑棋时取胜的概率为12,各局比赛结果相互独立,且没有和局.若比赛开始,甲执红棋开局,则甲以3∶2获胜的概率为________.18.如图,已知电路中3个开关闭合的概率都是12,且是相互独立的,则灯 亮的概率为( )A .38B .12C .58D .7819.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以2∶0领先,则下列说法中正确的有________(填序号).①甲队获胜的概率为827;②乙队以3∶0获胜的概率为13; ③乙队以3∶1获胜的概率为29;④乙队以3∶2获胜的概率为49. 20.甲、乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为25,则在比分为10∶10后甲先发球的情况下,甲以13∶11赢下此局的概率为( )A .225B .310C .110D .325题型三 条件概率与全概率21.2020年12月4日是第七个“国家宪法日”.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为23,连续答对两道题的概率为12.用事件A 表示“甲同学答对第一道题”,事件B 表示“甲同学答对第二道题”,则P (B |A )=( )A .13B .12C .23D .3422.篮子里装有2个红球,3个白球和4个黑球.某人从篮子中随机取出2个球,记事件A 为“取出的2个球颜色不同”,事件B 为“取出1个红球,1个白球”,则P (B |A )等于( )A .16B .313C .59D .2323.某公司为方便员工停车,租了6个停车位,编号如图所示.公司规定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A 为“员工小王的车停在编号为奇数的车位上”,事件B 为“员工小李的车停在编号为偶数的车位上”,则P (A |B )等于( )A .16B .310C .12D .3524.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,则在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A .310B .13C .38D .2925.某保险公司将其公司的被保险人分为三类:“谨慎的”“一般的”“冒失的”.统计资料表明,这三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中“谨慎的”被保险人占20%,“一般的”被保险人占50%,“冒失的”被保险人占30%,则该保险公司的一个被保险人在一年内发生事故的概率是( )A .0.155B .0.175C .0.016D .0.09626.已知某公路上经过的货车与客车的数量之比为2∶1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为( )A .1100B .160C .150D .13027.(多选)为庆祝建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史知识的了解,某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A 为“第1次抽到选择题”,事件B 为“第2次抽到选择题”,则下列结论中正确的是( )A .P (A )=35B .P (AB )=310C .P (B |A )=12D .P (B |A )=1228.甲、乙两个均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件A 为“两个四面体朝下一面的数字之和为奇数”,事件B 为“甲四面体朝下一面的数字为奇数”,事件C 为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A .P (A )=P (B )=P (C ) B .P (BC )=P (AC )=P (AB )C .P (ABC )=18D .P (B |A )=1229.有三个箱子,分别编号为1,2,3.1号箱装有1个红球、4个白球,2号箱装有2个红球、3个白球,3号箱装有3个红球.某人从三个箱子中任取一箱,从中任意摸出一球,取得红球的概率为________.30.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )A .任取一个零件是第1台生产出来的次品概率为0.06B .任取一个零件是次品的概率为0.052 5C .如果取到的零件是次品,且是第2台车床加工的概率为27D .如果取到的零件是次品,且是第3台车床加工的概率为27。
高中数学人教A版必修3《概率与统计》中的高考热点问题

上一页
图2
返回首页
下一页
高三一轮总复习
(1)求频率分布直方图中 a 的值; (2)估计该企业的职工对该部门评分不低于 80 的概率; (3)从评分在[40,60)的受访职工中,随机抽取 2 人,求此 2 人的评分都在[40,50) 的概率. [规范解答] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以 a =0.006.3 分 (2)由所给频率分布直方图知,50 名受访职工评分不低于 80 的频率为(0.022 +0.018)×10=0.4,所以该企业职工对该部门评分不低于 80 的概率的估计值为 0.4.6 分
上一页
返回首页
下一页
高三一轮总复习
[规律方法] 1.本题(1)中,指针连续地变化,是几何概型,第(2)问是顾客获 得优惠券的各种可能,是有限的可以一一列举的离散问题,满足古典概型.
2.题目以“市场销售手段”为背景,认真审题,实现知识迁移,恰当选择 概型是解题的关键.
上一页
返回首页
下一页
高三一轮总复习
下一页
高三一轮总复习
[温馨提示] 1.本题的易失分点: (1)不能利用频率分布直方图的频率求出 a 值. (2)求错评分落在[50,60),[40,50)间的人数. (3)没有指出基本事件总数与事件 M 包含的基本事件个数,或者只指出事件 个数,没有一一列举出 10 个基本事件及事件 M 包含的基本事件,导致扣 3 分或 2 分.
18
30
总计
36
24
60
2分
在患“三高”疾病人群中抽 9 人,则抽取比例为396=14,
所以女性应该抽取 12×14=3(人).5 分
上一页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 8 页 高中数学中古典概率应用上之易错处探究 一、基本概念 (1)分类计数原理:nmmmN21 (2)分步计算原理:nmmmN21 (3)排列:一般地,从n个元素中取出m个元素(nm),按照一定的顺序排成一列, 叫做从n个元素中取出m个元素的一个排列。从n个元素中取出m个元素(nm)的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号mnA表示,
)1()2)(1(mnnnnAmn。
(4)组合:一般地,从n个不同元素中取出m个元素(nm)并成一组,叫做从n个元素中取出m个元素的一个组合。从n个元素中取出m个元素的所有组合的个数,
叫做从n个不同元素中取出m个元素的组合数,用符号mnC表示。
!)1()2)(1(mmnnnnAACmmmnmn
。
(5)必然事件:在一定的条件下必然要发生的事件。 (6)不可能事件:在一定的条件下不可能发生的事件。 (7)随机事件:在一定的条件下可能发生也可能不发生的事件。
(8)在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数An称
为事件A发生的频数。比值nnA称为事件A发生的频率。 (9)一般地,在大量重复进行同一实验时,事件A发生的频率nnA总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的频率,记作)(AP,且一次实验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一个事件A由几个基本事件组成,如果一次实验中可能出现的结果有n个,即此实验由n个基本事件
组成。而且所有结果出现的可能性相等,那么每一个基本事件的概率都是n1。如果某个事件A包含的结果有m个,那么事件A的概率 nmAP)( 。 第 2 页 共 8 页
二、重点问题剖析 1.“有放回摸球”与“无放回摸球” “有放回摸球”与“无放回摸球”主要有以下区别: (1)无放回摸球主要是指每次摸出的球放在袋外,下次再摸球时总数比前次少一;而有放回的摸球是每次摸出一球放在袋内,下次再摸球时袋内球的总数不变。 (2)“无放回摸球”各次抽取不是相互独立的,而“有放回摸球”每次是相互独立的。下面通过一个例题来进一步的说明“无放回摸球”与“有放回摸球”的区别。 例1 袋中有1,2,3,…,N号球各一个,采用①无放回,②有放回的两种方式摸球,试求在第k次摸球时首先摸到一号球的概率。
解:设iB为事件“第i次摸到一号球” ),2,1(ki。 ①无放回摸球 若把k次摸出的k个球排成一排,则从N个球任取k个球的每个排列就是一个基本
事件,因此基本事件的总数为以数码1,2,…,N中任取k个数码的排列数,kNPn。
下面求事件kB包含的基本事件数m,事件kB可分两步完成:先在第k个位置上排上1号球,只有一种排法,再在前1k个位置排其它1N个球,共有11kNP种排法,由乘法原理知,事件kB包含的基本事件数为 11111kNkNPPm,
从而
NPPnmBPkNkNk1)(11
。
②有放回的摸球 因为有放回摸球,每次袋中都有N个球,共摸k次,故共有kN种可能结果,既基
本事件总数为kNn。事件kB可分为两步完成:前1k次未摸到1号球,共有1kNm,于是
kkrNNnmBP1)1()(
。
分析:对于有放回摸球与无放回摸球题型,在审题时一定要注意是有放回还是无放回,然后根据题意来考虑排列与组合的应用,总之,一定要抓住题目的隐含条件与已知条件的关系,所要求的问题与已知条件之间的连接点,这样才能够很快的解决问题而不至于错误。
2.“隔板法” 第 3 页 共 8 页
隔板法是插空法的一种特殊情况,它的使用非常广泛,能解决一大类组合问题。下面用一个具体的例子来说明它的使用的优越性。 例2 将9个相同的小球放到六个不同的盒子里,每个盒子至少放一个球,有多少种不同放法。 解法一:先在盒子里各放一个球,再把剩下的3个球放到6个盒子里,分三类:
①3个球放到一个盒子里,有16C种放法;
②3个球放到两个盒子里,球数分别为2,1,共26P种放法; ③3个球放到3个盒子里,每个盒子各一个球,共36C种放法。根据分类计数原理,共有56262616CPC种放法。 解法二(隔板法):把 6个盒子看做由平行的7个隔板组成的,每一个满足要求的放法、相当于9个小球和7个隔板的一个排列,其中2个隔板在两头,任何2个隔板之间至少有1个球(既任何2个隔板不相邻),把两头的2个隔板拿掉,每一个满足要求的放法还相当于再排成一列的9个小球间8个空档中插入5个隔板,不同的放球方
法即插隔板的方法,共有5658C种。 分析:对于用隔板法解决概率问题,一般都是将问题的思考角度进行转化,使问题从多向思维向单一思维转化,然后把问题的本质找出来进行剖析,问题自然就很好理解了。上述解法2应用了对应的方法,转化为插空问题,计算比较简单,但不易理解,等理解透彻后,就会发现隔板法是非常好用的,是具有普适性的方法。但一定要注意的是应用此法的前提是小球是完全相同(不加区分),盒子是不同的,每个盒子至少放一球。 例3 要从高一年级8个班中产生12学生代表,每个班至少产生一名代表,则代表名额的分配的方案至少有多少种? 解:这个问题如果用原始的方法来分析,是比较麻烦的额,但如果转化问题的角度,用“隔板法”来理解,这个问题就容易解决了。把12个名额看做12个相同小球,
8个班看做8个不同的盒子,用隔板法知道名额分配方法共有711C种。
3. 分组问题 分组问题时排列组合中的一个难点,主要有以下两种情况。 (1)非平均分组问题 在非平均分组问题中,不管是给出组名或不给出组名,其分组的方法相同。 例4 把12人分成如下三组,分别求出以下各种分组的方法数: ①分成甲、乙、丙三组,其中甲组7人、乙组3人、丙组2人。 ②分成三组,其中一组7人、一组3人、一组2人。 解:①先从12人中任选7人为甲组,余下5人中任选3人为乙组,剩下2人为丙
组,则共有2235712CCC种不同的方法。
②先从12人中任选7人为一组有712C种选法,再从余下5人中任选3人有35C种选 第 4 页 共 8 页
法,剩下的两人为一组,共有2235712CCC种不同的选法。 分析:在第一个问题中,学生很容易受到干扰,就是对于甲、乙、丙三组,和分成三组时否需要乘以33A的问题。但是由于各组的人数不同,这个问题属于非平均分组问题,虽然第一小问给出了分组的名称,但是这个并不影响最后的结果,它们的分组方法都是一样的。 (2)平均分分组问题。 分析:上面的非平均分组问题中,是否给出组名对结果没有影响,但在平均分组问题中一定要注意问题是否给出了具体的组名,它们的结果是不同的。 例5 有6本不同的书,按下列要求分配,各有多少种分发。 ①分给甲、乙、丙三人,每人2本; ②平均分成三份。 解:①从6本书中任取2本给一个人,再从剩下的4本中取2本给另外一个人,剩
下的2本给最后一个人,共有22264290CCC种分法。 ②设平均分成三堆有x种分法,在分给甲乙、丙三人每人各2本,则应有32223642xACCC种分法。所以有 22264233CCCxA 种不同的分法。
说明:上面例子中可以看出:两个问题都是分成三堆,每堆两本,属于平均分组问题,而(1)分到甲、乙、丙三人,属于到位问题,相当于给出了甲、乙、丙三个指定的组,但(2)没有给出组名,因而是不同的。
规律:一般地,把nm个元素平均分到m个不同的位置,有(1)2nnnnnmnmnnCCCC种方
法,把nm个不同元素平均分成m组有(1)2!nnnnnmnmnnCCCCm种分法。 4. 圆排列与重复组合问题 (1)圆排列 定义1:从n个不同的元素中任取()mmn个,按照一定的顺序排成圆形,叫做一个圆排列。 定义2:从n个不同的元素中取出()mmn个元素的所有圆排列的个数,叫做圆排
列数,用符号mnR表示。 例6 5个朋友坐在圆桌周围时,席位排列方法有几种? 解:设5个人分别为a,b,c,d,e,把他们排成一排时,排列的数目是5!,排成圆形时,像下图那样只是转了一个地方的排法被看做是一样的,所以根据乘法原理得:
5555!R 第 5 页 共 8 页
所以 555!245R 答:席位的排列方法有24种。 命题1: n个不同的元素的圆排列数(1)!nnRn。 例7 有6名同学做成一圆圈做游戏,有多少种做法? 解: 据命题一,66(61)!120R种。 答:共有120种。
CBA
ED
AB
ED
EA
DC
DE
C
BCD
BA
BC
AE 命题2:从n个元素中取出()mmn个元素的圆排列数(1)!mmnnRCm。 证明:从n个不同元素中取出m个元素的组合数为mnC种,而将这m个元素排成圆形由命题1共有(1)!m种方法,于是由乘法原理得 (1)!mmnnRCm. (2)重复组合 定义3:从n个不同的元素中任取m个元素,元素可以重复选取,不管怎样的顺序并成一组,叫做重复组合。 定义4:从n个不同的元素中取出m个元素的所有重复组合的个数,叫做重复组合
数,用符号mnH表示。 例8 有5个数1,2,3,4,5,同一个数允许选用任意次,求从中选出3个的重复组合数。
解:如果从5个中选出3个时,选的都是不同的数,那么很明显组合数为35C,但是同一个数允许选用任意次,因此像(1,1,1),(1,2,1),(4,4,5),…的组合也应在算内,所以要想办法,把问题转化成选取的全是不同元素的问题,为了把上述(1,1,1),(1,2,1),(4,4,5)改成全是不同的数,先把这些数按从小到大的顺序排列起来得到(1,1,1),(1,2,1),(4,4,5)。然后第一个数不 变,在第二个