高中数学概率统计专题

合集下载

精品高中数学专题:概率与统计

精品高中数学专题:概率与统计

专题七 概率与统计第一讲 统计与统计案例1. 随机抽样抽样方法主要有简单随机抽样、系统抽样、分层抽样三种,这三种抽样方法各自适用不同特点的总体,但无论哪种抽样方法,每一个个体被抽到的概率都是相等的,都等于样本容量和总体容量的比值. 2. 总体分布的估计在研究总体时,常用样本的频率分布去估计总体分布.一般地,样本容量越大,这种估计就越精确. 3. 线性回归方程(1)对n 个样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a ^ =y -b ^x ,x 、y 分别是{}x i 、{}y i 的平均数.(2)相关系数r >0,表明两个变量正相关;r <0,表明两个变量负相关;|r |越接近于1,表明两个变量的线性相关性越强;|r |越接近于0,表明两个变量之间几乎不存在线性相关关系;|r |>0.75时,认为两变量有很强的线性相关关系. 4. 独立性检测的一般步骤(1)根据样本数据列出2×2列联表,假设两个变量无关系;(2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算K 2的值;(3)比较K 2与临界值的大小关系作统计推断.1. (2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A .11B .12C .13D .14答案 B解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12(人). 2. (2013·福建)某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120答案 B解析 少于60分的学生人数600×(0.05+0.15)=120(人), ∴不少于60分的学生人数为480人.3. (2013·重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)甲组 乙组 9 0 9 x 2 1 5 y 8 7424已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5 C .5,8 D .8,8答案 C解析 由于甲组中有5个数,比中位数小的有两个数为9,12,比中位数大的也有两个数24,27,所以10+x =15,x =5.又因9+15+10+y +18+245=16.8,所以y =8,故选C.4. (2012·湖南)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg答案 D解析 由于线性回归方程中x 的系数为0.85, 因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本点中心(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确. 当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确. 5.运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为________. 答案 2 解析 x 甲=15(87+91+90+89+93)=90, x乙=15(89+90+91+88+92)=90, s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4, s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.题型一 抽样方法例1 (1)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15(2)某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10审题破题 系统抽样的特点是“等距”,分层抽样最重要的是“比例”. 答案 (1)C (2)A解析 (1)由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人.(2)若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x2+300=3 500, 解得x =1 600,故高一学生数为800,因此应抽取高一学生数为800100=8.反思归纳 (1)在系统抽样的过程中,要注意分段间隔,需要抽取几个个体,样本就需要分成几个组,则分段间隔即为Nn (N 为样本容量),首先确定在第一组中抽取的个体的号码数,再从后面的每组中按规则抽取每个个体.(2)在分层抽样中,要求各层在样本中和总体中所占比例相同.变式训练1 (1)要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为( )A .①简单随机抽样法,②系统抽样法B .①分层抽样法,②简单随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法 答案 B(2)防疫站对学生进行身体健康调查,采用分层抽样法抽取,某中学高三有学生1 600人,抽取一个容量为200的样本,已知女生比男生少抽10人,则该校的女生人数应该有________. 答案 760解析 设该校的女生为x 人,男生为(1 600-x )人,则按照分层抽样,各层的比例为2001 600=18,所以女生抽取x 8,男生抽取1 600-x 8,所以x8+10=1 600-x 8,解得x =760. 题型二 用样本估计总体例2 (2012·广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比审题破题 (1)根据样本频率之和为1,求出参数a 的值;(2)根据频率分布直方图和平均值的计算公式,求出样本平均值;(3)由直方图可计算语文成绩在每分段上的频数,再根据语文和数学成绩在同一段上的人数比,便可计算数学成绩在[50,90)之间的人数,进而求解.解 (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为 100-(5+20+40+25)=10(人).反思归纳 频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布.根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法.方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小.变式训练2 (1)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙答案 B解析由茎叶图可知甲数据集中在10至20之间,乙数据集中在20至40之间,明显x 甲<x乙,甲的中位数为20,乙的中位数为29,即m甲<m乙.(2)某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成六段[40,50),[50,60),…,[90,100)后,画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________;平均分为________.答案75%71解析及格的各组的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%;样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.题型三统计案例例3(1)根据上表可得线性回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时销售额为() A.63.6万元B.65.5万元C.67.7万元D.72.0万元(2)为了普及环保知识,增强环保意识,某大学从理工类专业的A班和文史类专业的B班各抽取20附:参考公式及数据①卡方统计量:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d);则下列说法正确的是( )A .有99%的把握认为环保知识测试成绩与专业有关B .有99%的把握认为环保知识测试成绩与专业无关C .有95%的把握认为环保知识测试成绩与专业有关D .有95%的把握认为环保知识测试成绩与专业无关审题破题 (1)可以通过回归直线过(x ,y )求出a ^,然后进行预报;(2)计算K 2,然后和临界值比较. 答案 (1)B (2)C解析 (1)∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^=b ^x +a ^必过(x ,y ),∴42=72×9.4+a ^ ,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元). (2)K 2=40×(14×13-7×6)220×20×21×19≈4.912,3.841<K 2<6.635,所以有95%的把握认为环保知识测试成绩与专业有关.反思归纳 (1)线性回归分析中,回归直线过(x ,y )是解决问题的核心;(2)独立性检验问题要计算卡方值,和临界值比较,说明有多大把握认为两者有关系.变式训练3 某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进(1)求线性回归方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解 (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80,又b ^=-20,所以a ^=y -b ^x =80+20×8.5=250,从而线性回归方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-20(x-8.25)2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.典例(12分)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学习成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)设m,n表示样本中两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;(2)根据有关规定,成绩小于16秒为达标.根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?附:规范解答解(1)从频率分布直方图中可以看出,成绩在[13,14)的人数为50×0.04=2(人),设为a,b;成绩在[17,18]的人数为50×(1-0.38-0.34-0.18-0.04)=3(人),设为A,B,C.[2分] m,n∈[13,14)有ab一种情况;m,n∈[17,18]时有AB,AC,BC三种情况;m,n分别在[13,14)和[17,18]时有aA ,aB ,aC ,bA ,bB ,bC 六种情况,所有基本事件总数为10.[4分] 而事件“|m -n |>2”由6个基本事件即aA ,aB ,aC ,bA ,bB ,bC 组成.所以P (|m -n |>2)=610=35.[6分](2)依题意得到相应的2×2列联表如下:[9分]K 2=50×(24×12-6×8)232×18×30×20≈8.333.由于8.333>6.635,故在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”.故可以根据男女生性别划分达标的标准.[12分]评分细则 (1)计算出成绩在两个区间[13,14),[17,18]内的人数给1分,标记给1分;(2)列举基本事件不全扣1分;(3)卡方值计算正确得1分,和临界值比较得1分,写最后结论得1分.阅卷老师提醒 (1)频率分布直方图和概率的结合是高考考查的热点,解题时要审清题意,把握频率分布直方图所体现的频率分布或数字特征;(2)解决独立性检验问题,要先得到列联表,准确代入公式计算.1. 某校共有学生2 000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在( )A.24B .18C .16D .12答案 C解析 由2 000×0.19=380知二年级的学生人数为380+370=750,由于一年级的学生人数为373+377=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16(人).2. (2012·山东)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是 ( )A .众数B .平均数C .中位数D .标准差答案 D解析 对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.3. 一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了8次试验,设回归方程为y =b x +a ,则点(a ,b )在直线x +45y -10=0的( )A .左上方B .左下方C .右上方D .右下方答案 C解析 依题意得,x =18×(10+20+30+40+50+60+70+80)=45,y =18×(62+68+75+81+89+95+102+108)=85.注意到题中的每一组点(x ,y )均位于直线x +45y -10=0的右上方,因此点(a ^,b ^)必位于直线x +45y -10=0的右上方,故选C.4. 高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本.已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为________. 答案 20解析 由题意可知,可将学号依次为1,2,3,…,56的56名同学分成4组,每组14人,抽取的样本中,若将他们的学号按从小到大的顺序排列,彼此之间会相差14.故还有一个同学的学号应为6+14=20.5. (2013·湖北)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示. (1)直方图中x 的值为 __________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.答案 (1)0.004 4 (2)70解析 (1)(0.002 4+0.003 6+0.006 0+x +0.002 4+0.001 2)×50=1, ∴x =0.004 4.(2)(0.003 6+0.004 4+0.006 0)×50×100=70.6. (2013·辽宁)为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________. 答案 10解析 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5, 则由题意知x 1+x 2+x 3+x 4+x 55=7,(x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20, 五个整数的平方和为20,则必为0+1+1+9+9=20, 由|x -7|=3可得x =10或x =4. 由|x -7|=1可得x =8或x =6.由上可知参加的人数分别为4,6,7,8,10,故最大值为10.专题限时规范训练一、选择题1. (2013·安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是 ( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数 答案 C 解析 x男=15(86+94+88+92+90)=90,x 女=15(88+93+93+88+93)=91, s 2男=15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8, s 2女=15[(88-91)2+(93-91)2+(93-91)2+(88-91)2+(93-91)2]=6. 2. (2013·湖南)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法答案 D解析 总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样. 3. 为了解一片大约10 000株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm 的树木大约有( )A .3 000株B .6 000株C .7 000株D .8 000株答案 C解析 底部周长小于110 cm 的频率为(0.01+0.02+0.04)×10=0.7,所以底部周长小于110 cm 的树木大约有10 000×0.7=7 000株,故选C.4. 如图是2013年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1、a 2,则一定有( )A.a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1,a 2大小与m 的值有关答案 B解析 去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a 2>a 1.5. 假设学生初一和初二数学成绩是线性相关的.若10个学生初一(x )和初二(y )的数学分数则初一和初二数学分数间的线性回归方程是( )A.y ^=1.218 2x -14.192B.y ^=14.192x +1.218 2C.y ^=1.218 2x +14.192D.y ^=14.192x -1.218 2 答案 A 解析 因为x=71,∑i =110x 2i =50 520,y =72.3,∑i =110x i y i =51 467,所以,b ^=51 467-10×71×72.350 520-10×712≈1.218 2.a ^=72.3-1.218 2×71=-14.192 2,线性回归方程是:y ^=1.218 2x -14.192 2.6. (2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取( )A.08 B .07 C .02 D .01答案 D解析 从第1行第5列、第6列组成的数65开始由左到右依次选出的数为:08,02,14,07,01,所以第5个个体编号为01.7. 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为3 答案 D解析 逐项验证,由0,0,0,2,4,4,4,4,4,8可知,A 错;由0,0,0,0,0,0,0,0,2,8可知,B 错;由0,0,1,1,2,2,3,3,3,8可知,C 错.D 中x =2. (x 1-2)2+(x 2-2)2+…+(x 10-2)210=3.即(x 1-2)2+(x 2-2)2+…+(x 10-2)2=30.显然(x i -2)2≤30(i =1,2,…,10),x i ∈N *即x i ≤7.8. 有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A .18B .36C .54D .72答案 B解析 由0.02+0.05+0.15+0.19=0.41, ∴落在区间[2,10)内的频率为0.41×2=0.82. ∴落在区间[10,12)内的频率为1-0.82=0.18.∴样本数据落在区间[10,12)内的频数为0.18×200=36. 二、填空题9. (2013·山东改编)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________.答案 367解析 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=17(16+9+1+0+1+9+0) =367. 10.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案 9解析 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.11.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.答案 24 23解析 x 甲=110×(19+18+20+21+23+22+20+31+31+35)=24.x 乙=110×(19+17+11+21+24+22+24+30+32+30)=23.12.以下四个命题,其中正确的是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1 ;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量K 2(χ2)的值越小,“X 与Y 有关系”的把握程度越大. 答案 ②③解析 ①是系统抽样;对于④,随机变量K 2(χ2)的值越小,说明两个变量有关系的把握程度越小. 三、解答题13.(2013·安徽)为调查甲、乙两校高三年级学生某次联考的数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n ,由已知条件 30n=0.05,则n =600. 在甲校高三年级抽取的30名学生中成绩在60分及60分以上的人数为25,因此甲校高三年级这次联考的及格率大约是2530=56=83.3%.(2)x 1=[(7+13+24+26+22+2)+40+50×4+60×9+70×9+80×5+90×2]÷30=1 04215;x 2=[(5+14+17+33+20)+40+50×3+60×10+70×10+80×5+90]÷30=2 06930.x 1-x 2=2 08430-2 06930=12.14.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 解 (1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)从题中所给条件可以看出收看新闻节目的共45人,随机抽取5人,则抽样比为545=19,故大于40岁的观众应抽取27×19=3(人).(3)抽取的5名观众中大于40岁的有3人,在20岁到40岁的有2人,记大于40岁的人为a 1,a 2,a 3,20至40岁的人为b 1,b 2,则从5人中抽取2人的基本事件有(a 1,a 2),(a 1,a 3),(a 2,a 3),(b 1,b 2),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2)共10个,其中恰有1人为20至40岁的有6个,故所求概率为610=35.。

高中数学统计与概率

高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。

4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。

高中数学概率统计题库及答案解析

高中数学概率统计题库及答案解析

高中数学概率统计题库及答案解析随着高中数学概率统计的教学深入,学生们需要更多的练习来巩固所学知识。

因此,一个全面且有针对性的概率统计题库及答案解析就显得尤为重要。

本文将介绍一个高中数学概率统计题库,并提供详细的答案解析,帮助学生更好地掌握该领域的知识。

一、选择题1. 已知事件A和事件B是互不相容的,且P(A)= 0.3,P(AUB) = 0.7,求P(B)的值。

解析:由题意可知 P(AUB) = P(A) + P(B) - P(AB),代入已知条件可得 0.7 = 0.3 + P(B) - 0,从而得到 P(B) = 0.4。

2. 设事件A和事件B相互独立,且P(A) = 1/4,P(B) = 1/3,求P(AB)的值。

解析:由于事件A和事件B相互独立,所以 P(AB) = P(A)P(B),代入已知条件可得 P(AB) = (1/4)(1/3) = 1/12。

二、计算题1. 从1到20中随机选取一个数,求选取的数被3整除的概率。

解析:在1到20中可以被3整除的数有3, 6, 9, 12, 15, 18共6个。

而总的样本空间为20,所以选取的数被3整除的概率为6/20 = 3/10。

2. 甲、乙、丙共参加了一次考试,甲过的概率为0.7,乙过的概率为0.8,丙过的概率为0.9。

已知甲、乙、丙三人中至少有两人过的概率是0.97,求三人中全部过的概率。

解析:设甲、乙、丙三人全部过的概率为 P(甲)P(乙)P(丙),根据题意可得到以下等式:1 - [P(甲) + P(乙) + P(丙) - P(甲)P(乙) - P(甲)P(丙) - P(乙)P(丙)] = 0.97代入已知概率可解得 P(甲)P(乙)P(丙) = 0.51,即三人全部过的概率为0.51。

三、证明题已知事件A和事件B是相互独立的,证明事件A的补事件与事件B的补事件也是相互独立的。

证明:设事件A的补事件为A',事件B的补事件为B'。

高中数学概率与统计复习 题集附答案

高中数学概率与统计复习 题集附答案

高中数学概率与统计复习题集附答案1. 概率1.1 条件概率题目:某班有60名学生,其中有30名男生和30名女生。

从中随机抽取一位学生,求抽到女生的概率。

答案:由于抽到女生只有30人中的一个机会,总数为60人,所以女生的概率为30/60=1/2。

1.2 独立事件题目:一副52张的扑克牌中,第一次从中抽取一张 A,不放回,第二次抽取一张 K,求第二次抽到 K 的概率。

答案:由于第一次抽取 A 后不放回,所以总共只剩下51张牌。

其中,抽到 K 的机会只有4张,所以概率为4/51。

1.3 事件的并、交与补题目:在数学课上,调查了50位学生的成绩情况,结果发现40位学生擅长代数,35位学生擅长几何,其中有30位学生既擅长代数又擅长几何。

求至少擅长其中一科的学生人数。

答案:根据题意,至少擅长其中一科的学生人数等于擅长代数的人数加上擅长几何的人数再减去既擅长代数又擅长几何的人数。

即40 + 35 - 30 = 45。

2. 统计2.1 样本均值题目:某班有30名学生,进行一次数学测验,得分如下:80, 85, 90, 70, 75, 95, 100, 85, 92, 78, 88, 90, 85, 82, 86, 88, 90, 92, 86, 95, 85, 82, 92, 88, 90, 85, 90, 88, 80, 90求该班级的平均分。

答案:将所有学生的得分相加,并且除以学生总数,即(80 + 85 + 90 + 70 + 75 + 95 + 100 + 85 + 92 + 78 + 88 + 90 + 85 + 82 + 86 + 88 + 90 + 92 + 86 + 95 + 85 + 82 + 92 + 88 + 90 + 85 + 90 + 88 + 80 + 90) / 30 ≈ 87.12.2 极差题目:某班级考试的分数如下:80, 85, 70, 95, 90, 92, 65, 88求该班级考试分数的极差。

高二数学--概率与统计-(1)

高二数学--概率与统计-(1)

高二数学 概率与统计考试要求1.统计(1)随机抽样① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差. ③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. ④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. (3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. ② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 不要求记忆线性回归方程系数公式()()()1122211,nniiiii i nniii i x ynx y xxyyb a y bxxnxxx-------===---∑∑∑∑用最小二乘法求线性回归方程系数公式:7.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.② 了解两个互斥事件的概率加法公式. (2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率. (3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率. ②了解几何概型的意义.1.课本概念与定理详解(1)随机抽样①简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体数较少. ②系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多.③分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成.(2)众数、中位数、平均数①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.在直方图中取频率为0.5处的频数。

高中数学-概率与统计专题

高中数学-概率与统计专题

概率与统计专题一:二项分布一、必备秘籍一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (01p <<),用X 表示事件A 发生的次数,则X 的分布列为()(1)k k n k n P X k C p p -==-(0,1,2,k n =)如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布(binomial distribution ),记作(,)X B n p 。

二、例题讲解1.(2021·全国高三其他模拟)羽毛球是一项隔着球网,使用长柄网状球拍击打用羽毛和软木刷制作而成的一种小型球类的室内运动项目.羽毛球比赛的计分规则:采用21分制,即双方分数先达21分者胜,3局2胜.每回合中,取胜的一方加1分.每局中一方先得21分且领先至少2分即算该局获胜,否则继续比赛;若双方打成29平后,一方领先1分,即算该局取胜.某次羽毛球比赛中,甲选手在每回合中得分的概率为34,乙选手在每回合中得分的概率为14.(1)在一局比赛中,若甲、乙两名选手的得分均为18,求在经过4回合比赛甲获胜的概率;(2)在一局比赛中,记前4回合比赛甲选手得分为X,求X的分布列及数学期望()E X.2.(2021·青铜峡市高级中学高三开学考试(理))设甲、乙两位同学上学期间,.假定甲、乙两位同学到校情况互不影响,且任每天7:30之前到校的概率均为23一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的每周五天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)记“上学期间的某周的五天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多3天”为事件M,求事件M发生的概率. 3.(2020·全国高三专题练习(理))一名学生每天骑车上学,从他家到学校的途中有5个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1.3(1)设X为这名学生在途中遇到红灯的次数,求X的分布列、期望、方差;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.实战练习1.(2021·湖北武汉·)在一次国际大型体育运动会上,某运动员报名参加了其中3个项目的比赛.已知该运动员在这3个项目中,每个项目能打破世,那么在本次运动会上:界纪录的概率都是23(1)求该运动员至少能打破2项世界纪录的概率;(2)若该运动员能打破世界纪录的项目数为X ,求X 的分布列及期望.2.(2021·渝中·重庆巴蜀中学高三开学考试)某医院为筛查某病毒,需要检验血液是不是阳性,现有)(n n N *∈份血液样本,为了优化检验方法,现在做了以下两种检验方式:实验一:逐份检验,则需要检验n 次.实验二:混合检验,将其中m (n *∈N 且2m ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这m 份血液样本全为阴性,因而这m 份血液样本只要检验一次就够了;若检验结果为阳性,为了明确这m 份血液样本究竟哪几份为阳性,就要对这m 份血液样本再逐份检验,此时这m 份血液样本的检验次数总共为1m +.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为)(01p p <<.现取其中k (k *∈N 且2k ≥)份血液样本,记釆用逐份检验方式,需要检验的这k 份样本的总次数为1ξ,釆用混合检验方式,需要检验的这k 份样本的总次数为2ξ.(1)若每份样本检验结果是阳性的概率为15P =,以该样本的阳性概率估计全市的血液阳性概率,从全市人民中随机抽取3名市民,(血液不混合)记抽取到的这3名市民血液成阳性的市民个数为X ,求X 的分布列及数学期望(2)若每份样本检验结果是阳性的概率为1p =总次数2ξ的期望值比逐份检验的总次数1ξ的期望值更少,求k 的最大值.(ln 4 1.386≈,ln5 1.609≈,ln 6 1.792≈)3.(2021·全国高三其他模拟(理))新冠疫情这特殊的时期,规定居民出行或出席公共场合均需佩戴口罩,现将A 地区居民20000人一周的口罩使用量统计如表所示,其中1个人一周的口罩使用为6个以及6个上的有14000人.(1)求m 、n 的值;(2)用样本估计总体,将频率视为概率,若从A 地区的所有居民中随机抽取4人,记一周使用口罩数量(单位:个)在范围[)6,8的人数为X ,求X 的分布列及数学期望.4.(2021·新沂市第一中学高三其他模拟)市教育部门为研究高中学生的身体素质与课外体育锻炼时间的关系,对该市某校200名高中学生的课外体育锻炼平均每天锻炼的时间进行了调查,数据如下表:将学生日均课外体育锻炼时间在[40,60]内的学生评价为“课外体育达标”.(1)请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关;(2)从上述课外体育不达标的学生中,按性别用分层抽样的方法抽取10名学生,再从这10名学生中随机抽取3人了解他们锻炼时间偏少的原因,记所抽取的3人中男生的人数为随机变量X,求X的分布列和数学期望;(3)将上述调查所得到的频率视为概率来估计全市的情况,现在从该市所有高中学生中抽取4名学生,求其中恰好有2名学生课外体育达标的概率. 5.(2021·陕西汉中·高三月考(理))树木根部半径与树木的高度呈正相关,即树木根部越粗,树木的高度也就越高.某块山地上种植了A树木,某农科所为了研究A树木的根部半径与树木的高度之间的关系,从这些地块中用简单随机抽样的方法抽取6棵A树木,调查得到A树木根部半径x(单位:米)与A树木高度y(单位:米)的相关数据如表所示:(1)求y关于x的线性回归方程;(2)对(1)中得到的回归方程进行残差分析,若某A树木的残差为零,则认为该树木“长势标准”,以此频率来估计概率,则在此片树木中随机抽取80棵,记这80棵树木中“长势标准”的树木数量为X,求随机变量X的数学期望与方差.参考公式:回归直线方程为y bx a=+,其中()()()1122211,n ni i i ii in ni ii ix y nxy x x y yb a y bxx nx x x====---===---∑∑∑∑6.(2021·四川成都·双流中学高三三模(理))从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.(1)求a 的值并估计该市中学生中的全体男生的平均身高(假设同组中的每个数据用该组区间的中点值代替);(2)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X 表示身高在180cm 以上的男生人数,求随机变量X 的分布列和数学期望()E X .7.(2021·安徽安庆一中高三三模(理))安庆市某学校高三年级开学之初增加晚自习,晚饭在校食堂就餐人数增多,为了缓解就餐压力,学校在原有一个餐厅的基础上增加了一个餐厅,分别记做餐厅甲和餐厅乙,经过一周左右统计调研分析:前一天选择餐厅甲就餐第二天选择餐厅甲就餐的概率是25%、选择餐厅乙就餐的概率为75%,前一天选择餐厅乙就餐第二天选择餐厅乙就餐的概率是50%、选择餐厅甲就餐的概率也为50%,如此往复.假设学生第一天选择餐厅甲就餐的概率是23,择餐厅乙就餐的概率是13,记某同学第n 天选择甲餐厅就餐的概率为n P . (1)记某班级的3位同学第二天选择餐厅甲的人数为X ,求X 的分布列,并求E (X );(2)请写出1n P +与(*)n P n N ∈的递推关系;(3)求数列{}n P 的通项公式并帮助学校解决以下问题:为提高学生服务意识和团队合作精神,学校每天从20个班级中每班抽调一名学生志愿者为全体学生提供就餐服务工作,根据上述数据,如何合理分配到餐厅甲和餐厅乙志愿者人数?请说明理由.8.(2021·湖北恩施·高三其他模拟)目前某市居民使用天然气实行阶梯价格制度,从该市随机抽取10户调查同一年的天然气使用情况,得到统计表如下:(1)现要在这10户家庭中任意抽取3户,求抽到的年用气量超过228立方米而不超过348立方米的用户数的分布列与数学期望;(2)若以表中抽到的10户作为样本估计全市居民的年用气情况,现从全市居民中抽取10户,其中恰有k 户年用气量不超过228立方米的概率为()P k ,求使()P k 取到最大值时,k 的值.概率与统计专题二: 超几何分布一般地,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为2,r其中n ,N ,M N *∈,M N ≤,n N ≤,max{0,}m n N M =-+,min{,}r n M =,则称随机变量X 服从超几何分布.1.公式 C C ()C kn k M N M n NP X k --== 中个字母的含义N —总体中的个体总数M —总体中的特殊个体总数(如次品总数)n —样本容量k —样本中的特殊个体数(如次品数)注意:(1)“由较明显的两部分组成”:如“男生、女生”,“正品、次品”;(2) 不放回抽样;(3) 注意分布列的表达式中,各个字母的含义及随机变量的取值范围。

高中数学概率统计大题

高中数学概率统计大题

高中数学概率统计大题1. 概率的基本概念首先,咱们得搞清楚什么是概率。

简单来说,概率就是某个事情发生的可能性。

比如说,你今天去学校,碰到你喜欢的人,那能不能说这件事的概率很高呢?当然,前提是你们都是同班同学。

如果班里只有一两个同学是你的菜,哎呀,那概率就低多了。

用个公式来表示,就是概率 = 有利事件数 / 可能事件总数。

听起来是不是很简单?但这就是概率的精髓所在。

1.1 概率的计算讲到概率的计算,这就像是做一道数学题,得动动脑筋。

比如,抛一个硬币,正面朝上的概率是多少?很简单嘛,正面和反面的机会各一半,所以是1/2。

再换个方式,如果你有一袋子五种不同颜色的糖果,想抽出一颗红色的,那么这个概率就是1/5。

你会发现,生活中的很多事情,其实都可以用概率来解释,真是妙不可言。

1.2 概率的应用说到应用,概率在生活中的用处可多了。

比如买彩票,大家都想中大奖,但实际上,中奖的概率就像在沙漠中找水源,几乎是微乎其微。

不过,很多人还是愿意花钱去买,因为“中奖”这个梦太诱人了,就像是泡面加蛋,简单却又能满足。

再比如,天气预报,听说今天下雨的概率是70%,其实这就给了你一个选择:是带伞还是不带。

说到底,概率在我们的生活中无处不在,哪怕是吃饭选择菜品的时候,心中也在暗自权衡哪个更好吃。

2. 统计的基本概念说完概率,咱们再聊聊统计。

统计就像是一位聪明的侦探,负责收集和分析数据,帮助我们理解世界的真相。

想象一下,你在班里做了个调查,问大家喜欢什么运动,最后发现大部分人都喜欢打篮球。

那这就是统计告诉你的结果,通过数据,让你更清楚大家的喜好。

2.1 数据的收集收集数据的方式有很多种,像问卷调查、观察记录等等。

就像你在聚会上,听大家说笑话,心里默默记下最受欢迎的几个,回去可以和朋友们分享。

数据收集就像是打基础,只有把这些信息搜集齐全,才能在后面进行分析。

2.2 数据的分析数据分析就像是烹饪,你得把收集到的食材进行处理,最后做出美味的菜肴。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学概率统计专题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
高三文科数学:概率与统计专题
一、选择题:
1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
A.1
3
B.
1
2
C.
2
3
D.
3
4
3、在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相
等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=1
2x+1上,则这组样本
数据的样本相关系数为
(A)-1 (B)0 (C)1
2(D)1
4.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
(A)10
3
(B)
1
5
(C)
1
10
(D)
1
20
5.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是
A.1
4B.
π
8
C.1
2
D.π4
6.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )
二、填空题:
7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______。

8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.
9.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 方程y ^=b
^x +a ^由表中数据得回归直线
中的b
^=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题
10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量
n
14 15 16 17 18 19 20 频数
10
20
16
16
15
13
10
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量
气温(℃) 18 13 10 -1 用电量(度)
24
34
38
64
发生的概率,求当天的利润不少于75元的概率。

11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
质量指标值
分组[75,
85)
[85,
95)
[95,
105)
[105,
115)
[115,
125)
频数62638228(I)在答题卡上作出这些数据的频率分布直方图:
(II)估计这种产品质量指标值的平均数及方差(同一组
中的数据用该组区间的中点值作代表);
(III)根据以上抽样调查数据,能否认为该企业生产的这
种产品符合“质量指标值不低于95的产品至少要占全部产
品的80%”的规定
12.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份2009201020112012201320142015 年份代号t 1234567
人均纯收入y
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
b^=∑
n
i=1
(t i-t-)(y i-y-)

n
i=1
(t i-t-)2
,a^=y--b^t-.
13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:
(1)若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);
(2)由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.
附:K 2=n (ad -bc )
2
(a +b )(c +d )(a +c )(b +d )
14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑
,0.212s ==≈
,18.439≈,16
1
()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,
1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()
n
i
i
x x y y r --=
∑,
0.09≈.。

相关文档
最新文档