4-1闪烁探测器

合集下载

CT习题 —X线计算机体层成像设备

CT习题  —X线计算机体层成像设备

第十一章X线计算机体层成像设备一、名词解释1.检测效率:检测效率是指探测器从X线束吸收能量的百分数。

2.飞焦点技术:是指在扫描过程中,利用电磁偏转技术改变X线管中灯丝产生的电子束的偏转轨迹.,使X线在阳极靶面的两个或多个位置形成焦点而出射X线。

3.高对比度分辨力:物体与均质环境的X线线性衰减系数差别的相对值大于10%时,CT图像能分辨该物体的能力。

4.低对比分辨力:物体与均质环境的X线线性衰减系数差别的相对值小于1%时,CT图像能分辨该物体的能力。

5.空间分辨力:系指CT像在高对比度条件下分辨两个距离很近的微小组织或病灶的能力。

6.伪影(artifact):是在被测人体中不存在,而出现在CT图像中所有图像干扰和其他非随机干扰的总称。

7.均匀度:在扫描野中,均质体各局部在CT图像上显示出CT值的一致性。

8.层厚:是指X线扇形束在横断面上的放射厚度。

它由准直器设定的X线束的厚度来决定。

9.螺距:为X线管旋转一周时扫描床的水平位移。

10.螺旋因子:为螺距与层厚相除所得的商。

即层厚等于X线管旋转一周时扫描床的水平位移。

11.成像间隔:连续两张重建图像的层面中心点间的距离,即螺距除以每周成像数。

二、选择题1.世界上首台CT的发明人是()国人A.英B.美C.中D.日本E.德国2.世界上首台CT的发明人名字是()A.伦琴B.柯玛克C.雷当D.豪斯菲尔德E.兰德利3.X-CT设备的问世年代是()A.19世纪70年代B.19世纪80年代C.20世纪70年代D.20世纪80年代E.20世纪90年代4.第一代CT是()扫描方式A.平移+旋转B.旋转+旋转C.静止+旋转D.静止+静止E.平移+平移5.第一代CT属于()专用机A.头部B.体部C.胸部D.腰部E.肩部6.现在用的最多的是()代CTA.第一代B.第二代C.第三代D.第四代E.第五代7.三代CT指()A.平移+旋转扫描方式B.旋转+旋转扫描方式C.旋转+静止扫描方式D.静止+静止扫描方式E.以上都不正确8.三代CTX线束的扇角为()A.5°-20°B.30°-45°C.50°-75 °D.360°E.以上都不确9.关于四代CT的说法不正确的是()A.探测器不旋转B.探测器分布在360°,数量较多C.X线管旋转D.可以一个方向连续旋转多圈E.扫描时X线管先平移后在旋转10.螺旋CT是从()代CT发展而来A.第一代B.第二代C.第三代D.第四代E.第五代11.下列不是CT硬件发展趋势的是()A.加快扫描速度B.提到图像质量C.增加电缆长度D.简化操作E.缩小体积12.螺旋CT中螺距指()A.X线管旋转一周,扫描床水平位移B.X线管旋转180度,扫描床水平位移C.X线管旋转720度,扫描床水平位移D.X线管旋转90度,扫描床水平位移E.X线管旋转45度,扫描床水平位移13.螺旋CT的专用参数中螺旋因子指的是()A.螺距﹣层厚B.螺距+层厚C.螺距/层厚D.螺距×层厚E.层厚/螺距14.下面对CT设备中X线管描述正确的是()A.热容量高,扫描次数多B.热容量高,扫描次数少C.热容量低,扫描次数多D.热容量低,扫描次数少E.热容量可高可低15.HU即heat unit是()的单位A.X射线管容量B.X射线管热容量C.X射线强度D.X射线剂量E.X射硬度16.数据采集系统的构成不包括()A.X线管B.准直器C.滤过器D.计算机系统E.探测器17.数据处理装置不包括()A.前置放大器B.对数放大器C.模数转换器D.计算机系统E.多路转换器18.CT的数据采集系统一般安装在()上A.扫描架B.主控制台C.扫描床D.计算机系统E.副控制台19.滤过器的形状一般为()A.椭圆形B.楔形C.长方形D.正方形E.圆形20.第五代CT是()扫描方式A.平移+旋转B.旋转+旋转C.静止+旋转D.静止+静止E.平移+平移21.第五代超高速CT具有()个阳极靶环A.2B.3C.4D.5E.622.对于一般单排CT而言,扫描厚度由()决定。

基于FlashADC的闪烁探测信号测量装置研制_张永杰

基于FlashADC的闪烁探测信号测量装置研制_张永杰
本系统采用 FPGA 作为主控逻辑,实现对 ADC、DAC,指令 处 理、数 据 采 集 和 通 讯 等 功 能 控制。FPGA 选 用 具 体 型 号 为 Xilinx spartan3 系列 XC3S400 - 4FT256,其速度、资 源 满 足 设 计需要,且功耗 低 ,成 本 低 廉 。系 统 设 计 采 用
图 5 是测试装置的实物照片,设备可支持 2 路探测器信号,并可以为两路探测器提供低 压电源。设备也支持光纤传输的通讯方式( 光 纤接口在设备的后面) 。图 6 是 USB 光纤接口 盒的实物照片,可用来和测试装置配合,在光纤 通讯模式下,实现与测试装置的光纤通讯。
图 7、图 8 分别为 NaI / CsI 复合晶体探测器 脉冲宽度谱和241 Am 能谱图。
参考文献:
[1]汪晓莲,李澄,邵明,等. 粒子探测技术[M]. 北京: 中国科学技术大学出版社,2009.
[2]丁洪林. 核辐射探测器[M]. 哈尔滨: 哈尔滨工程 大学出版社,2010.
Scintillator Signal Measurement Device Research Based on the Flash ADC
ZHANG Yong - jie1 ,CHAI Jun - ying1,2 ,XING Wen1 ,LI Yan - guo1
( 1. Key Laboratory of Particle Astrophysics,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China; 2. University of Chinese Academy of Sciences,Beijing 100049,China)

SPECT和PET精讲

SPECT和PET精讲

一般而言,入射的射线的能量越大,考虑晶体对γ射线的 探测效率多一些,必须适当加厚晶体的厚度以提高探测效 率;若需要较高的灵敏度则必须增大晶体的直径。然而, 晶体直径过大,探测到的焦点外组织的放射线越多,康普 顿散射效应的影响越大,导致分辨力变差;随着对应的准 直器孔直径增大,光子的立体角增大将导致深度效应变差; 另外必须考虑的是与晶体对应配合的准直器、屏蔽装置等 加工难度,造价的提高等。
BGO的多环多晶体结构的优点
目前应用于临床的PET都是采用BGO的多环多晶体 结构。
1.优点: (1)使用少量的探测器可以得到较多的环数,较
大断层厚度和较高的空间分辨力,同时也降低了 制造成本。 (2)是一种新型的无机闪烁体,含有高的原子序 数元素Bi,晶体密度高,对γ射线有很高的光电 效应界面,能有效的阻止和转换高能的γ光子
探测器的稳定性则是指能量-电荷转换系数在环境 温度和电源电压变化时的比值。
闪烁探测器
闪烁探测器是目前核医学中最常用和常见的探测器. 主要有γ闪烁探测器和液体闪烁探测器两类。
它们均由闪烁体、光电倍增管和前置放大器组成。
闪烁探测器
一种铊激活碘化钠[NaI(Tl)]探测晶体普遍用于γ 相机中。在核医学中,这种晶体对于放射性核发 射的γ射线能量有最佳的探测效率。探测晶体一 般为圆形或矩形。
的截面积较大,对γ或x射线的阻止能力强,所以吸收率高,发光效 率高,使其探测效率达到20%-30%。 2、另外,晶体荧光衰减时间短〔0.23一0.25us),故它的时间分辨力 率很高,用于高计数率工作,且晶体产生荧光光子的数量与入射γ射 线能量之间线性范围较宽亦能满足要求。 3、另外一个优点就是晶体的制备较为方便,大小形状容易满足临床 应用要求。目前临床使用的Na I(Tl)晶体直径己有超过400mm.

水浸探测器安装与配置说明

水浸探测器安装与配置说明

水浸探测器安装与配置说明一、产品概述本产品应用电极浸水阻值变化的原理来进行积水探测,采用MCU智能检测方式,传感器防锈设计,有较高的精度与灵敏度,具有低功耗、良好的长期稳定性、可靠性等优点。

本产品可广泛用于地下室,水箱,机房,水路,水塔,水窖,水池,游泳池,水房,太阳能等一切储水设备及需要知道漏水或溢水的地方。

用户可根据需要选择独立型/联网型/无线型报警器。

二、主要技术参数产品名称水浸探测器产品型号工作电压DC3V电池产品类型无线型安装方式壁挂或台面安装工作温度0℃-+60℃环境湿度0%~80%RH产品尺寸89*89*28mm三、操作说明1、无线型水浸探测器产品请装入2节1.5V的AA电池,接入电池电压大于2.4V上电时,绿色LED闪烁一次,同时蜂鸣器鸣叫一声;若电压小于2.4V上电则黄色LED快速闪烁3次,同时蜂鸣器鸣叫3声,随后探测器即进入工状态。

2、当使用电池供电时绿色LED将每隔约25S闪烁一次,以示供电正常。

3、为确保探测器完好,使用时应定期长按HUSH/TEST键(>2S)进行测试,2S后LED会红、绿交替快速闪烁,同时蜂鸣器随LED点亮而鸣叫,直到按键松开;此外,测试时探测器会发出无线报警信号。

4、当传感器探测到水后,探测器红色LED将快速闪烁,同时蜂鸣器发出“滴、滴”报警声提示提醒用户有漏水或溢水现象;探测器,则会发出无线报警信号。

5、报警时用户可以可以长按或短按HUSH/TEST键进入静音,此时红色和绿色LED每隔1S交替点亮一次,蜂鸣器关闭,静音时间为10分钟,10分钟后探测器若仍探测到有水,则探测器继续报警提示用户有漏水或溢水现象。

6、正常状态也可短按HUSH/TEST键进入静音,此时绿色LED 每隔1S闪烁一次,遇水时红色和绿色LED每隔1S交替闪烁一次,而不输出其他信号:如声音、无线信号。

在静音状态可以拖地板或洗刷水池。

若想结束静音可以再次短按HUSH/TEST键。

JTYGD01K型点型光电感烟火灾探测器使用说明书

JTYGD01K型点型光电感烟火灾探测器使用说明书

1页版本号: 03JTY-GD-01K 型点型光电感烟火灾探测器使用说明书安装与调试的具体方法如下:1. 按施工图纸,使用 2 枚 M4 螺钉,通过图 2 中所示的 A 、B 固定孔,将配套底座固定在指定的安装、使用前,请仔细阅读本说明书位置上,且应确认底座已安装牢靠;一、概述2. 切断控制器电源,按施工图纸,先将所有底座正确连接,再接入控制器相应的输入端口;JTY-GD-01K 型点型光电感烟火灾探测器(以下简称探测器)是两线制开关量型感烟探测器。

探测器 3. 确认探测器类型与施工图纸上所注类型相匹配;采用无极性两线制连接,可应用在相兼容的传统开关量报警控制系统和监控报警系统中,也可通过接口模 4. 将探测器下边沿凸起的位置对准底座凹槽位置,再将探测器插入底座,顺时针方向旋转探测器,块接入智能火灾自动报警控制系统中。

探测器实时监测现场烟雾浓度,处于监视状态时,红色指示灯闪烁, 直至探测器锁定到位; 工作电流小;当现场烟雾浓度超过设定的报警阈值时,探测器进入报警状态,红色指示灯常亮,回路电流 5. 待全部探测器安装完毕,且确认无误后,接通探测器电源,探测器指示灯将每 3~6 秒闪烁一次,迅速增大。

探测器的报警信号以电流变化的形式给出,且具有报警锁定功能,报警的复位只能通过短暂断 表明探测器已开始工作; 电来实现。

6. 最后使用专用工具或直接吹烟的方式对探测器进行报警测试。

探测器报警后指示灯将常亮,同探测器适用于火灾发生时有大量烟雾产生,而正常情况下无烟雾的场所,如:饭店、宾馆、教学楼、 时控制器给出相应的报警提示信息。

测试结束后恢复控制器,使探测器回到监视状态。

办公楼、计算机房、通讯机房、书库和档案库等工业与民用建筑。

但不适用于有大量粉尘、水雾滞留的场四、注意事项所;不适用于可能产生蒸汽和油雾的场所;不适用于正常情况下有烟滞留的场所。

1. 探测器单独测试时,应在测试回路中串接 3K 的限流电阻。

4-1什么是控制

4-1什么是控制

音响的音量控制 普通水龙头出水的控制 自动取款机 自动烘手机
全自动洗衣机 电冰箱内温度控制 篮球运动员投篮过程控制 自动感应门的开关控制
电梯的上下运行过程控制
肥胖人群体形控制 红外自动水龙头出水控制 手摇晾衣架的控制
飞镖的投掷过程控制
声控走廊灯的控制 红绿灯的转换过程控制 光控路灯的控制
分析下列控制现象是自动控制还是人工控制:
• 控制实例1
人工控制
自动控制
自动控制
• 控制实例1
自动控制
人工控制
人工控制
• 控制实例1
关/开门-人工控制
驾驶汽车-人工控制
• 控制实例1
自动控制
人工控制
控制实例2 汽车自动门
气动控制 机械控制、气动控制
电子控制
汽车刹车
红外线自动门
厕所节水器工作原理

厕所节水器由红外线热敏探测器、微电脑程控器、 低压直流电磁阀组成,它的工作原理是通过红外线人 体感应来完成工作的,当有人在探测器前活动,探测 器立即红色灯光闪烁,表示已经感应到人,同时探测 器将感应信号传送给微电脑程控器,由控制器控制电 磁阀打开放水,注水时间可以自由调节。来人放水, 无人停水,特别适用于学校、机关、商场、工厂等单 位的沟槽式厕所,节水效率高,安全省电。人体红外 线感应100%识别,可以识别不同颜色、不同材质的物 体(衣物),漏冲率为零。
第四章 控制与设计
第一节 什么是控制
学习目标:
1.理解控制的含义 2.理解控制在生活和生产中的应用
老三论

系统论、控制论和信息论是本世纪四十年代 先后创立并获得迅猛发展的三门系统理论的分 支学科。虽然它们仅有半个世纪,但在系统科 学领域中已是资深望重的元老,合称“老三 论”。人们摘取了这三论的英文名字的第一个 字母,把它们称之为SCI论。

火灾探测器


2)传感器特征代号
传感器特征代号包括火灾探测器敏感元件代号和敏感方 式特征代号。除感温火灾探测器需用敏感元件和敏感方 式特征代号表示外,其他各类火灾探测器只用敏感元件 特征代号。传感器特征代号用有代表性的传感器特征名 称中的一个或两个大写汉字拼音字头表示。 3)主参数 火灾探测器产品的主参数是表示该火灾探测器的灵敏度 等级或动作阈值参数,分别用罗马数和阿拉伯数字表示。 如两者同时存在,两者之间需用斜线隔开。
具体做法:
GW(光温)-----感光感温;GY(光烟)-----感光感烟; GW(光温)-----感光感温;GY(光烟)-----感光感烟; YW(烟温)-----感烟感温;Yw-HS(烟温一红束)——红外光 YW(烟温)-----感烟感温;Yw-HS(烟温一红束)——红外光 束感烟感温。
(5)主参数表示法
1 )定温、差定温组合式火灾探测器用灵敏度级别表示: Ⅰ-—Ⅰ级灵敏度; Ⅱ—Ⅱ级灵敏度; Ⅲ-一Ⅲ级灵敏度。 -一Ⅲ 2 )差温火灾探测器、感烟火灾探测器的主参数无须反映。 3 )其他火灾探测器用能代表其响应特征的某一或某两个参数表示。
火灾探测器产品型号编制示例
• • • • • • • • a.JTW一JD-Ⅰ易熔合金定温火灾探测器,Ⅰ级灵敏度; JTW一JD- 易熔合金定温火灾探测器,Ⅰ b .JTW-SC双金属差温火灾探测器; JTW-SC双金属差温火灾探测器; c .JTW-ZCD-Ⅲ热敏电阻差定温火灾探测器,Ⅲ级灵敏度; JTW-ZCD- 热敏电阻差定温火灾探测器, d .JTYC-LZ 船用离子感烟火灾探测器。 JTYCe .JTGB-ZW 防爆型紫外感光火灾探测器; JTGBf .JTF-YM 复合式感烟感温火灾探测器; JTFg .JTF-YW-HS复合式红外光束感烟感温火灾探测器; JTF-YW-HS复合式红外光束感烟感温火灾探测器; h . JTY-LZ-C离子感烟火灾探测器(第三次改型)。 JTY-LZ-

NMF216核辐射密度计

NMF-216核辐射密度计●非接触测量●密度连续测量●计算机数据处理●仪表自诊断●源衰减补偿NO:.NMF216S.01 武汉中纽控制技术有限责任公司目录1.概述2.型号的组成及代表意义3.主要技术指标4.仪表的组成5.工作原理6.仪表系统的安装和接线7.仪表的调试8.调试9.故障诊断10.核辐射安全防护11.维护及保养12.运输及贮存13.订货须知附录图一.闪烁探测器-源罐安装示意图图二.电离室探测器-源罐安装示意图图三.闪烁探测器-变送器接线图图四.电离室探测器-变送器接线图图五.隔爆型探测器内部结构图1.概述:NMF-216型密度计是利用137Cs核辐射产生的γ射线在穿透被测介质时,γ射线随着被测介质密码改变而变化的原理测量被测介质管道内介质密度的,该密度计具有不接触介质进行密度连续测量的优点。

因而NMF-216型密度计能对高粘度、剧毒、强腐蚀的被测介质进行密度的连续测量,该密度计具有420mA的电流输出,数据掉电保护功能,自诊断功能。

2.型号的组成及代表意义N M F – 2 1 6序号透射γ射线核辐射密度物性的3.主要技术指标:3.1测量范围:0.500g/ml─3.000g/ml3.2基本误差:应不超过量程的±1%。

3.3重复性误差:应不超过量程的±1%。

3.4线性误差:应不超过量程的±1%。

3.5变送器:型号SMART-2000。

3.5.1 供电:220V AC±10% 50HZ 功率50W3.5.2 外形尺寸:136mm×136mm×238mm安装孔尺寸:138mm×138mm3.5.3 重量:2kg3.5.4 输出电流:4~20mA 负载电阻0~400Ω3.5.5 时间常数:1~127S选择。

3.5.6 显示:8位LED显示。

3.5.7 使用环境温度:温度0~40℃湿度≤90%3.5.8 探测器与变送器传输电缆长度:最大500m,4芯屏蔽线。

报警温度可调式感温探测器使用说明书

大于此设定值后,继电器恢复。
1
4. 温度校正设定 在 显 示 温 度 的 状 态 下 按 设 置 键3次,显 示
度校正 设 定,如下 图
时进入温
再按1次▲ 或 ▼ 键 可 显 示 当 前 设 定 值 , 如 下 图
报警温度可调式感温探测器使用说明书
M 0 7 3 C Ve r 1 . 3
程序参数图
产品示意图
温度传感器
电源线 信号线
报警温度可调式感温探测器使用说明书
信号输出:继电器输出 ( 常闭 )
M 0 7 3 C Ve r 1 . 3
工作温度: -10 ℃ ~ +50 ℃
相对湿度:≤ 95 % RH
外型尺寸: 118.5*82*43mm
产品接线与安装
1、 电 源 线 : 红 色 和 黑 色 为 电 源 无 极 性 输 入 。
符号
功能
设定范围 出厂设定 单位
上限超温报警
0警 -11~25
-11

温度校正
- 1 0~1 0
0

继电器延时保护 0~99
3

出现此界面后再按▲或▼键可对当前所测量的温度值进行 校正。 5. 继电器延时保护设定
在显示温度的状态下按设置键4次,显示 时进入 继 电器延 时 保 护设 定,如 下 图
按下设置键进入设定程序,单按设置键可循环选择 各菜单,当选定菜单后,通过按▲或▼键可重新设定对 应菜单下的参数。 2. 上限超温报警设定
在显示温度的状态下按设置键1次,显示 时 进入上限 超 温 报 警 设 定,如 下 图
电源线:红色和黑色,无极性输入。 信号线:白色为继电器输出公共端
黄色为继电器输出常闭端

核辐射探测复习知识点

第一章辐射与物质的相互作用与物质相互作用:1.带电粒子与靶原子核的核外电子非弹性碰撞(电离,激发)2.带电粒子与靶原子核的非弹性碰撞(辐射损失)3.带电粒子与靶原子核弹性碰撞(核阻止)4.带电粒子与核外电子弹性碰撞电离损失能量:入射带电粒子与核外电子发生非弹性碰撞使靶物质原子电离或激发而损失的能量(电离:核外层电子客服束缚成为自由电子,原子成为正离子激发:使核外电子由低能级跃迁到高能级而使原子处于激发状态)辐射损失能量:入射带电粒子与原子核发生非弹性碰撞以辐射光子损失能量轫致辐射:入射带电粒子与原子核之间的库仑力作用使带电粒子的速度和方向改变,并伴随发射电磁辐射阻止本领:单位路径上的能量损失S=-dE/dx=S ion+S rad重:S=S ion=(1/4πε0)2(4πz2e4/m0v)2NBBethe公式结论:1.电离能了损失率和入射带电粒子速度有关,质量无关2.和电荷数平方z2正比3.S ion随粒子E/n变化曲线:a段:入射粒子能量E较低时, S ion与z2成正比,曲线上升b段(0.03MeV-3000MeV):相对论项作用不显著, S ion与E成反比,曲线下降c段:能量较高时,相对论修正项起作用, S ion与B成正比,曲线上升4.高Z 和ρ物质阻止本领高布拉格曲线:随穿透距离增大而上升,接近径迹末端,由于拾取电荷而下降。

同样能量的入射带电粒子经过一定距离后,各个粒子损失的能量不会完全相同,是随机性的,发生了能量离散,即能量歧离. 射程歧离:单能离子的射程也是涨落的为何峰值上升?因为部分粒子已经停止运动,相当于通道变窄,剩余粒子能量集中,导致峰值上升.沿x方向,能量降低,离散程度变大,峰值降低.射程R带电粒子沿入射方向所行径的最大距离路程:实际轨迹长度解释各种粒子的轨迹:重带电粒子质量大,其与物质原子的轨道电子相互作用基本不会导致运动方向有偏差,径迹几乎是直线:由于次级电离,曲线会有分叉:质子和α粒子粗细差别:能量提高,径迹变细.电子的径迹不是直线,散射大. 射程R正比于m/z21.v同两种粒子同物质R1/R2=m1/m2*(z2/z1)22.v同一种粒子两物质R a/R b=√A a/√A b *(ρb/ρa)α粒子空气射程R0=0.318Eα1.5R=3.2*10-4√A/ρ*R air比电离:带电粒子在穿透单位距离介质时产生的离子对的平均数δ射线:带电粒子在穿透介质时产生的电子-离子对中的具有足够能量可以进一步电离的电子电子S rad/S ion=EZ/800快电子S rad正比于z2E/m2*NZ2屏蔽电子材料:当要吸收、屏蔽β射线时,不宜选用重材料:当要获得强的X射线时,选用重材料做靶.电子反散射及效应:电子由原入射方向的反方向反射回来,从入射表面射出.对于放射源,反散射可以提高产额:对于探测器,会产生测量偏差. When反散射严重:对于同种材料,入射电子能量越低反散射越严重:对同样能量的入射电子,原子序数越高的材料,反散射越严重光电效应:光子把全部能量转移给某个束缚电子,使其发射出去而光子本身消失的过程.是光子和整个原子的作用结果,主要集中在内层电子,还会有俄歇电子或特征X射线.(为何不与自由电子-因为入射光子有部分能量传递给原子,使其发生反冲,否则能量不守恒)采用高Z材料可提高探测效率,有效阻挡γ射线:γ光子能量越高,光电效应截面σph 越小. 入射光子能量低时,光电子趋于垂直方向发射:入射光子能量高时,光电子趋于向前发射.康普顿效应:γ射线和核外电子非弹性碰撞,入射光子一部分能量传递给电子,使之脱离原子成为反冲电子,光子受到散射,运动方向和速度改变,成为散射光子. 散射角θ=180时即入射光子和电子对心碰撞,散射光子沿入射光子反方向射出,反冲电子沿入射方向射出-反散射.能量高的入射光子有强烈的向前散射趋势,低的向前向后散射概率相当.康普顿坪:单能入射光子所产生反冲电子的能量为连续分布,在能量较低处反冲电子数随能量变化小,呈平台状:康普顿边缘:在最大能量处,电子数目最多,呈尖锐的边界.峰值Ee=hν-200keV电子对效应:当入射光子能量较高,从原子核旁边经过时,在库伦场作用下转换成一个正电子和一个负电子.电子对效应出现条件:hν>2m0c2=1.022MeV 电子和正电子沿入射光子方向的前向角度发射,能力越高,角度越前倾. 湮没辐射:正电子湮没放出光子的过程.实验上观测到511kev的湮没辐射为正电子的产生标志单双逃逸峰:发生电子对效应后,正电子湮没放出的两个511keV的γ光子可能会射出探测器,使得γ射线在探测器中沉积的能量减小.低能高Z光电,中能低Z康普顿,高能高Z电子对.线形衰减系数μ=σγN 质量衰减系数μm=μ/ρ质量厚度x m=ρx平均自由程: 表示光子每经过一次相互作用之前,在物质中所穿行的平均厚度λ=1/μ 宽束N=N0Be-μd窄束I(x)=I0e-μx半减弱厚度:射线在物质中强度减弱一半时的厚度D1/2= λ ln2第二章气体探测器信息载流子:气体(电子离子对w=30eV,F=0.2-0.5)闪烁体(第一打拿极收集到的光电子w=300ev,F=1)半导体(电子空穴对w=3ev,F=0.1 )平均电离能:带电粒子在气体中产生一对离子对所平均消耗的能量电子和离子相对运动速度:电子漂移速度为离子1000倍,约106cm/s雪崩:电子在气体中碰撞电离的过程. 条件:足够强的电场和电离产生的自由电子非自持放电:雪崩只发生一次自持放电:通过光子作用和二次电子发射,雪崩持续发展R0C0<<1/n脉冲(电子T-<<R0C0n<<T+、离子R0C0n>>T+)、R0C0>>1/n累计(电流、脉冲束)1.仅当正离子漂移时外回路才有离子电流i+(t)2.正离子从初始位置漂移到负极过程,流过外回路电荷量不是离子自身的电荷量e,而是在正极感应电荷量q1 电子电流i-(t)同理本征电流i(t)=i+(t)+i-(t) q1+q2=e电离室构成:高压极,收集极,保护极和负载电阻工作气体:充满电离室内部的工作介质,应选用电子吸附系数小的气体.圆柱型电子脉冲原理:利用圆柱形电场的特点来减少Q-对入射粒子位置的依赖关系,达到利用”电子脉冲”来测量能量的目的.能量分辨率η=ΔE/E*100%=Δh/h*100%=2.36ΔE能谱半高宽FWHM=ηE=2.36=2.36σ探测效率:入射到脉冲探测器灵敏体积内辐射粒子被记录下的百分比总输出电荷量Q=N*e=E/W*e脉冲电离室饱和特性曲线:饱和区斜率成因:灵敏体积增加,对复合的抑制,对扩散的抑制饱和电压V1-对应90%饱和区的脉冲幅度放电电压V2工作电压V=V1+(V2-V1)/3 坪特性曲线:描绘电离室计数率和工作电压关系成因:甄别阈不同电压小于V1时在符合区,但不是每个粒子都能形成一个电子离子对.仅少数可达到计数阈值h,V0上升至饱和电压后电子离子对N基本不变分辨时间(死时间):能分辨开两个相继入射粒子间的最小时间间隔时滞:入射粒子的入射时刻和输出脉冲产生的时间差累计电离室工作状态要求输出信号的相对均方涨落V I2≈1/nT<<1 V V2≈1/2R0C0n<<1 饱和特性曲线斜率:灵敏体积增大,复合的抑制,漏电流灵敏度η=输出电流或电压值/射粒子流强度(采用多级平行电极系统可提高) why曲线后部分离:部分电子离子对复合,未达到饱和电压,引起输出电流信号偏小正比计数器是一种非自持放电的气体探测器,利用碰撞电荷讲入射粒子直接产生的电离效应进行放大,使得正比计数器的输出信号幅度比脉冲电离室显著增大输出电荷信号主要由正离子漂移贡献r处场强E(r)=V0/rlnb/a V T=ET*alnb/a 只有V0>V T才工作于正比工作区,否则电离室区气体放大倍数A=n(a)/n(r0)A仅于V0V T有关,与入射粒子位置无关气体放大过程(电子雪崩)当电子到打距极丝一定距离r0后,通过碰撞电离过程电子数目不断增加电子与气体分子碰撞过程中碰撞电离,碰撞激发(气体退激发射子外光子,阴极打出次级电子,次级电子碰撞电离) 光子反馈:次级电子在电场加速下发生碰撞电离A t=A/1-γA 光子反馈很快;加入少量多原子分子气体M可以强烈吸收气体分子退激发出的紫外光子变成M*,后来又分解为小分子(超前离解) 气体放大过程中正离子作用:1.停止电子倍增2.再次触发电子倍增(离子反馈)输出信号:1.电流脉冲形状一定,与入射粒子位置无关,电压脉冲为定前沿脉冲2.响应时间快3.R0C0>>T+时,获得最大输出脉冲幅度ANe/C0分辨时间/死时间τD与脉冲宽度正比,τD内产生的脉冲不会被记录造成计数损失,死时间可扩展. m=n/1-nτD m真实n测量时滞:初始电子由产生处漂移到阳极时间时间分辨本领:正比计数器对时间测量的精度正比计数器坪特性曲线斜率:由于负电性气体、末端与管壁效应等,有部分幅度较小的脉冲随工作电压升高而越来越多地被记录下来GM放电过程:1.初始电离和碰撞电离:电子加速发生碰撞电离形成电子潮-雪崩 2.放电传播(光子反馈):Ar*放出紫外光子打到阴极上打出次级电子 3.正离子鞘向阴极漂移,形成离子电流4.离子反馈:正离子在阴极表面电荷中和缺点GM死时间长,仅计数A t=A/1-γA自持放电:阴极新产生电子向阳极漂移引起新的雪崩,从而在外回路形成第二个脉冲,周而复始.-实现自熄:改变工作高压,增加猝熄气体-有机(阻断光子,离子反馈;工作机制:1.电子加速发生碰撞电离形成电子潮-雪崩过程 2.Ar*放出紫外光子被有机气体分子吸收3. 正离子鞘向阴极漂移实现电荷交换4.有机气体离子在阴极电荷中和),卤素(工作机制:1.电离过程靠Ne的亚稳态原子的中介作用形成电子潮2.Ne*退激发出光子在阴极打出电子,或被Br2吸收打出新点子3.正离子鞘Br+向阴极漂移4.Br+在阴极表面与电子中和超前解离)GM管和正比计数器区别:GM输出信号幅度和能量无关,只能计数,死时间非扩展型死时间校正:m=n(mτD+1)GM坪特性曲线坪斜成因:随工作电压增高,正离子鞘电荷量增加,负电性气体电子释放增加,灵敏体积增大,尖端放电增加死时间t d:电子再次在阳极附近雪崩的时间复原时间t e:从死时间到正离子被阴极收集,输出脉冲恢复正常的时间分辨时间t f:从0到第二个脉冲超过甄别阈的时间GM计数管离子对收集数N与工作电压关系图:1.复合区(电压上升,复合减少,曲线上升)2.饱和区(电荷全被收集)3.正比区N=N0M(碰撞电离产生气体放大,总电荷量正比于原电荷量)4.有限正比区N>>N0(M过大,过渡区)5.盖格区(随电压升高形成自持放电,总电离电荷与原电离无关,几条曲线重合)第三章闪烁体探测器优点:1.探测效率高,可测量不带电粒子,对于中子和γ光子可测得能谱2.时间特性好,可实现ns的时间分辨工作过程:射线沉积能量,电离产生荧光,荧光转换为光电子,光电子倍增,信号流经外回路闪烁体探测器组成:闪烁体,光电倍增管,高压电源,低压电源,分压器和前置放大器分类:无机闪烁体(无机盐晶体,玻璃体,纯晶体),有机闪烁体(有机晶体,有机液体闪烁体,塑料闪烁体)气体闪烁体(氩、氙)无机闪烁体发光机制:入射带电粒子可以产生电子空穴对,也可以产生激子(相互转化) 有机闪烁体发光机制:由分子自身激发和跃迁产生激发和发光气体闪烁体发光机制:入射粒子径迹周围部分气体被激发,返回基态时发射出光子产生电子空穴对需要三倍禁带宽度能量光能产额Y ph=n ph/E=4.3*104/MeV 闪烁效率C ph=E ph/E=13%闪烁光子传输和收集通道:反射层,光学耦合剂,光导反射层:把光子反射到窗:镜面反射和漫反射耦合剂(折射系数较大的透明介质,周围介质折射系数n1,闪烁体n0,全反射的临界角θc=sin-1n1/n0):排除空气,减少由全反射造成的闪烁光子损失光导:具有一定形状的光学透明固体材料,连接闪烁体和光电倍增管,有效地把光传输到光电转换器件上:具有较高折射系数,与闪烁体和光电转换器光学接触好. 光电倍增管PMT:把光信号转换为电信号并放大;由入射窗,光阴极,聚焦电极,电子倍增极(打拿极,次级电子产额δ=发射的次级电子数/入射的初级电子数),阳极和密封玻璃外壳组成.光谱效应:光阴极受到光照射后发射光电子的几率为波长的函数量子效率Q k(λ)=发射电子数/入射光子数光阴极的光照灵敏度S k=i k/F S a=i a/F S a=g c*M*S k第一打拿极的电子收集系数g c=第一打拿极收集到的光电子数/光阴极发出的光电子数PMT的电流放大倍数M=阳极收集到的电子数/第一打拿极收集到的电子数飞行时间(渡越时间)te:一个光电子从光阴极到达阳极的平均时间渡越时间离散Δte为te的分布函数的半宽度闪光照射到光阴极时,阳极输出信号可能不同-原因:1.光阴极的灵敏度在不同位置不同2.光阴极不同位置产生的光电子被第一打拿极收集的效率不同解决:1.改进光阴极均匀性 2.改进光电子收集均匀性 3.利用光导把光电子分散在整个光阴极输出信号:闪烁体发出闪烁光子数n ph=Y ph E 第一打拿极收集到光电子数n e=n ph T 阳极收集到电子数n A=n e M 输出电荷量Q=n A e=Y ph TMe电压脉冲型工作状态R0C0>>τ优:脉冲幅度大缺:脉冲前沿后沿慢电流脉冲型工作状态R0C0<<τ优: 脉冲前沿后沿快缺:脉冲幅度小小尺寸闪烁体:仅吸收次级电子的能量,大尺寸闪烁体:吸收全部次级电子、次级电磁辐射能量中尺寸闪烁体:吸收次级电子能量,可能吸收次级电磁辐射能量;康普顿边沿与全能峰之间连续部分-多次康普顿散射造成-康普顿效应产生的散射光子又发生康普顿效应;单逃逸峰-正电子湮没辐射时产生的两个511keV的湮没光子一个逃逸而另一个被吸收,双逃逸峰-两个光子都逃逸;全能峰-对应γ射线能量的单一能峰第四章半导体探测器本征半导体:理想的纯净半导体,价带填满电子,导带无电子禁带宽度硅300K-1.115ev 0K-1.165ev锗300K-0.665ev 0K-0.746ev 电子空穴密度硅n=p=2*1010/cm3锗n=p=2.4*1013/cm3半导体探测器分类:均匀型,PN结型,PIN结型,高纯锗HPG,化合物半导体,雪崩半导体,位置灵敏半导体半导体探测器的优点:1.非常好的位置分辨率 2.很高的能量分辨率3.很宽的线形范围4.非常快的响应时间Si:适合带电粒子测量,射程短Ge:纯度高,可以做成较大的探测器:可用于γ能谱测量掺有施主杂质的半导体中多数载流子是电子,叫做N型半导体:掺有受主杂质的半导体中多数载流子是空穴,叫P型半导体补偿效应:当p>n,N型转换为P型半导体p=n时完全补偿平均电离能特点:1.近似与入射粒子种类和能量无关,根据电子空穴对可推入射粒子能量 2.入射粒子电离产生的电子与空穴数目相等 3.半导体平均电离能约3eV,远小于气体平均电离能30eV 陷落和复合使载流子减少半导体探测器材料特性:长载流子寿命(保证载流子可被收集),高电阻率(漏电流小,结电容小)PN型半导体:适合测量α粒子这类短射程粒子,不适合测量穿透力强的射线势垒高度V0=eN d W2/2ε宽度W=(2εV0/eN d)1/2=(2εV0ρnμn)1/2PIN半导体:温度升高,Li+漂移变快;Li+形成PN结,Li+与受主杂质中和,实现自动补偿形成I区(完全补偿区,耗尽层,灵敏体积),形成PIN结why半导体PN结可作为灵敏区?1.在PN结区可移动的载流子基本被耗尽,只留下电离了的正负电中心,具有高电阻率 2.PN结上加一定负偏压,耗尽区扩展,可达全耗尽,死层极薄,外加电压几乎全部加到PN结上,形成高电场 3.漏电流小,具有高信噪比高纯锗:一面通过蒸发扩散或加速器离子注入施主杂质形成N区,并形成PN结,另一面蒸金属形成P+作为入射窗,两端引出电极第五章辐射探测中的统计学f(t)=me-mt t=1/m σt2=1/m2第六章核辐射测量方法符合事件:两个或以上在时间上相关的事件真符合:用符合电路选择同时事件反符合:用反符合电路来消除同时事件,当一个测量道没有输入信号时,另一道的信号才能从符合装置输出符合道计数率nc=Aεβεγ偶然符合:在偶然情况下同时达到符合电路的非关联事件引起的符合(偶然计数n rc=2τs n1n2) 电子学分辨时间τe=FWHM/2符合计数n c=n co+n rc 真偶符合比R=n co/n rc=1/2τs A电压工作状态脉冲幅度⎺h=Ne/C0 E=Κ1⎺h+K2=Gx+E0 G0增益E0零截α能量分辨率FWHMs=2.36√FEαW0探测器选择α:金硅面垒半导体探测器、屏栅电离室、带窗正比计数器β:半导体探测器、磁谱仪γ:单晶γ谱仪全能峰E f=Eγ单Es= Eγ-511keV双E d= Eγ-1022keVy(i)=y(I p)exp[-(i-I p)2/2σ2] η=FWHM/I p FWHM=2.36σ峰康比p=全能峰的峰值/康普顿平台的峰值半导体峰总比f p/T=特征峰面积/谱总面积第七章中子探测反应堆周期T:反应堆内中子密度变化e倍所需时间平均每代时间τ:上一代中子的产生到被吸收后又产生新一代中子的平均时间K=堆内一代裂变中子总数/堆内上一代裂变中子总数T=τ/K-1反应堆功率测量系统功能:为反应堆提供工况控制信息(控制方面),为反应堆的安全保护系统提供安全保护信号(安全方面)中子测量方法:核反冲法,核反应法,核裂变法,活化法中子能谱测量方法:核反应法,核反冲法,飞行时间法中子探测器原理:通过中子与核相互作用产生可被探测的次级粒子并记录这些刺激粒子探测过程:1.中子和辐射体发生相互作用产生带电粒子或感生放射性2.在某种探测仪表记录这些带电粒子或放射性中子探测器种类:1.气体探测器(BF3正比计数管,涂硼正比计数管,长计数管,平行板电离室,圆柱形电离室,γ补偿电离室,长中子电离室)2.固体探测器(硫化锌快中子屏,硫化锌慢中子屏,含锂闪烁体,有机闪烁体)堆芯外仪表:核仪表系统(2个源量程测量通道2个中间量程测量通道4个功率量程测量通道),提供信号,提供控制信号,监测功能堆芯内仪表:堆芯裂变电离室,涂硼室,γ温度计.自给能探测器堆芯中子注量率测量系统:驱动装置,组选择器,路选择器,中子探头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、塑料闪烁体

溶剂通常采用聚苯乙烯或聚乙烯基甲苯。 第一溶质采用对联三苯PPO、四苯丁二烯TPB或PBD;第二 溶质常用POPOP及BBO。 热聚合:一般通过低温的缓慢聚合然后在高温下聚合。 可以测量、、、快中子、质子、宇宙射线及裂变碎片等。

制作简便:柱、片、矩形、井形、管形、薄膜等,可以做成 大面积闪烁体,几米。
12
NaI(Tl)晶体

特点:发光效率高,密度大,含有大量原子序数高的碘,因此对射 线探测效率高,有较好的能量分辨率,是探测射线的主要探测器。 透明度好,制备简单,可以加工成各种形状,常用的是圆柱形(最 大750×250)、井型、环形、薄片形等。缺点是衰减时间长, 易潮解。 封装:

13

Eljen Technology
EJ200
22
高能科迪
有机闪烁体的优缺点及应用




发光效率低,输出脉冲幅度小,能量分辨率差。主要 用于强度、计数和时间测量。在高能物理实验中,体 积大、费用低、响应快成为主要考虑因素,选有机塑 料闪烁体作触发计数器和取样式全吸收探测器。 发光时间短,10-8~10-9 s。配合快时间光电倍增管 用于时间测量和快符合实验。 密度小,有效原子序数低,对射线探测效率低。但因 价格便宜,时间性能好,在射线探测中也常使用。 含有大量的H原子,可以记录快中子。 塑料闪烁体可以测量、X、和快中子以及高能粒子, 特别是经常用于快时间、高强度、快符合、反符合和 高能物理实验中。
气体 Ar Kr Xe 发射光谱( Å) 2000-3000 2000-5000 2000-6000 主峰位0( Å) 2250 3500 (ns) 4.7 4 7 发光效率 0.4 0.33 1 Ar+10%N2

1.6 比纯氩高
24
五、闪烁体的性能
1. 发射光谱
粒子物理实验关注的 发射光谱是由带电粒 子和射线激发的发射 光谱,这与某些特定 的光波激发而发射的 光谱有所差别。 无机晶体的发射波段 较丰富,紫外到黄光 都有。 有机闪烁体,大部分 发光光谱在蓝光、绿 光区
5
6
闪烁探测器由闪烁体、光探测器件和相应的电子 学组成。其性能涉及:

闪烁体的性能:发光波长、发光时间和光传输性能


闪烁体的材料、比重和价格
闪烁体与光探测之间的光耦合、光收集 光探测器件的性能和价格 信号放大和接收
7
§4-2 闪烁体
一、闪烁体的分类
• 无机闪烁体
• 有机闪烁体
• 气体闪烁体
第四章 闪烁探测器
§4-1 §4-2 §4-3 §4-4 §4-5 闪烁探测器的工作原理 闪烁体 光探测器件 闪烁体探测器 闪烁探测器的应用
1
§4-1闪烁探测器的工作原理
一、典型的闪烁探测器装置
闪烁体 闪烁探测器光电倍增管 电子学仪器
2
二、工作原理



入射粒子进到闪烁体内,使闪烁体的原子分子电离和激发,受 激原子分子退激发时发光,称作荧光。荧光光子打到光电倍增 管的光阴极上转换成光电子,光电子在光电倍增管中倍增,最 后被阳极收集,输出电压或电流脉冲,被电子学仪器记录。 激发:带电粒子进入闪烁体通过库仑作用直接使闪烁体原子分 子电离和激发从而损失能量;若是X射线和射线入射,则通过 光电效应、康普顿效应和电子对效应损失能量产生次级带电粒 子,次级带电粒子再使闪烁体原子分子电离和激发。 设入射粒子能量为Ei, 在闪烁体内损失的能量为K1Ei 如K1=1,则入射粒子能量完全损失在闪烁体内; 如K1<1,则有一部分粒子跑出闪烁体。 退激:设发射光子的几率为P,产生光子的平均能量为hv, 则 发射光子的数目 EK P
无机闪烁体的发光机制(3)



有的陷阱中的电子仅有热运动跳不回导带,必须由外界再 给它能量,如光照、加热等。靠加热才能发射的光叫热释 光;靠光照才能发射的光叫光释光。这是两种固体发光材 料,常用作外照射个人剂量仪。 在射线作用下,它们不是立即发光,而是把射线能量储存 积累起来,需要时通过光或热激发使其发光,再进行测量。 光强对应辐照剂量。 由杂质的孤立能级退激到价带时,发出的光子能量小于禁 带宽度。即闪烁体发光频率不等于吸收频率,闪烁体的发 射光谱与其吸收光谱不重合。所以闪烁体不会自吸收这部 分光。 为了提高闪烁体的发光效率,可以掺杂,如Tl、Ag等“激 活剂”。激活剂粒子形成发光中心或俘获中心。

ZnS(Ag)+甘油+硼酸或10B做成慢中子屏。

在低能中还使用CaF2、CaWO4及玻璃闪烁体等。 在粒子物理探测的应用中,一般关注的是发光快、产额高、 波长合适、密度大和价格低的晶体。 LSO(LYSO)晶体具有很好的发展前景 Lu2(SiO4)O:Ce 天然Lu具有放射性
14
BGO PbWO4




应用最广泛的是碱金属卤化物闪烁晶体,常用的有:NaI(Tl), CsI(Tl),ZnS(Ag)等。
9
无机闪烁体的发光机制:固体能带论

晶格上的电子具有分离的能量带,价带和导带,之间为禁带。 纯晶体中,电子的激发可使处在价带的电子激发到导带,而具有 短寿命的导带能级的电子将发射一个光子退激到价带。发光快, 能量高(紫外区),但发光弱。
19
1、有机晶体
如蒽、芪、联三苯等。发光衰减时间比无机晶体快1-2 个数量级,为探测快速高通量的带电粒子提供了可能。 但缺点是有机晶体很难做大。
2、液体闪烁体
• 溶剂常用甲苯、对二甲苯等。 • 第一溶质有PPO、PBD等(发射波长~370nm), 第二溶质有POPOP、BBO等,(吸收波长为 360nm,发射波长~410nm) • 其特点发光衰减时间短,透明度好,易制备。 • 缺点是有一定毒性,操作时要注意。 • 可将待测物质放在液闪中进行测量,立体角大且自吸 收小,是射线和低能的首选测量仪器。 • 有机闪烁体含大量H原子,因而可以记录快中子;在 20 液闪中加入硼或钆可以测量慢中子
17


• 有机闪烁体的发光机制
有机闪烁体的发光机制有多种 理论解释。 有一种理论认为: 是有机分子的电子能级结构引 起的。即处在比较自由的轨道 上的部分价电子(称作电子) 的能级之间的跃迁引起的。有 机分子电子能级结构分单态 和三重态,每种激发能级内有 一系列的精细能级,相当分子 的振动能级。带电粒子进入闪 烁体使其电子激发。退激时 一种可能是从激发态分别跳回 各基态发出荧光,称作荧光过 程。多余的能量转变为电子 的振动以热量形式带走,不发 光,称作猝灭过程。另一种可 能(几率很小)是从激发态跳 到三重态T1,T1是亚稳态, 电子滞留一段时间后再跳到基 态,发出磷光,称作磷光过程。
8
二、无机闪烁体

大都是固体晶体,是绝缘体。简单的无机晶体,如氧化晶体、 氟化晶体、碘化晶体等。 有快发光特点或发光成分中有快发光过程的晶体。如:BaF2, CaF,NaI,CsI等。 有的晶体有意识的加入金属或稀土杂质,以杂质离子为发光中 心,发光增强,但发光衰减时间较慢。如NaI(Tl),CsI(Tl), ZnS(Ag)等: 大比重的晶体,如:BGO,LSO(Ge),LuAP(Ge),PWO 等,密度大,对粒子阻止本领大,适于高能探测器小型化。
发光衰减时间短(1~3ns),适用于ns量级的时间测量。 透明度高,光传输性能好。 性能稳定,机械强度高,耐振动,耐冲击,耐潮湿,不需要 封装,避光储存8到10年发光效率无明显变化。 耐辐照性能好,居于各种闪烁做强度测量。
21
Bicron公司生产的塑料闪烁体
Q K1 Pl qeMEi n e M Ei C h C C K Pl q N n 1 入射粒子单位能量产生的光电子数 h E V
4
二、工作原理(3)

输出:形成的电压脉冲经射极跟随器或前置放大器输 出,被一套电子学仪器放大、分析和记录。 输出脉冲与入射粒子能量成正比。 选择光产额大的晶体,提高光阴极光电转换效率,电 子传输系数q和光电倍增管的放大倍数M,都可以使输 出脉冲幅度增大。
CeF
3
BaF2
CsI
1.5 X0 Cubic
BaBar CsI(Tl)
Full Size Samples
L3 BGO CMS PWO(Y)
BaBar CsI(Tl): 16 X0 L3 BGO: 22 X0 CMS PWO(Y): 25 X0
15
BGO, LSO & LYSO Samples
Cubic: 1.7 cm3 (1.5X0); Long: 2.5 x 2.5 x 20 cm (18X0)
R
i
h
1
3
二、工作原理(2)



光的传输:光子通过闪烁体和光导,到达光电倍增管的光阴极,有 一部分在传输过程中会被吸收或被散射而无法到达光阴极。 设光子的传输系数为l,则到达光阴极的光子数R’=lR。希望l尽 可能大,就要求闪烁体的发射光谱和吸收光谱不重合,使闪烁体发 射的光子尽量少自吸收,并在闪烁体和光电倍增管之间加光导。 光电转换:光阴极吸收光子发射光电子。设光电转换效率为,从 光阴极到第一倍增极的电子传输系数为q,则光阴极发射到第一倍 N qR ' 增极的光电子数 倍增:光电子在光电倍增管中倍增,最后在阳极被收集。设光电倍 增管的倍增系数为M,则在阳极得到MN个电子,相应的电荷为 Q=MNe,输出电容为C,则电压脉冲
23
四、气体闪烁体


通常用的多为惰性气体,尤以氙、氦、氩为普遍。它们的发 光衰减时间为几ns,而且随压力的增大变短。发光效率很低, 不到NaI(Tl)的1/10。要求惰性气体纯度很高,否则光输 出会明显降低。发光光谱的主峰位位于紫外区,必须经过波 长位移剂后才能与光电倍增管的光阴极频谱相匹配。 气体闪烁正比室,有较快的上升时间和较好的能量分辨率。
相关文档
最新文档