高校大学物理第二章导体和电介质存在时的静电场课件

合集下载

电磁学02静电场中的导体与介质

电磁学02静电场中的导体与介质

A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:

赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质

赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质

R2 R1 R0
解: 1)导体电荷只分布在表面上 球A的电荷只可能在球的表面
B
Q
Aq
o
壳电B荷有可两能个分表布面在内、外两个表面R(2具体R1分布?)R0
由于A、B同心放置
带电体系具有球对称性
电量在表面上均匀分布(满足E内=0要求)
电量在表面上均匀分布 Q q
电量q在球A表面上均匀分
R 1
4 0
9109 m 103 RE 1F
106 F
法拉单位过大, 常用单位: 1nF 109 F
1pF 1012 F
二.导体组的电容
由静电屏蔽:导体壳内部的电场只由腔内的电 量和几何条件及介质决定电位差仅与电荷 Q,几何尺寸有关,不受外部电场的影响,可
以定义电容。

UB

Qq
E dr
Qq
R2
4 0r R2 4 0 R2
例3 如图所示,接地导体球附近有一点电荷 。
求:导体上感应电荷的电量
解: 接地,即 U 0
设:感应电量为 Q
R
由于导体是个等势体
O
l
q
O点的电势也为零 ,则
Q q 0 40 R 40l
Q Rq l
腔内无电场,E腔内=0 腔内电势处处相等
S
证明: 在导体壳内紧贴内表面作高斯面S

E ds 0 高斯定理 S
Qi 内表面 0
1.处处没有电荷
与等位矛盾 证明了上述 两个结论
2.内表面有一部分是正 则 会 从 正 电 荷 向 负 电荷,一部分是负电荷 电荷发出电力线
这就是物质对静电场的响应---第二章的研究内容:电场中的导体感应、 电解质极化, 并且分析感应、极化电荷对静电场的影响---静电场与物质的 相互作用(影响)

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。

静电场中的导体精品PPT课件

静电场中的导体精品PPT课件

可以认为其上电场强度的大小都相等。
E •dS ESco00s0S
E
0
讨论:导体表面附近的场强公式 E
0
指导体表面附近场点近旁的导体电荷面密度
面电荷密度 的关系
1、导体处于静电平衡状态时的电荷分布 实心导体 空腔导体,内部没有带电体 空腔导体,内部有带电体 孤立导体表面的电荷分布
(1)实心导体:
其内部各处净电荷为零,电荷只分布在导体表面
用高斯定理证明:

P
S
在内部任取高斯面S
E内0
E 内 0
故 E dS 0 0 qi
+ + + +
+
+ +
+q ++ ++ + ++ +
+
未引入q时
放入q后
证明:腔体内表面所带的电量和腔内带电体所 带的电量等量异号
E 内 0
故 E dS 0 0 qi
q1
故 qi 0(S内 )
+ q1
故:必存在 q1
高斯面S
导体上的电荷分布
(4)孤立导体
孤立导体处于静电平衡时,它的表 面各处的面电荷密度与各处表面的 曲率半径有关,曲率越大的地方, 面电荷密度越大。
故 qi 0(S内 )
S内电量的代数和为0,还不足以说明内部没有电荷
问:可否在S内存在两种等量异号的电荷,才使
qi 0(S内 )成立?

P
S
E内 0
S是任意取的高斯面,只要在某点
有某种正或者负电荷存在,我们
就可以取一个小的高斯面将其包
围,这样 qi 0(S内 )

第二章静电场恒定电场和恒定磁场

第二章静电场恒定电场和恒定磁场
图2.1电介质的极化
介质中的高斯定理表示为 式中电位移矢量为
在线性的各向同性的电介质中
例2.1在空气中放入一个带电量为Q、半径为a的球体,该球体的 相对介电常数为εr。求该球体内、外任意一点的电场强度。
解(1) 球内任意一点,设到球心距离为r,做高斯面为以r为半径的球面, 如图2.2所示。
由电场的对称性可知,E和D的方向为er,所以
大小、它们之间的距离和周围的电介质,即可以不用电容器。
例2.10同心金属球与球壳系统如图2.12所示,内导体球半径为a,外导体 球壳的内外半径分别为b和c,导体球与导体球壳带有等量异号电荷,它
们之间充满相对介电常数为 r 的电介质,球外为空气。求该导体系统
的电容。
解:根据高斯定理不难求出空间各点的电场强度,设导体球和导体球壳的 带电量分别是q和-q,则导体和导体球壳之间的电场强度的大小为
电场能为
WeΒιβλιοθήκη 1 2dVv
(2) 对于多导体系统
We

1 2
dV
v
例2.12半径分别为a和b的同轴线,外加电压为U,内圆柱体电荷量为正,外圆柱 面单位长度上的电荷量与内圆柱体等值异号。如图2.16(a)所示,两电极间在θ1的 角度内填充介电常数为ε的电介质,其余部分为空气,求同轴线单位长度上储存 的电场能量。
示,求在l长度上的外电感。
图2.25例2.20用图
例2.21一个半径为a的无限长直导线,在导线均匀流过的电流为I,求这个导线
在单位长度上的内电感,如图2.26所示(设导体内部的磁导率近似为μ0)。 解:截面上的磁通并没有与全部电流I交链,而只是与一部分电流交链,交链的总 磁链为
图2.26
2. 互 有两感个回路l1和l2,如图2.27所示。

物理-静电场的能量

物理-静电场的能量

力需克服静电场力作的功dw;
再计算电量由0累积到Q的过程,外力的总功:
Q
dW 0 dW
如:前面例1(均匀带电球面的静电能)
Q
W
q
dq Q2
0 4 0 R
8 0R
++ +
+O
+Q
+ +
+R +
+++
三、连续分布电荷系统的静电能
思路(二):考察带电体上所电荷元间
的相互作用能 带电体上任到一个电荷元dq,设
4 0r
q1q2
4 0
dr r r2
q1q2
4 0r
一、电荷系统的自能与相互作用能
3、带电体系的总静电能
q2 q3 q1
qi
qn
某电荷系统A
每个带电体的自能 电荷系统的总能
所有带电体的相互作用能
一、电荷系统的自能与相互作用能
例3:求两个半径分别为 R1、R2,电量为 Q1、Q2,相 距为 d(d R1, R2 ) 的两个均匀带电球面的静电能。
Q1 + +
+ +
O1
+ + +
+ R1 +
+++
d( R1, R2 )
+ +
+
+ O2
+ Q2
+ +
+ R2 +
+++
自能:
W1
Q1 8 0R1
W2
Q2 8 0R2
;
相互作用能: W12

大学物理课件-4静电场中的电介质电介质中的电场高斯定理电位移


谢谢观看
2021/3/18
26
4πe r
Q R12
2
4πR1
er
1 Q
er
在外表面上的正极化电荷的总量为
q外
外 S外
er 1 4πe r
Q R22
4πR22
er 1Q er
2021/3/18
21
例2:平行板电容器充满两层厚度 +
为 d1 和 d2 的电介质(d=d1+d2 ),
相对电容率分别为e r1 和e r2 。
S1
求:1.电介质中的电场 ;2.电容量。
2021/3/18
12
在保持电容器极板所带电量不变的情况下, 电容与电势差成反比,所以
C C0
U012 U12
er

C = e r C0
式中C0是电介质不存在时电容器的电容。
可见,由于电容器内充满了相对电容率为e r的 电介质, 其电容增大为原来的e r倍。
2021/3/18
13
四、电介质存在时的高斯定理
但随着外电场的增强,排列整齐的程度要增大。
无论排列整齐的程度如何,在垂直外电场的两个端面上 都产生了束缚电荷。
结论:有极分子的电极化是由于分子偶极子在外电场的作用 下发生转向的结果,故这种电极化称为转向电极化。
说明:在静电场中,两种电介质电极化的微观机
理显然不同,但是宏观结果即在电介质中出现束缚
电荷的效果时确是一样的,故在宏观讨论中不必区
在宏观上测量到的是大量分子电偶极矩的统计
平均值,为了描述电介质在外场中的行为引入电极化
强度矢量。
2021/3/18
6
为表征电介质的极化状态,定义极化强度矢量:

4.2 有电介质存在时静电场的性质

• 不同介质接触面之间的电荷可能转移 • 有的电介质内会形成电流
脱衣服时常听到衣服间的放电声音,有时两 脱衣服时常听到衣服间的放电声音, 人的手接触, 人的手接触,也会感到有瞬间的触电感觉 接触起电的机理可以用物质的功函数 接触起电的机理可以用物质的功函数 来解释
一个电子从物体内部跑到物体外部必须作的最小 功 物体置于真空中, 物体置于真空中,电子在物体中就好比处在深为 φ 的势阱中 , 如图所示 : 若 A 、 B 两种物体的 功函 的势阱中, 如图所示: 两种物体的功函 数不等, 数不等,分别为φA和 φB
外电场增加到相当强时
在电介质内会形成电流, 在电介质内会形成电流,介质也会有一定的电导 当电场继续增加到某一临界值时,电导率突然剧增, 当电场继续增加到某一临界值时,电导率突然剧增,电介 质丧失其固有的绝缘性能变成导体, 质丧失其固有的绝缘性能变成导体,作为电介质的效能被 破坏——击穿 破坏 击穿
击穿场强E 击穿场强 m:电介质发生击穿时的临界场强 击穿电压Vm: 电介质发生击穿时的临界电压 击穿电压 :
R1 R
Q 1 1 1 1 = − + 4πε 0 ε 1 R1 R ε 2
1 1 − R R2
Q R1 R2 (ε 1 − ε 2 ) + (ε 2 R2 − ε 1 R1 ) R = 4πε 0 ε 1ε 2 R1 R2 R
S内
0
S面内包 面内包 围的自 由电荷
D = ε0 E + P
电位移矢量
∫∫ (ε
S
0
E + P ) ⋅ d S = ∑ q0
S内
电位移矢量 通量
∫∫ D ⋅ d S = ∑ q

2.3 静电场中的导体与电介质


被积函数 代入原式
r r r r r r P(r ') ∇′ ⋅ P(r ')) 1 P(r ') ⋅∇′ = ∇′ ⋅ − R R R
r r r r P (r ') r 1 ∇′ ⋅ P (r ') ϕ p (r ) = ∇′ ⋅ dV ′ − ∫ dV ′ ∫V ′ V′ 4π ε0 R R
+
+++ +
+
+ + +
感应电荷
CQU
+ + + +
+ + + +
+ + + +
v E0
CQU
v E0
v E=0
v' E
+ + + + + + + +
v E0
v v v' E = E0 + E = 0
导体内电场强度 外电场强度 感应电荷电场强度
CQU
静电平衡条件: 静电平衡条件 (1)导体内部任何一点处的电场强度为零; )导体内部任何一点处的电场强度为零; 都与导体表面垂直; (2)导体表面处的电场强度的方向 都与导体表面垂直 )导体表面处的电场强度的方向,都与导体表面垂直 (3)导体为一等位体,导体表面为等位面; )导体为一等位体,导体表面为等位面; (4)电荷(或感应电荷)分布在导体表面上,形成面电荷 )电荷(或感应电荷)分布在导体表面上,形成面电荷. 导体表面是等势面
2.3 静电场中的导体与电介质
CQU
导体与介质放在电场中会发生什么现象? 导体与介质放在电场中会发生什么现象? 导体:静电感应; 介质:极化现象。 导体:静电感应; 介质:极化现象。

大学物理电磁学第二章 导体周围的静电场

球壳间
+ + r + - R2 + + R1 + + + -
E
Q 4 0 r
R2 R1
2
ˆr e
U
Q dr Q 1 1 2 4 0 r 4 0 R1 R2
A S S +σ -σ d
2、平行板电容器
(1) 电荷在两平板相对面内 均匀分布,两面电荷等值异号。 (2) 两枝间的电压与板内壁的 B 电荷Q成正比,证明如下。 Q
C2
Q U C C

C1C2 C1 C2
串联电容器组等效电容的倒数等于电容器组中各电 容倒数之和,但每个电容器上的电压小于总电压。
练习:习题2.3.4. k A B
A/ (1)
A
B A/ B/
A/
A k B
C AB C Ak C Bk
0S
d AB
(2) A B
; 2C AB ; 2C AB
§2-2 封闭金属壳内外的静电场 2.2.1 壳内空间的场 1 壳内空间无带电体的情况
用反证法可以证明,不论壳外 (包括壳的外壁)带电情况如何,壳内 空间各点的电场强度处处为零,且壳 内壁处处有σ=0。
+
P
-
2 壳内空间有带电体的情况
壳内空间将因壳内带电体的存在 而出现电场,壳的内壁也会出现电荷分 布。但是可以证明,壳内电场只由壳内 带电体及壳的内壁形状决定而与壳外电 荷分布情况无关。
因此有
2 S ˆn F e 2 0
2 5
把上式沿导体表面作积分便可求得整个导体所受的静电力。
2.1.3 弧立导体形状对电荷分布的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档