2012年四川省各市中考数学分类解析专题1:实数
中考数学专项复习、中考真题分类解析:专题1.2 实数(第01期)(解析版)

,且.与最接近的整数是( )最接近,即与最接近,从而得出答案.∴<<,即<<与最接近的是点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6.给出四个实数,A..实数在数轴上对应的点的位置如图所示,这四个数中最大的是(A. B. C. D..估计的值在(.的算术平方根为(A. C. D.分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2的算术平方根是,∴的算术平方根是,.的值等于(A. B. C. D.【来源】江苏省南京市2018年中考数学试卷.下列无理数中,与最接近的是(A. C. D.4=,与最接近的数为,: 表示不超过的最大整数,例: ,令关于的函数(是正例:=1A. B.C. D. 或A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,时,==0,= =1此时,故C选项错误,符合题意;.估计的值应在之间 B. 2和3【详解】=,=,而,4<<5,所以2<<3所以估计的值应在本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及(-1)+()-+=________________________.湖北省黄冈市.已知一个正数的平方根是和,则这个数是【答案】分析:由于一个非负数的平方根有详解:根据题意可知:3x-2+5x+6=0x=-,3x-2=-,5x+6=,±)=故答案为:.点睛:本题主要考查了平方根的逆运算,平时注意训练逆向思维.开机后依次按下.34+9.x*y=+.若详解:∵1*(-1)=2∴,==−()=-1故答案为:点睛:本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.,,,……计算+++…+,其结果为【来源】山东省滨州市2018年中考数学试题【答案】.计算:__________2018年甘肃省武威市(凉州区)中考数学试题【解答】原式.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是已知,,则___________.【分析】整理得,从而可得.计算:______________【详解】=2+1=3﹣.计算:江苏省盐城市2018;负整数次幂法则:()计算:;((m+2)2 +4(2-m)5-;()=4- +1=5- .计算.详解:原式..计算:.广东省深圳市2018年中考数学试题.计算:.四川省凉山州2018年中考数学试题【答案】详解:原式..计算:+=2+1-4×+2=2+1-2+2.计算:.贵州省安顺市2018年中考数学试题﹣)﹣)÷.四川省宜宾市2018年中考数学试题=+1-+4=.对于任意实数、,定义关于“”的一种运算如下:.例如.)求的值;)若,且,求的值);().: .湖南省娄底市2018年中考数学试题=1+9-+4=10-+计算:.解方程:.),.:【详解】=1+2+=.求满足【全国省级联考】为(其中m=(其中==3﹣+2。
无锡新领航教育浙江省各市2012年中考数学分类解析 专题1:实数

无锡新领航教育
浙江11市2012年中考数学试题分类解析汇编
专题1:实数
一、选择题
1. (2012浙江杭州3分)计算(2﹣3)+(﹣1)的结果是【 】
A .﹣2
B .0
C .1
D .2
【答案】A 。
【考点】有理数的加减混合运算。
【分析】根据有理数的加减混合运算的法则进行计算即可得解:
(2﹣3)+(﹣1)=﹣1+(﹣1)=﹣2。
故选A 。
2. (2012浙江杭州3分)已知()
3m 2213⎛⎫=-⨯- ⎪ ⎪⎝⎭,则有【 】 A .5<m <6 B .4<m <5 C .﹣5<m <﹣4 D .﹣6<m <﹣5
【答案】A 。
【考点】二次根式的乘除法,估算无理数的大小。
【分析】求出m 的值,估算出经的范围5<m <6,即可得出答案:
()324m 22132132128339⎛⎫=-⨯-=⨯=⨯⨯= ⎪ ⎪⎝⎭ ∵252836<<,∴5286<<,即5<m <6。
故选A 。
3. (2012浙江湖州3分)-2的绝对值等于【 】
A .2
B .-2
C .
12 D .±2
【答案】A 。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-2到原点的距离是错误!未指定书签。
,所以-2的绝对值是2错误!未找到引用源。
,故选A 。
4. (2012浙江嘉兴、舟山4分)(﹣2)0等于【 】
A . 1
B . 2
C . 0
D . ﹣2。
山东省各市2012年中考数学分类解析专题1:实数

山东各市2019年中考数学试题分类解析汇编专题1:实数一、选择题1. (2019山东滨州3分)32- 等于【 】 A .6- B .6 C .8- D .8 【答案】C 。
【考点】有理数的乘方。
【分析】根据乘方的运算法则直接计算即可:328-=-。
故选C 。
2. (2019山东德州3分)下列运算正确的是【 】A B .(﹣3)2=﹣9 C .2﹣3=8 D .20=0 【答案】A 。
【考点】算术平方根,有理数的乘方,负整数指数幂,零指数幂。
【分析】分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计算即可:A 、∵22=4,故本选项正确;B 、(﹣3)2=9,故本选项错误; C 、33112==82-,故本选项错误;D 、20=1,故本选项错误。
故选A 。
3. (2019山东东营3分)13-的相反数是 【 】 A .13B . 13- C . 3D . -3【答案】B 。
【考点】绝对值,相反数。
【分析】先求13-的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是错误!未找到引用源。
,所以13-的绝对值是错误!未找到引用源。
;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此13的相反数是13-。
故选B 。
4. (2019山东菏泽3分)在算式3⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭的□中填上运算符号,使结果最大,这个运算符号是【 】A .加号B .减号C .乘号D .除号 【答案】D 。
【考点】实数的运算,实数大小比较。
【分析】分别填上运算符号计算后比较大小:当填入加号时:+=⎛⎛ ⎝⎭⎝⎭=0⎛⎛- ⎝⎭⎝⎭;当填入乘号时:1=3⎛⎛⨯ ⎝⎭⎝⎭;当填入除号时:=1⎛⎛÷ ⎝⎭⎝⎭。
∵10133<<-,∴这个运算符号是除号。
故选D 。
5. (2019山东济南3分)-12的绝对值是【 】 A .12 B .-12 C .112 D .112- 【答案】A 。
2012年全国中考数学试题分类解析汇编专题24:方程、不等式和函数的综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题24:方程、不等式和函数的综合一、选择题1. (2012福建龙岩4分)下列函数中,当x<0时,函数值y随x的增大而增大的有【】①y=x②y=-2x+1 ③1y=x-④2y=3xA.1个B.2个C.3个D. 4个【答案】【考点】【分析】2. (20121b yx+ =A. y【答案】【考点】【分析】∴△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1。
∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0。
∴b<-1。
∴b=-3。
∴反比例函数的解析式是13yx-=,即2yx=-。
故选D。
3.(2012山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图象大致是【 】A .B .C . D【答案】【考点】【分析】4.(2012【 】A C 【答案】【考点】二次函数的图象,一次函数的性质。
【分析】∵抛物线的顶点在第四象限,∴﹣m >0,n <0。
∴m <0,∴一次函数y mx n =+的图象经过二、三、四象限。
故选C 。
5. (2012内蒙古呼和浩特3分)已知:M ,N 两点关于y 轴对称,且点M 在双曲线1y=2x上,点N 在直线y =x +3上,设点M 的坐标为(a ,b ),则二次函数y =﹣abx 2+(a +b )x 【 】A .有最大值,最大值为92-B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为92-【答案】B 。
【考点】关于y 轴对称的点的坐标,曲线上点的坐标与方程的关系,二次函数的最值。
【分析】∵M ,N 两点关于y 轴对称,点M 的坐标为(a ,b ),∴N 点的坐标为(﹣a ,b )。
又∵点M 在反比例函数1y=的图象上,点N 在一次函数y =x +3的图象上, 29+2。
2012年四川省南充市中考数学试题及答案

四川省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2012•南充)计算:2﹣(﹣3)的结果是()A. 5 B. 1 C.﹣1 D.﹣52.(3分)(2012•南充)下列计算正确的是()A.x3+x3=x6B.m2•m3=m6C. 3﹣=3 D.×=73.(3分)(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④4.(3分)(2012•南充)下列函数中,是正比例函数的是()A. y=﹣8x B.y=C.y=5x2+6 D. y=﹣0.5x﹣15.(3分)(2012•南充)方程x(x﹣2)+x﹣2=0的解是()A. 2 B.﹣2,1 C.﹣1 D. 2,﹣1A.B.C.D.成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,48.(3分)(2012•南充)在函数y=中,自变量x的取值范围是()A.x≠B.x≤C.x<D.x≥A. 120°B. 180°C. 240°D. 300°10.(3分)(2012•南充)如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径长为2,把⊙P 向左平移,当⊙P与⊙O相切时,a的值为()A. 3 B. 1 C. 1,3 D.±1,±3二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填在题中横线上11.(3分)(2012•南充)不等式x+2>6的解集为_________.12.(3分)(2012•南充)分解因式:x2﹣4x﹣12=_________.13.(3分)(2012•南充)如图,把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为_________.14.(3分)(2012•南充)如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是_________cm.三、(本大题共3个小题,每小题6分,共18分)15.(6分)(2012•南充)计算:.16.(6分)(2012•南充)在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同;(2)两次取的小球的标号的和等于4.17.(6分)(2012•南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.四、(本大题共2个小题,每小题8分,共16分))18.(8分)(2012•南充)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.19.(8分)(2012•南充)矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:△AEF∽△DCE;(2)求tan∠ECF的值.20.(8分)(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.21.(8分)(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.22.(8分)(2012•南充)如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD 时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.2012年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2012•南充)计算:2﹣(﹣3)的结果是()A. 5 B. 1 C.﹣1 D.﹣5解答:解:2﹣(﹣3)=2+3=5.故选A.2.(3分)(2012•南充)下列计算正确的是()A.x3+x3=x6B.m2•m3=m6C. 3﹣=3 D.×=7解答:解:A、x3+x3=2x3,故此选项错误;B、m2•m3=m5,故此选项错误;C、3﹣=2,故此选项错误;D、×==7,故此选项正确.故选:D.3.(3分)(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④解答:解:①的三视图中俯视图是圆,但无圆心;②③的俯视图都是圆,有圆心,故②③的俯视图是相同的;④的俯视图都是圆环.故选:C.C.y=5x2+6 D. y=﹣0.5x﹣1 A. y=﹣8x B.y=解答:解:A、y=﹣8x是正比例函数,故本选项正确;B、y=,自变量x在分母上,不是正比例函数,故本选项错误;C、y=5x2+6,自变量x的指数是2,不是1,不是正比例函数,故本选项错误;D、y=﹣0.5x﹣1,是一次函数,不是正比例函数,故本选项错误.故选A.A. 2 B.﹣2,1 C.﹣1 D. 2,﹣1解答:解:x(x﹣2)+x﹣2=0,(x ﹣2)(x+1)=0,所以,x﹣2=0,x+1=0,解得x1=2,x2=﹣1.故选D.6.(3分)(2012•南充)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为() A.B.C.D.解答:解:矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式是:y=(x>0).是反比例函数,且图象只在第一象限.故选C.7.(3分)(2012•南充)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,4解答:解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.65,共有4人,所以,众数是1.65.因此,中位数与众数分别是1.70,1.65.故选C.8.(3分)(2012•南充)在函数y=中,自变量x的取值范围是()A.x≠B.x≤C.x<D.x≥解答:解:根据题意得,1﹣2x≥0且x﹣≠0,解得x≤且x≠,所以x<.故选C.A. 120°B. 180°C. 240°D. 300°解答:解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr=πR,∴n=180°.故选:B.10.(3分)(2012•南充)如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径长为2,把⊙P 向左平移,当⊙P与⊙O相切时,a的值为()A. 3 B. 1 C. 1,3 D.±1,±3解答:解:当两个圆外切时,圆心距d=1+2=3,即P到O的距离是3,则a=±3.当两圆相内切时,圆心距d=2﹣1=1,即P到O的距离是1,则a=±1.故a=±1或±3.故选D.二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填在题中横线上11.(3分)(2012•南充)不等式x+2>6的解集为x>4.解答:解:移项得,x>6﹣2,合并同类项得,x>4.故答案为:x>4.12.(3分)(2012•南充)分解因式:x2﹣4x﹣12=(x﹣6)(x+2).解答:解:x2﹣4x﹣12=(x﹣6)(x+2).故答案为(x﹣6)(x+2).13.(3分)(2012•南充)如图,把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为.解答:解:∵一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,∴圆被等分成10份,其中B区域占2份,∴落在B区域的概率==.故答案为:.14.(3分)(2012•南充)如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是cm.解答:解:∵∠BAD=∠BCD=90°,∴∠2+∠B=180°,延长至点E,使DE=BC,连接AE,∵∠1+∠2=180°,∠2+∠B=180°,∴∠1=∠B,在△ABC与△ADE中,∵,∴△ABC≌△ADE,∴∠EAD=∠BAC,∵∠BAD=90°,∴∠EAC=90°,∴△ACE是等腰直角三角形,∵四边形ABCD的面积为24cm2,∴AC2=24,解得AC=4cm.故答案为:4.三、(本大题共3个小题,每小题6分,共18分)15.(6分)(2012•南充)计算:.解答:解:原式=+=+==1.16.(6分)(2012•南充)在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同;(2)两次取的小球的标号的和等于4.解答:解:(1)如图:两次取的小球的标号相同的情况有4种,概率为=,(2)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.17.(6分)(2012•南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.解答:证明:∵四边形ABCD是等腰梯形,∴∠B+∠ADC=180°,∵∠ADC+∠CDE=180°,∴∠B=∠CDE,∵CE=CD,∴△CDE是等腰三角形,∴∠CDE=∠E,∴∠B=∠D.四、(本大题共2个小题,每小题8分,共16分))18.(8分)(2012•南充)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.解答:解:(1)∵方程有两个实数根,∴△≥0,∴9﹣4×1×(m﹣1)≥0,解得m≤;(2)∵x1+x2=﹣3,x1x2=m﹣1,又∵2(x1+x2)+x1x2+10=0,∴2×(﹣3)+m﹣1+10=0,∴m=﹣3.19.(8分)(2012•南充)矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:△AEF∽△DCE;(2)求tan∠ECF的值.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵EF⊥EC,∴∠AEF+∠DEC=90°,∴∠AFE=∠DEC,∴△AEF∽△DCE;(2)解:∵△AEF∽△DCE,∴,∵矩形ABCD中,AB=2AD,E为AD的中点,∴DC=AB=2AD=4AE,∴tan∠ECF==.20.(8分)(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.解答:解:(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.可得方程组,解得.答:大车每辆的租车费是400元、小车每辆的租车费是300元.(2)由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;由要保证240名师生有车坐,汽车总数不能小于(取整为6)辆,综合起来可知汽车总数为6辆.设租用m辆甲种客车,则租车费用Q(单位:元)是m的函数,即Q=400m+300(6﹣m);化简为:Q=100m+1800,依题意有:100m+1800≤2300,∴m≤5,又要保证240名师生有车坐,m不小于4,所以有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.∵Q随m增加而增加,∴当m=4时,Q最少为2200元.故最省钱的租车方案是:4辆大车,2辆小车.21.(8分)(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.解答:(1)证明:如图,过点M作ME⊥OP于点E,作MF⊥OQ于点F,∵∠O=90°,∴四边形OEMF是矩形,∵M是PQ的中点,OP=OQ=4,∠O=90°,∴ME=OQ=2,MF=OB=2,∴ME=MF,∴四边形OEMF是正方形,∵∠AME+∠AMF=90°,∠BMF+∠AMF=90°,∴∠AME=∠BMF,在△AME和△BMF中,,∴△AME≌△BMF(ASA),∴MA=MB;(2)解:有最小值,最小值为4+2.理由如下:根据(1)△AME≌△BMF,∴AE=BF,设OA=x,则AE=2﹣x,∴OB=OF+BF=2+(2﹣x)=4﹣x,在Rt△AME中,AM==,∵∠AMB=90°,MA=MB,∴AB=AM=•=,△AOB的周长=OA+OB+AB=x+4﹣x+=4+,所以,当x=2,即点A为OP的中点时,△AOB的周长有最小值,最小值为4+,即4+2.22.(8分)(2012•南充)如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD 时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.解答:解:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.∵tan∠AOB=,∴sin∠AOB=,∴AE=OA•sin∠AOB=4×=2.4,OD=OA•tan∠OAD=OA•tan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.过O点作OF⊥AD于F,则在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF===1.8,∴t=1.8秒;(3)如答图3,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=,此时原方程的解为x=,即x R=,而y R=x R2﹣2x R=∴点R的坐标为R(,).。
福建省各市2012年中考数学分类解析专题1:实数

福建9市2019年中考数学试题分类解析汇编专题1:实数一、选择题1. 计算:2-3 =【 】 A .-1 B .1 C .-5 D .5【答案】A 。
【考点】有理数的加减法。
【分析】根据有理数的加减法运算法则直接得到结果:2-3 =-1。
故选A 。
2. (2019福建南平4分)-3的相反数是【 】A .13 B .-13C .3D .-3 【答案】C 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-3的相反数是3。
故选C 。
3.(2019福建南平4分)计算=【 】A B .5 C D 【答案】A 。
【考点】二次根式的乘除法【分析】)a 0b 0>≥,A 4.(2019福建宁德4分)2019的相反数是【 】A .-2019B .2019C .- 1 2012D . 12012【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此2019的相反数是-2019。
故选A 。
5. (2019福建宁德4分)2019年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗”,预计可容纳80000人.将80000用科学记数法表示为【 】A .80×103B .0.8×105C .8×104D .8×103 【答案】C 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
80000一共5位,从而80000=8×104。
全国中考数学试题分类解析汇编专题1实数的有关概念
全国中考数学试题分类解析汇编专题1:实数的有关概念一、选择题1. (2012北京市4分) 9-的相反数是【 】A .19- B .19 C .9- D .9【答案】D 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-9的相反数是9。
故选D 。
2. (2012北京市4分)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为【 】A .96.01110⨯B .960.1110⨯C .106.01110⨯D .110.601110⨯【答案】C 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
60 110 000 000一共11位,从而60 110 000 000=6.011×1010。
故选C 。
3. (2012天津市3分)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET ”域名注册量约为560 000个,居全球第三位.将560 000用科学记数法表示应为【 】(A )560×103 (B )56×104 (C )5.6×105(D )0.56×106 【答案】C 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
广西各市2012年中考数学分类解析专题1实数
4 个考点分别进行计算,然后根据实数的
运算法则求得计算结果。
8.
( 2012 广西钦州
6 分) 计算:
-
2
1
-3- 9
-3 0.
【答案】 解:原式= 1
3- 3 1
3 。
2
2
【考点】 实数的运算,负整数指数幂,绝对值,二次根式化简,零指数幂。
【分析】 针对零负整数指数幂,绝对值,二次根式化简,零指数幂
a×10 n,其中 1≤|a| < 10, n 为整数,表示时
关键要正确确定 a 的值以及 n 的值。在确定 n 的值时,看该数是大于或等于 1 还是小于 1。当该数大于或
等于 1 时, n 为它的整数位数减 1;当该数小于 1 时,- n 为它第一个有效数字前 0 的个数(含小数点前的
1 个 0)。因此,
▲
.
【答案】 0。
【考点】 有理数的分类。
【分析】 既不是正数,也不是负数的数只有 0。 7. ( 2012 广西玉林、防城港 3 分) 某种原子直径为 1.2 ×10 -2 纳米,把这个数化为小数是
▲
纳
米.
【答案】 0.012 。
【考点】 科学记数法。 【分析】 根据科学记数法的定义,科学记数法的表示形式为
4. ( 2012 广西桂林 3 分) 2012 的相反数是【
】
A. 2012
B
.- 2012
C
. | - 2012|
D
1 . 2012
【答案】 B。
【考点】 相反数。
用心
爱心
专心
1
【分析】 相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,
2012年全国中考数学试题分类解析汇编(159套63专题)专题16_一次函数(正比例函数)的图像和性质(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题16:一次函数(正比例函数)的图像和性质一、选择题1. (2012山西省2分)如图,一次函数y=(m ﹣1)x ﹣3的图象分别与x 轴、y 轴的负半轴相交于A .B ,则m 的取值范围是【 】A . m >1B . m <1C . m <0D . m >02. (2012陕西省3分)下列四组点中,可以在同一个正比例函数图象上的一组点是【 】 A .(2.-3),(-4,6) B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6)3. (2012陕西省3分)在同一平面直角坐标系中,若一次函数y x 3=-+与y 3x 5=-图象交于点M ,则点M 的坐标为【 】A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1)4. (2012浙江温州4分)一次函数y=-2x+4图象与y 轴的交点坐标是【 】 A. (0, 4) B. (4, 0) C. (2, 0) D. (0, 2 )5. (2012江苏苏州3分)若点(m ,n )在函数y=2x+1的图象上,则2m-n 的值是【 】 A.2 B.-2 C.1 D. -16. (2012江苏徐州3分)一次函数y=x -2的图象不经过【 】 A .第一象限 B .第二象限 C .第三象限D .第一象限7. (2012福建宁德4分)一次函数y 1=x +4的图象如图所示,则一次函数y 2=-x +b 的图象与y 1=x +4的图象的交点不可能...在【 】A .第一象限B .第二象限C .第三象限D .第四象限8. (2012福建泉州3分)若y kx 4=-的函数值y 随着x 的增大而增大,则k 的值可能是下列的【 】.A .4- B.21-C.0D.3 9. (2012湖南娄底3分)对于一次函数y=﹣2x+4,下列结论错误的是【 】 A . 函数值随自变量的增大而减小 B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)10. (2012四川乐山3分)若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是【 】A .B .C .D .11. (2012四川南充3分)下列函数中是正比例函数的是【 】( A )y=-8x(B )y=8x-( C )y=5x 2+6 (D )y= -0.5x-112. (2012辽宁沈阳3分)一次函数y=-x+2的图象经过【 】A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 13. (2012山东滨州3分)直线1y x =-不经过【 】A .第一象限B .第二象限C .第三象限D .第四象限14. (2012江西南昌3分)已知一次函数y=kx+b (k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过【 】 A . 第一象限 B . 第二象限C . 第三象限D .第四象限15. (2012吉林长春3分)有一道题目:已知一次函数y=2x+b ,其中b <0,…,与这段描述相符的函数图像可能是【 】二、填空题1. (2012上海市4分)已知正比例函数y=kx (k≠0),点(2,﹣3)在函数上,则y 随x 的增大而 ▲ (增大或减小).2. (2012浙江湖州4分)一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为 ▲3. (2012江苏南京2分)已知一次函数y kx k 3=+-的图像经过点(2,3),则k 的值为 ▲4. (2012湖南长沙3分)如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是 ▲ .5. (2012湖南永州3分)一次函数y=﹣x+1的图象不经过第 ▲ 象限.6. (2012湖南怀化3分)如果点()()1122P 3,y ,P 2,y 在一次函数y 2x 1=-的图像上,则1y ▲ 2y .(填“>”,“<”或“=”)7. (2012湖南衡阳3分)如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行且经过点A (1,﹣2),则kb= ▲ .8. (2012湖南株洲3分)一次函数y=x+2的图象不经过第▲ 象限.9. (2012贵州贵阳4分)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第▲ 象限.10. (2012江西省3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则其图像不经过...第▲ 象限。
四川省各市2012年中考数学分类解析专题7:统计与概率
四川各市2012年中考数学试题分类解析汇编专题7:统计与概率一、选择题1. (2012四川攀枝花3分)为了了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指【】A. 150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.攀枝花市2012年中考数学成绩【答案】C。
【考点】总体、个体、样本、样本容量。
【分析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本:了解攀枝花市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.样本是,被抽取的150名考生的中考数学成绩。
故选C。
2. (2012四川宜宾3分)宜宾今年5月某天各区县的最高气温如下表:则这10个区县该天最高气温的众数和中位数分别是【】A.32,31.5 B.32,30 C.30,32 D.32,31【答案】A。
【考点】众数,中位数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是32,故这组数据的众数为32。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为29,30,30,30,31,32,32,32,32,33,处于这组数据中间位置的数是31、32,∴中位数为:31.5。
故选A。
3. (2012四川广安3分)下列说法正确的是【】A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定【答案】C。
【考点】统计量的选择,可能性的大小,调查方法的选择,方差。
【分析】分别利用统计量的选择,可能性的大小,调查方法的选择,方差的知识进行逐项判断即可:A、商家卖鞋,最关心的是卖得最多的鞋码,即鞋码的众数,故本选项错误;B、365天人中可能人人的生日不同,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、方差越大,越不稳定,故本选项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川各市2012年中考数学试题分类解析汇编专题1:实数一、选择题1. (2012四川成都3分)-3的绝对值是【】A.3 B.3-C.13D.13-【答案】A。
【考点】绝对值。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-3到原点的距离是3。
,所以-3的绝对值是3。
,故选A。
2. (2012四川成都3分)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为【】A.9.3×105万元B.9.3×106万元C.93×104万元D.0.93×106万元【答案】A。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。
930 000一共6位,从而930 000=9.3×105。
故选A。
3. (2012四川乐山3分)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作【】A.﹣500元B.﹣237元C.237元D.500元【答案】B。
【考点】正数和负数。
【分析】根据题意收入为正,支出为负,支出237元应记作﹣237元。
故选B。
4. (2012四川乐山3分)如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是【】A.ab>0B.a+b<0C.(b﹣1)(a+1)>0D.(b﹣1)(a﹣1)>0【答案】C。
【考点】数轴,有理数的混合运算。
【分析】根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可:由a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0。
故C正确,D错误。
故选C。
7. 2012四川广安3分)﹣8的相反数是【】A.8 B.﹣8 C.18D.﹣18【答案】A。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-8的相反数是8。
故选A。
8.(2012四川广安3分)经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是【 】美元.A .1.5×104 B .1.5×105 C .1.5×1012 D .1.5×1013 【答案】C 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
15000亿=1 500 000 000 000一共13位,从而15000亿=1 500 000 000 000=1.5×1012。
故选C 。
9. (2012四川内江3分)-6的相反数为【 】A.6B.61C.61- D.- 6 【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-6的相反数是6。
故选A 。
10. (2012四川达州3分)-2的倒数是【 】A 、2B 、-2C 、21 D 、21- 【答案】D 。
【考点】倒数。
【分析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以-2的倒数为1÷(-2)=12-。
故选D 。
11. (2012四川达州3分)今年我市参加中考的学生人数约为41001.6⨯人.对于这个近似数,下列说法正确的是【 】A 、精确到百分位,有3个有效数字B 、精确到百位,有3个有效数字C 、精确到十位,有4个有效数字D 、精确到个位,有5个有效数字【答案】B 。
【考点】科学记数法与有效数字【分析】有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字。
∵6.01×104=60100,∴它有3个有效数字,6,0,1,精确到百位。
故选B 。
12. (2012四川广元3分)下列4个数中,最大的数是【 】A. 1B. -1C. 0D.2 【答案】D 。
【考点】实数大小的比较。
【分析】根据正数都大于0,负数都小于0,有理数与无理数比较大小,可利用其平方进行比较,即可求解:∵四个答案中只有A ,D 为正数,∴应从A ,D 中选。
∵12=1,(2)2=2,∴1<2。
故选D 。
13. (2012四川德阳3分) 实数-3的相反数是【 】A.3B.31 C.31- D.2- 【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-3的相反数是3。
故选A 。
14.(2012四川德阳3分)某厂2011年用于购买原材料的费用2350000元,实数2350000用科学记数法表示为【 】A.51035.2⨯B. 5105.23⨯C. 510235.0⨯D. 61035.2⨯【答案】D 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
2350000一共7位,从而2350000=1.2104×106。
故选D 。
15. (2012四川绵阳3分)4的算术平方根是【 】。
A .2B .-2C .±2D .2【答案】A 。
【考点】算术平方根。
【分析】根据算术平方根的定义,求数a 的算术平方根,也就是求一个正数x ,使得x 2=a ,则x 就是a 的算术平方根, 特别地,规定0的算术平方根是0。
∵22=4,∴4的算术平方根是2。
故选A 。
16. (2012四川绵阳3分)绵阳市统计局发布2012年一季度全市完成GDP 共317亿元,居全省第二位,将这一数据用科学记数法表示为【 】。
A .31.7×109元B .3.17×1010元C .3.17×1011元D .31.7×1010元【答案】B 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
317亿=31700000000一共11位,从而317亿=31700000000=3.17×1010。
故选B 。
17. (2012四川凉山4分)下列四个数中,比0小的数是【 】A .1-B .0C .1D .2【答案】A 。
【考点】有理数大小比较.【分析】根据实数比较大小的法则进行比较即可:∵0,1,2均为非负数,-1为负数,∴四个数中,比0小的数是-1。
故选A 。
18. (2012四川巴中3分) 43-的倒数是【 】 A. 43 B. 34- C. 34 D. 43- 【答案】B 。
【考点】倒数。
【分析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以34-的倒数为1÷(34-)=43-。
故选B 。
19. (2012四川巴中3分)下列各数:3π,sin30°,3-,4,其中无理数的个数是【 】A. 1个B. 2个C. 3个D. 4个【答案】B 。
【考点】无理数。
【分析】∵sin30°=12, 4=2,而12,2是有理数, ∴这一组数中的无理数有:3π,3-共2个。
故选B 。
20. (2012四川资阳3分)-2的相反数是【 】A .2B .12-C .2-D .12 【答案】A 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-2的相反数是2。
故选A 。
21. (2012四川自贡3分)3-的倒数是【 】A .-3B .13-C .3D .13【答案】D 。
【考点】绝对值,倒数。
【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣错误!未找到引用源。
到原点的距离是错误!未找到引用源。
,所以﹣错误!未找到引用源。
的绝对值是错误!未找到引用源。
;根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数,3-的倒数为1÷3-=1÷3=13。
故选D 。
22. (2012四川自贡3分)自贡市约330万人口,用科学记数法表示这个数为【 】A .330×104B .33×105C .3.3×105D .3.3×106【答案】D 。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。
在确定n 的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。
330万=3300000一共7位,从而330万=3300000=3.3×106。
故选D 。
23. (2012四川自贡3分)下列计算正确的是【 】A .325+=B .326⨯=C .1233-=D .824÷= 【答案】C 。
【考点】二次根式的加减法和乘除法。
【分析】根据二次根式的运算逐一作出判断:A .3与2不能合并,所以A 选项不正确;B .326⨯=,所以B 选项不正确;C .1232333-=-=,所以C 选项正确;D .822222÷=÷=,所以D 选项不正确。