2012成都一诊数学文试卷

合集下载

2024年四川省成都市高新区中考数学一诊试题(原卷版)

2024年四川省成都市高新区中考数学一诊试题(原卷版)

2024年四川省成都市高新区中考数学一诊试卷一、选择题(本大题共8小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在数轴上,点A 与点B 位于原点的两侧,且到原点的距离相等.若点A 表示的数为5,则点B 表示的数是( )A B. C. 5 D. 2. 空气,无色无味,无形无质,却承载着生命的呼吸,它的密度约为,将用科学记数法表示应为( )A. B. C. D. 3. 用一个平面去截下列几何体,截面可能是矩形的几何体是( )A. B. C. D.4. 下列计算正确的是( )A. B. C. D. 5. 已知一个多边形的内角和等于900º,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形6. 若关于的一元二次方程有两个相等的实数根,则的值是( )A. B. C. D. 7. 《九章算术》是中国传统数学的重要著作,其中《盈不足》卷记载了这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:几个人一起去购买某物品,每人出钱,则多钱;每人出钱,则差钱,问人数和物品价格各是多少?设有人.根据题意,下面所列方程正确的是( )A. B. C. D. 8. 如图,,在射线上取一点C ,使,以点O 为圆心,的长为半径作,.1515-5-30.00129g/cm 0.00129412.910⨯﹣31.2910⨯﹣41.2910⨯﹣20.12910⨯﹣222a a -=236a a a ⋅=222632m n m n n ÷=()()22444m n m n m n+-=-x 220x x m -+=m 18-188-88374x 8374x x -=+8374x x +=-3487x x -+=3487x x +-=60AOB ∠=︒OA 6OC =OC MN交射线于点D ,连接,以点D 为圆心,的长为半径作弧,交于点E (不与点C 重合),连接.以下结论错误的是( )A. B.C. 的长为πD. 扇形的面积为12π二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9. 因式分解=______.10. 如图,一边为平面镜,点在射线上,从点射出的一束光线经上一点反射后,反射光线恰好与平行.现测得入射光线与反射光线的夹角,则的度数为____.11. 某公司要招聘一名职员,根据实际需要,从学历、能力和态度三个方面进行测试,将学历、能力和态度三项成绩按的比例确定最终成绩.某面试者学历、能力和态度三项测试成绩分别为80分,85分,90分,则该面试者的最终成绩为____分.12. 若点,都在二次函数的图象上,则____.(填“>”,“=”或“<”)13. 如图,在中,,点为上一点,过、两点分别作射线的垂线,垂足分别为点,点.若点为中点,,则的长为____.的OB CD CD MN CE OE ,30DCE ∠=︒OD CE ⊥ DECOE 2242x x -+AOB ∠OB C OA C OB D DE OA CD DE 110CDE ∠=︒AOB ∠︒2:4:4()11A y ,()24B y ,()2221y x =--1y 2y Rt ABC △AB AC =D BC B C AD E F F AE 2BE =BC三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14. (1)计算:;(2)解不等式组:.15. 为学习新时代榜样,某校准备组织师生开展“点亮人生灯塔”的社会实践活动,活动项目有“环境保护”“敬老服务”“文明宣传”“义卖捐赠”四项,每名参加活动的师生只参加其中一项.为了解各项活动参与情况,该校随机调查了部分师生的参与意愿,并根据调查结果绘制成不完整的统计图表. 项目人数环境保护6敬老服务a 文明宣传8义卖捐赠b(1)分别计算出表中a ,b 的值;(2)该校共有1200名师生参加活动,请估计选择参加“环境保护”项目的师生人数;(3)现拟从甲、乙、丙、丁四人中任选两人担任联络员,请利用画树状图或列表的方法,求出恰好选中甲、乙两人的概率.16. 近几年,中国新能源汽车凭借其创新技术、智能化特性和独特设计赢得了全球的关注.某品牌新能源汽21(2cos 45|1|3--︒+-3262723x x x x -<+⎧⎪--⎨≥⎪⎩车的侧面示意图如图所示,当汽车后背箱门关闭时,后备厢门与水平面的夹角,顶端A 和底端B 与水平地面的距离分别为和.现将后背箱门绕顶端A 逆时针旋转至,若,求此时的后备厢门底端到地面的距离.(参考数据:)17. 如图,是外接圆,,直线,的延长线交于点,交直线于点.(1)求证:直线是的切线;(2)若,,求的半径及的长.18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,点.(1)求反比例函数的表达式及点的坐标;(2)过点的直线与轴交于点,与轴负半轴交于点.若,求的面积;AB 72ABH ∠=︒MN 152cm 70.3cm AB AB '102BAB '∠=︒B 'MN sin 720.95cos720.31tan 72 3.08︒≈︒=︒≈,,O ABC AC BC=CD AB ∥AO BC E DC F CF O 6AB =tan 3B ∠=O CF xOy 5y x =-+k y x=(1,)A a B B B x M y N 13BM MN =AMN(3)点在第三象限内反比例函数图象上,横坐标和纵坐标相等.点关于原点的对称点为点.平面内是否存在点,使得?若存在,求点的坐标;若不存在,请说明理由.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19. 已知,则代数式的值为____.20. 待定系数法是确定函数表达式的常用方法,也可用于化学方程式配平.石青[]加热分解的化学方程式为:,其中x ,y 为正整数,则____.21. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖次(假设每次飞镖均落在游戏板上),击中阴影部分的概率是_____.22. 如图,中,,,点E ,F 分别在,上,将沿所在直线翻折,点C 的对应点D 恰好在边上,过点D 作的垂线,交的延长线于点G ,设,则的值为____.(用含x 的代数式表示)23. 对于平面直角坐标系中图形M 和图形N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,则称这个最小值为图形M ,N 间的“捷径距离”,记为d (图形M ,图形N ).已知三个顶点的坐标分别为,,,将三角形绕点逆时针旋转得到,若上任意点都在半径为4的内部或圆上,则与的“捷径距离”的最小值是____,最大值是_____.的的C C O D E ABD ACE ∽E 2225m m =+211()m m m m+-÷()32CuCO Cu OH x y ⋅()32CuCO Cu OH x y ⋅223CuO H O CO x ++↑y x -=1ABC 90ACB ∠=︒24AC BC ==AC BC CEF EF AB AB BC CG x =tan EFC ∠xOy ABC ()21A -,()32B -,()12C -,ABC ()D a a ,90︒A B C ''' A B C ''' O ABC A B C ''' ()d ABC A B C ''' ,二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24. 年月日是联合国教科文组织确定的第个“世界读书日”.在世界读书日来临之际,某书店准备购进甲、乙两种图书进行销售,已知每本甲种图书的进价比每本乙种图书的进价多元,用元购买甲种图书的数量与用元购买乙种图书的数量相同.(1)求每本甲种图书与乙种图书的进价;(2)如果该书店决定用不超过元购买本甲种图书和若干本乙种图书,则乙种图书最多能购买多少本?25. 在平面直角坐标系中,抛物线与x 轴交于,B 两点,与y 轴交于点C ,对称轴为.(1)求抛物线的函数表达式;(2)如图1,连接,点D 在直线上方的抛物线上,过点D 作的垂线交于点E ,作y 轴的平行线交于点F .若,求线段的长;(3)直线与抛物线交于P ,Q 两点(点P 在点Q 左侧),直线与直线交点为S ,的面积是否为定值?若是,请求出此定值;若不是,请说明理由.26. 已知,在菱形中,,分别是,边上的点,线段,交于点.的2024423292526001600200020xOy 24y ax bx =++()20A -,1x =BC BC BC BC BC 3CE EF =DF (4)y x m m =-+<PC BQ OCS ABCD E F BC CD AE BF G(1)如图1,,点与点重合,连接;(i )求证:;(ⅱ)若为直角三角形,求的值;(2)如图2,,.当时,求线段的长.BGE ABC ∠=∠F D CG BE AD AE AG ⋅=⋅CDG EG CGAB ==45ABC ∠︒3cos 5AE BGE BF ∠==BE。

2012成都一诊2篇

2012成都一诊2篇

2012成都一诊2012成都一诊第一篇:2012年成都一诊是一个令人激动的时刻,对许多学生来说,这个考试是他们高中生活的重要节点。

我也参加了这次考试,下面我将分享一下我的经历。

考试的前一天,我认真复习了所有的知识点。

我从早上开始复习,到晚上才停止。

虽然有些累,但我知道这是为了取得好成绩不得不付出的努力。

我复习了数学、语文、英语和物理等科目,希望能够在考试中发挥出自己的最佳水平。

第二天,我早早起床,准备前往考场。

在考场外面,我遇到了许多同学。

大家一起交流复习心得,互相加油打气。

虽然有些紧张,但我觉得和大家一起经历这个过程会让我感到更加安心。

考试开始后,我先做了语文和英语的试卷。

语文试卷中有一篇阅读理解题让我有些头疼,但我尽力去思考,最终还是找到了答案。

英语试卷相对比较简单,我较为顺利地完成了所有题目。

下午,我开始解答数学和物理试卷。

数学试卷中有一道难题令我有些难以应对,但我冷静下来,通过分析和推理,最终找到了解题思路,顺利解答出来。

物理试卷相对较为简单,我对自己的答案感到满意。

考试结束后,我松了一口气。

虽然我知道成绩的好坏不能完全取决于这次考试,但我还是希望自己能够取得优异的成绩。

无论结果如何,我相信我在这次考试中付出了努力,这就足够了。

第二篇:2012年成都一诊考试让我有些挑战和困惑。

我在考试中遇到了一些难题,但我也努力克服困难,尽力完成每一道题目。

考试的前一天,我做了一些模拟试卷,发现自己在物理和化学方面的知识掌握还有待提高。

于是,我花了很多时间复习这些科目,希望在考试中能有所提高。

考试当天,我感到紧张而兴奋。

我先做了语文和英语的试卷。

语文试卷中有一篇课文理解题令我有些费解,但我努力读懂了相关内容,最终找到了答案。

英语试卷相对比较简单,我较为顺利地完成了所有题目。

下午,我开始解答数学、物理和化学试卷。

数学试卷中有一道复杂的几何题让我有些头疼,但我冷静下来,通过分析和计算,最终找到了解题方法,成功求解出来。

2024成都一诊数学试卷分析

2024成都一诊数学试卷分析

2024成都一诊数学试卷分析一、试卷整体评述2024年成都一次诊断考试数学试卷在内容设置上涵盖了广泛的数学知识点,从基础到拓展都有所覆盖。

整体难度适中,考查了学生对数学知识的掌握和运用能力,既考察了计算技巧,也注重了问题解决思维能力的培养。

接下来将对试卷具体内容进行分析。

二、试卷分析区间题第一部分主要考查了学生对区间的理解和判断能力,要求学生根据不等式确定区间并进行比较。

这部分题目以简单直观的方式考察了学生对数学符号和概念的掌握程度,对于基础知识的检验起到了很好的作用。

函数题第二部分涉及了函数的概念和性质,要求学生根据函数的定义和图像进行分析和运算。

这部分题目考查了学生对函数概念的理解和对函数性质的把握,同时也考察了学生对函数变化规律的把握能力。

微积分题第三部分是微积分相关的题目,要求学生对导数和微分的概念进行掌握和灵活运用。

这部分题目难度适中,既考察了学生的计算能力,也考察了学生对导数和微分的理解程度。

概率题第四部分是关于概率和统计的题目,要求学生根据概率和统计的知识进行计算和分析。

这部分题目考查了学生对概率和统计概念的掌握程度,既考察了学生的计算能力,也考察了学生对数据的分析和推理能力。

综合题最后一部分是综合题,要求学生综合运用数学知识进行分析和解决问题。

这部分题目考验了学生的综合运用能力和问题解决思维能力,对于考察学生的数学综合能力起到了很好的促进作用。

三、总结与展望通过对2024年成都一次诊断考试数学试卷的分析,我们发现试卷在内容设置上注重了基础知识和思维能力的培养,考察了学生在数学方面的综合能力。

希望未来的考试能够更加贴近学生的学习实际,既注重数学知识的传授,也注重对学生数学思维能力的培养,促进学生全面发展。

成都锦江区一诊数学试卷word版

成都锦江区一诊数学试卷word版

成都锦江区一诊数学试卷word版锦江区一诊数学word版,可编辑锦江区2013~2014学年度上期初三“一诊”考试试题数学A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.已知关于x的方程x kx 6 0的一个根为x 3,则实数k的值为()A.2 B.-2 C.1 D.-12.如图1,将两个圆盘、一个茶叶桶、一个皮球和一个蒙古包模型按如图所示的方式摆放在一起,其主视图是()23.如图2,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A.4 B.3 C.2 D.14.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球有4个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是()A.3 B.4 C.12 D.165.若方程x 4x c 0有两个不相等的实数根,则实数c的值可以是()A.6 B.5 C.3 D.4 6.下列各命题中,真命题是()A.对角线互相垂直的四边形是菱形B.两条对角线相等且互相平分的四边形是矩形C.三点确定一个圆D.相等的圆周角所对的弧相等7.已知反比例函数y21,下列结论不正确的是()xA.图象经过点(1,1)B.图象在第一、三象限C.当x 1,0 y 1 D.当x 0时,y随着x的增大而增大8.如图3,D是O的直径,A、B是O上的两点,若∠ADC=80°,则∠ABD的度数为()A.40° B.30° C.20° D.10°锦江区一诊数学word版,可编辑9.如图4,在菱形ABCD中,DE⊥AB,cos A3,BE=2,则tan DBE的值()5A.1 B.2 C.D.22510.将一抛物线向下,向右各平移2个单位得到的抛物线是y x2,则该抛物线的解析式是()A.y (x 2)2 2 B.y (x 2)2 2 C.y (x 2)2 2 D.y (x 2)2 2 二、填空题(每小题4分,共16分)11、如图5所示的抛物线是二次函数y ax2 3x a2 2的图象,那么a的值是;12、工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图6所示,则这个小圆孔的宽口AB的长度为mm;13、如图7,点A(3,n)在双曲线y3上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交xOC于点M,则△AMC周长的值是;14、如图8,矩形ABCD中,∠DAE:∠BAE=3:1,AE⊥BD,则∠EAC等于.三、计算题(15小题每小题6分,16小题6,共18分)115.(1)计算:1 2cos45211(2)用配方法解方程:3x 2x 5 02锦江区一诊数学word版,可编辑16、如图9:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)BE、CF有怎样的数量关系?证明你的结论;(2)若∠A=90°,求证:四边形DFAE是正方形.四、解答题(每小题8分,共16分)17.如图10是成都市某街道的一座人行天桥的示意图,天桥的高是10米,坡面AC的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度,使新坡面DC的倾斜角为30°.若新坡脚前需留3米的人行道,问离原坡脚10米的建筑物EF是否需要拆除?请说明理由.(1.732 1.414)18、在成都最大惠民工程――“北改”的号角吹响中,一条条道路在拓宽畅通、一幢幢崭新楼宇拔地而起、一个个新建的学校和社区服务中心投入使用,市民在得到实惠的同时,很多人在网上发微博,晒自己“幸福时刻”.在对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m 10时为A级,当5 m 10时为B级,当0 m 5时为C级.现随机抽取20个年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 6 15 16 7 0 12 11 3 14 2 18 10 17 13 5 7 3 15 12 (1)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(2)从样本数据为B级的人中随机抽取2人,用列表法或画树状图的方法求抽得2个人的“日均发微博条数”都是7的概率.锦江区一诊数学word版,可编辑五、解答题(每小题10分,共20分)19.如图11,一次函数y kx 1 k 0 与反比例函数ym,直线l⊥ m 0 的图象有公共点A(-2,n)x,与一次函数和反比例函数的图象分别交于点B,C.一次函数y kx 1与x轴、y轴x轴于点N(-5,0)分别交于点D、E,且tan ∠AND=1.(1)求一次函数与反比例函数的解析式;(2求△ABC的面积.20.已知:如图12,正方形ABCD中,O是BD的中点,BE 平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,连接OG.(1)求证:△BCE≌△DCF;(2)OG与BF有怎样的位置关系?证明你的结论;(3)若CE=1,求正方形ABCD的面积.锦江区一诊数学word版,可编辑B卷(50分)一、填空题(每小题4分,共20分)21.已知a,b是关于x的一元二次方程x nx 1 0的两实数根,则式子22.已知抛物线y x2 2x b2经过点a, 1 和a,y1 ,则y1的值是;23.如果对于任意两个实数a、b,“ ”为一种运算,定义为a b a 2b,则函数y x 2x 2 422ba的值是;ab3 x 3 的最大值与最小值的和为;24.在O中,已知O的直径AB为2,弦ACADDC ;24x 0 的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至x点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴,y轴于点P,Q.当QE:DP=9:25.如图13,已知动点A在函数y 25时,图中的阴影部分的面积等于.二、解答题:26.(8分)某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售这种产品的总开支(不含进货费用)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系,总开支(不含进货费用)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图14所示的一次函数关系.(1)求y与x间的函数关系式;(2)试写出该公司销售这种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进货费用-年总开支);(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中的函数,请你帮助该公司确定销售单价的范围.在此情况下,要销售量最大,你认为销售的单价应定为多少元?锦江区一诊数学word版,可编辑27.(10分)如图15(1),已知Rt△ABC的直角边AC的长为2,以AC为直径的O与斜边AB交于点D,过点D作O的切线交BC与点E.(1)求证:BE=DE;(2)延长DE与AC的延长线交于点F,若△ABC的面积;(3)连接OE如图15(2),当∠CAB为何值时,四边形AOED 为平行四边形,并说明理由.28.(12分)如图16,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y225x bx c经过B点,且顶点在直线x 32上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.。

Removed_2012成都一诊理综试题及答案_word版

Removed_2012成都一诊理综试题及答案_word版

四川省成都市2012届高中毕业班第一次诊断性检测(理综)第I卷(选择题,共126分)二、选择题(本题共8小题。

在每个小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得O分)14. 下列说法正确的是( )A.汽车“严禁超速",是为了减小汽车的惯性B.秒、摩尔、安培均是.国际单位制中的基本单位C 分子很小,任何情况下都可把它看成质点D 平行板电容器所带电荷量不变时,减小两板间的距离,两板间的.电压将增大15. 下列说法正确的是( )A. 某物体的机械能减小时,其内能必定增加B. 分子a从远处由静止释放向固定不动的分子b靠近,当a受到b的分子力为零时,a、b的分子势能最小C一定质量的气体,温度升高时,分子撞击器壁时对器壁的平均作用力增大,因此气体的压强一定增大D .没有摩擦的理想热机可以把它得到的内能全部转化为机械能16. 下列关于人造卫星与宇宙飞船的说法,正确的是( )A. 已知万有引力常量、媒娥一号绕月卫星的圆轨道半径和周期,可以算出月球的质量B. 在地面上发射嫦娥一号绕月卫星,发射速度应大于11.2 km/sC. 神舟七号飞船内的宇航员处于失重状态是由于没有受到万有引力的作用D 神舟八号是在天宫一号运行的圆轨道上运行一圈后,再加速追上天宫一号并与之对接的17. 在电荷量分别为-q和+2q的两个点电荷形成的电场中,电场线分布如图所示。

在两点电荷连线(水平方向)的中垂线上有a、b两点.以下说法正确的是( )A A、B两点的电场强度方向均为水平向左B.a、b两点的电场强度大小相等C.a、b两点的电势相等D.带正电的试探电荷在a点时具有的电势能比在6点时大18.如图所示,A、B两物块叠放在一起,A、B间接触面粗糙,它们以沿斜面向上的相同初速度冲上一足够长的光滑斜面。

在A、B运动的过程中,下列判断正确的是( )A. 上升过程中,B物块受到沿接触面向上的摩擦力B. 下滑过程中,A、B两物块将发生相对滑动C. 上升和下滑过程中,B物块始终不受摩擦力D. A、B两物块上升至最高点时,它们均处于平衡状态19.如图示,在同一种均匀介质中的一条直线上,两个振源A、B相距8 m。

2024年四川省成都市新都区中考数学一诊试卷(含解析)

2024年四川省成都市新都区中考数学一诊试卷(含解析)

2024年四川省成都市新都区中考数学一诊试卷一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.(4分)﹣2024的绝对值是( )A.2024B.﹣2024C.D.2.(4分)提高交通安全意识是每一位青少年的“必修课”,以下有关交通安全的标识图,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.(4分)据统计,仅2024年大年初一这一天,我国全社会跨区域人员流动量约为1.9亿人次.将1.9亿用科学记数法表示为( )A.19×108B.1.9×109C.0.19×1010D.1.9×1084.(4分)下列各式计算正确的是( )A.(x+y)2=x2+y2B.(2x2)3=6x6C.4x3÷2x=2x2D.x2﹣4y2=(x+4y)(x﹣4y)5.(4分)在平面直角坐标系中,点P(﹣2,﹣4)关于x轴对称的点的坐标是( )A.(2,4)B.(0,﹣4)C.(﹣2,4)D.(2,﹣4)6.(4分)2024年,中国将迎来一系列重要的周年纪念活动,某校开展了主题为“牢记历史•吾辈自强”的演讲比赛,九年级8名同学参加该演讲比赛的成绩分别为76,78,80,85,80,74,78,80.则这组数据的众数和中位数分别为( )A.80,79B.80,78C.78,79D.80,807.(4分)如图,点E是▱ABCD的边AD上一点,且AE:DE=1:2,连接CE并延长,交BA的延长线于点F.若AE=4,AF=6,则▱ABCD的周长为( )A.21B.34C.48D.608.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②该抛物线一定过原点;③b2﹣4ac>0;④a﹣b+c<0;⑤b>0.其中结论正确的个数有( )个.A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:3a3﹣12a= .10.(4分)如图,直线:y=2x+4与直线l2:y=kx+b相交于点P(1,m),则方程组的解为 .11.(4分)一个箱子装有除颜色外都相同的3个蓝球,3个灰球和一定数量的粉球.从中随机抽取1个球,被抽到粉球的概率是,那么箱内粉球有 个.12.(4分)如图,经过原点的直线交反比例函数的图象于A,B两点,过点A作AC⊥x轴于点C,连接BC,当S△ABC=2时,k的值为 .13.(4分)如图,在Rt△ABC中,∠BAC=90°,按以下步骤作图:①分别以点A和点C 为圆心,大于的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD=2,则△ACD的面积为 .三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)先化简,再求值:,其中a=﹣1.15.(8分)为提升同学们的综合素质,丰富课余生活,某校举行了“爱新都”为主题的视频制作评比活动.某兴趣小组同学积极参与,计划制作有代表性景点的城市宣传短片,现抽样调查了部分学生,从A锦门民国小镇,B桂湖公园,C宝光寺,D新繁东湖,E泥巴沱公园五个景点中,选出最具有新都代表性的地方,并将调查情况绘制成如图两幅不完整统计图.根据统计图中的信息解答下列问题:(1)本次被调查的学生有 人,扇形统计图中表示A的扇形圆心角α的度数等于 度,并把条形图补充完整;(2)该校学生共计1500人,请估算出该校认为最具有新都代表性的是宝光寺的学生人数;(3)该兴趣小组准备从校内四位“优秀共青团员”(两男两女)中,挑选两人作为宣传片中的讲解员,请利用列表或画树状图的方法,求所选两人恰好是1名男生和1名女生的概率.16.(8分)某校学生利用课余时间,使用卷尺和测角仪测量某公园古城门的高度.如图所示,他们先在公园广场点M处架设测角仪,测得古城门最高点A的仰角为22°,然后前进20m到达点N处,测得点A的仰角为45°;已知测角仪的高度为1.4m.求古城门最高点A距离地面的高度.(结果精确到0.1m;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)17.(10分)如图,已知矩形ABCD和矩形AEFG共用顶点A,点E在线段BD上,连接EG,DG,且.(1)求证:∠ABE=∠ADG;(2)若,,,求EG的长.18.(10分)在平面直角坐标系xOy中,直线与反比例函数的图象交于A (3,m),B两点.(1)求直线AB的函数表达式及点B的坐标;(2)如图1,过点A的直线分别与x轴,反比例函数的图象(x<0)交于点M,N,且,连接BM,求△ABM的面积;(3)如图2,点D在另一条反比例函数的图象上,点C在x轴正半轴上,连接DC交该反比例函数图象于点E,且DE=2EC,再连接AD,BC,若此时四边形ABCD 恰好为平行四边形,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)满足的整数x有 个.20.(4分)x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,则x1+x2﹣3x1x2= .21.(4分)将抛物线C1:y=x2向左平移a(a>0)个单位长度后,再向下平移b个单位长度,得到新的抛物线C2,若A(﹣a﹣2,y1),B(﹣a+1,y2),C(﹣a+3,y3)为抛物线C2图象上的三点,则y1、y2、y3的大小关系 .(请用“<”表示)22.(4分)如图1,以矩形ABCD的宽BC为边在其内部作正方形BCFE,若,则称矩形ABCD为“黄金矩形”,=称为“黄金比率”,如图2,以矩形ABCD 的宽BC为边在其内部作两个正方形BCHG,GHFE,若,则称矩形ABCD为“白银矩形”,=称为“白银比率”,则该比率为 ;如图3,A4纸的长与宽的比值近似可以看作,若沿某条直线裁剪一次,使得A4纸剩下部分为一个“白银矩形”,则该“白银矩形”的面积是 .23.(4分)如图,在矩形ABCD中,BC=2AB,点M,N为直线AD上的两个动点,且∠MBN =30°,将线段BM关于BN翻折得线段BM′,连接CM′.当线段CM′的长度最小时,∠MM'C的度数为 度.24.(10分)为了美化校园,某校准备在校园广场中心安装一个圆形喷水池,喷水池中央设置一柱形喷水装置OA高2米,点A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.O位于圆形喷水池中心的水面处,按照如图所示建立直角坐标系,该设计水流与OA的水平距离为1米时,喷出的水柱可以达到最大高度3米.(1)求出该抛物线的函数表达式;(2)为了使喷出的水流不至于溅落在圆形喷水池外,需要在水流落回水面处的外侧预留1米距离,则该圆形喷水池的半径至少设计为多少米合理?25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c,经过点M(2,3),与y轴交于点A(0,﹣1),直线BC与抛物线交于异于点A的B,C两点.(1)求抛物线的函数表达式;(2)若三角形BOM是以OM为底的等腰三角形,试求出此时点B的横坐标;(3)若BA⊥CA,探究直线BC是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(10分)如图1,在四边形ABFE中,∠F=90°,点C为线段EF上一点,使得AC⊥BC,AC=2BC=4,此时BF=CF,连接BE,BE⊥AE,且AE=BE.(1)求CE的长度;(2)如图2,点D为线段AC上一动点(点D不与A,C重合),连接BD,以BD为斜边向右侧作等腰直角三角形BGD.①当DG∥AB时,试求AD的长度;②如图3,点H为AB的中点,连接HG,试问HG是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.2024年四川省成都市新都区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.【分析】根据绝对值的意义解答即可.【解答】解:﹣2024的绝对值是2024.故选:A.【点评】本题主要考查了绝对值的意义,解题的关键是熟练掌握.2.【分析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图形既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;D.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1.9亿=190000000=1.9×108,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.【分析】计算出各个选项中式子的正确结果,即可判断哪个选项符合题意.【解答】解:(x+y)2=x2+2xy+y2,故选项A错误,不符合题意;(2x2)3=8x6,故选项B错误,不符合题意;4x3÷2x=2x2,故选项C正确,符合题意;x2﹣4y2=(x+2y)(x﹣2y),故选项D错误,不符合题意;故选:C.【点评】本题考查整式的混合运算、因式分解,熟练掌握运算法则是解答本题的关键.5.【分析】根据关于x轴对称的点的坐标特点解答即可.【解答】解:点P(﹣2,﹣4)关于x轴对称的点的坐标是(﹣2,4).故选:C.【点评】本题考查的是关于x轴对称的点的坐标,熟知关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题的关键.6.【分析】将数据重新排列,再根据众数和中位数的定义求解即可.【解答】解:将这组数据重新排列为74,76,78,78,80,80,80,85,所以这组数据的众数为80,中位数为=79,故选:A.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.7.【分析】由平行四边形的性质推出CD∥AB,DC=AB,AD=BC,得到△FAE∽△CDE,推出FA:CD=AE:DE=1:2,求出CD=12,由AE=4,AE:DE=1:2求出DE=8,得到AD=AE+ED=12,即可求出▱ABCD的周长=2(AD+CD)=48.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,DC=AB,AD=BC,∴△FAE∽△CDE,∴FA:CD=AE:DE=1:2,∵FA=6,∴CD=12,∵AE=4,AE:DE=1:2,∴DE=8,∴AD=AE+ED=12,∴▱ABCD的周长=2(AD+CD)=2×(12+12)=48.故选:C.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,得到FA:CD=AE:DE=1:2,求出CD的长.8.【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据由函数图象可知,与x轴有两个交点;④根据当x=﹣1时,y的函数值的位置进行判断;⑤根据开口方向和对称轴的位置解答即可.【解答】解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另一个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵由函数图象可知,与x轴有两个交点,b2﹣4ac>0;则此小题结论正确;④由函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;⑤∵开口向下,∴a<0,对称轴为直线x=﹣2,∴b<0,则此小题结论错误;故选:B.【点评】本题考查了抛物线与x轴的交点,二次函数与不等式的关系,二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】首先利用待定系数法求出m的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【解答】解:∵直线y=2x+4经过点P(1,m),∴m=2+4=6,∴P(1,6),∴方程组的解为.故答案为:.【点评】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点的坐标就是两函数组成的二元一次去方程组的解.11.【分析】设箱内粉球有x个,根据概率公式列出方程,解方程即可.【解答】解:设箱内粉球有x个,由题意得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,即箱内粉球有6个,故答案为:6.【点评】此题考查了概率公式:概率=所求情况数与总情况数之比,熟记概率公式是解题的关键.12.【分析】根据反比例函数图象的对称性可得出A,B两点关于点O对称,进而得出△AOC 与△BOC的面积相等,据此可解决问题.【解答】解:因为反比例函数是中心对称图形,且坐标原点是对称中心,所以点A和点B关于点O对称,则OA=OB.又因为S△ABC=2,所以.因为AC⊥x轴,所以,则x A y A=2,所以k=x A y A=2.故答案为:2.【点评】本题考查反比例函数与一次函数图象交点问题,熟知反比例函数图象的对称性是解题的关键.13.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABC即可解决问题.【解答】解:由作法得MN垂直平分AC,∴DA=DC∴∠DAC=∠C,∴∠ADB=∠DAC+∠C=2∠C,∵AB=BD,∴∠BAD=∠ADB=2∠C,∵∠BAC=90°,∴∠BAD+∠C=90°,即2∠C+∠C=90°,∴∠C=30°,∴AC=AB=2.∴△ACD的面积=S△ABC=××2×2=,故答案为:.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.【分析】(1)根据特殊角的三角函数值、二次根式的性质、零指数幂计算;(2)根据分式的减法法则、除法法则把原式化简,把a的值代入计算,得到答案.【解答】解:(1)原式=3×﹣﹣×+1=﹣2﹣1+1=﹣;(2)原式=÷(+)=÷=•=,当a=﹣1时,原式===.【点评】本题考查的是实数的运算、分式的化简求值,掌握实数的运算法则、分式的混合运算法则是解题的关键》15.【分析】(1)用条形统计图中B的人数除以扇形统计图中B的百分比可得本次被调查的学生人数;用360°乘以本次调查中选择A景点的人数所占的百分比,可得扇形统计图中表示A的扇形圆心角α的度数;求出选择D景点的人数,补全条形统计图即可.(2)根据用样本估计总体,用1500乘以样本中选择C的学生人数所占的百分比,即可得出答案.(3)画树状图得出所有等可能的结果数以及所选两人恰好是1名男生和1名女生的结果数,再利用概率公式可得出答案.【解答】解:(1)本次被调查的学生有18÷22.5%=80(人).扇形统计图中表示A的扇形圆心角α的度数等于360°×=72°.故答案为:80;72.选择D景点的人数为80﹣16﹣18﹣20﹣8=18(人).补全条形统计图如图所示.(2)1500×=375(人).∴该校认为最具有新都代表性的是宝光寺的学生人数约375人.(3)将2名男生分别记为甲,乙,2名女生分别记为丙,丁,画树状图如下:共有12种等可能的结果,其中所选两人恰好是1名男生和1名女生的结果有:甲丙,甲丁,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙,共8种,∴所选两人恰好是1名男生和1名女生的概率为=.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.16.【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE 是矩形,于是得到BC=MN=20m,DE=CN=BM=1.4m,求得CE=AE,设AE=CE=x,得到BE=20+x,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC,交BC延长线于点E,交MP于点F,则BMNC,四边形BMDE是矩形,∴BC=MN=16m,ED=BM,设AE=xm,在Rt△ACE中,∠ACE=45°,∴AE=CE=xm,∵BC=20m,∴BE=x+20,在Rt△ABE中,∠ABE=22°,∴tan22°=,∴0.40=,解得:x≈13.33,∴ED=BM=1.4m,∴AF=13.33+1.4=14.73≈14.7(m).答:古城门最高点A距离地面的高度约为14.7m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,能借助仰角构造直角三角形并解直角三角形是解决问题的关键.17.【分析】(3)利用同角的余角相等可得∠BAE=∠DAG,结合条件即可证明△ABE∽△ADG,以此即可得证;(2)易得∠ADB=∠CBD,结合(1)中结论并根据等角加等角相等得∠EDG=90°,再由勾股定理求得BD的长,于是得出BE的长,由△ABE∽△ADG可求出DG的长,最后再利用勾股定理即可求解.【解答】(1)证明:∵四边形ABCD和四边形AEFG均为矩形,∴∠BAD=∠EAG=90°,即∠BAE+∠DAE=∠DAG+∠DAE=90°,∴∠BAE=∠DAG,又∵,∴△ABE∽△ADG,∴∠ABE=∠ADG.(2)解:∵四边形ABCD为矩形,∴AD∥BC,∠ABC=∠ABE+∠CBD=90°,∴∠ADB=∠CBD,∵∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠CBD=90°,即∠EDG=90°,在Rt△ABD中,AB=,AD=,∴==,∴BE=BD=,DE=,由(1)知,△ABE∽△ADG,∴,∠ABE=∠ADG,∴,∴DG=,在Rt△DEG中,EG===.【点评】本题主要考查相似三角形的判定与性质、矩形的性质、勾股定理,解题关键:(1)由同角的余角相等得到∠BAE=∠DAG;(2)根据角之间的关系推理证明∠EDG=90°.18.【分析】(1)将A(3,m)代入直线y=﹣x+b与反比例函数y=,可得答案;(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,根据平行线分线段成比例得,可得N(﹣4,﹣3),从而得出直线AM的解析式为y=x+1,M(﹣1,0),再计算S△ABM=S△AHM﹣S△BHM即可;(3)利用平行四边形的性质可得AB∥CD,设直线CD的解析式为y=﹣x+t,可得C(t,0),则D(t﹣3,2),过D作DG⊥x轴于G,过点E作EF⊥x轴于F,则DG∥EF,可得△CEF∽CDG,利用相似三角形的性质得,可得出EF=,OF=t﹣1,则E(t﹣1,),根据反比例函数图象上点的坐标特征可得t=,即可解决问题.【解答】解:(1)将A(3,m)代入反比例函数y=得,m=4,∴A(3,4),将点A(3,4)代入y=﹣x+b得,b=6,∴直线AB的函数表达式为y=﹣x+6,联立直线y=﹣x+6与反比例函数y=得,,解得,∴点B的坐标为(6,2);(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,设AB与x轴交于H,∴MP∥NQ,∴,∵A(3,4),∴AP=4,∴PQ=3,∴N(﹣4,﹣3),设线AM的解析式为y=k′x+b′,∴,解得,∴直线AM的解析式为y=x+1,令y=0,则x=﹣1,∴M(﹣1,0),∵直线AB的函数表达式为y=﹣x+6,令y=0,则x=9,∴H(9,0),∴S△ABM=S△AHM﹣S△BHM=×4×(1+9)﹣×2×(1+9)=10;(3)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴设直线CD的解析式为y=﹣x+t,令y=0,则x=t,∴C(t,0),∵A(3,4),B(6,2),∴D(t﹣3,2),∵DE=2EC,∴,过D作DG⊥x轴于G,过点E作EF⊥x轴于F,∴DG∥EF,∴△CEF∽CDG,∴,∴,,∴EF=,OF=t﹣1,∴E(t﹣1,),∵D,E都在另一条反比例函数(k>0)的图象上,∴k=(t﹣1)=2(t﹣3),∴t=,∴k=×(×﹣1)=2.【点评】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,反比例函数图象与一次函数图象的交点问题,平行四边形的性质,相似三角形的判定与性质等知识,作辅助线构造相似三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】求出﹣,的取值范围,进而可得出答案.【解答】解:∵﹣2<﹣<﹣1,2<<3,∴满足<x<的整数x有﹣1,0,1,2共4个,故答案为:4.【点评】本题考查了估算无理数的大小,解题的关键是确定﹣,的取值范围.20.【分析】先把方程整理为一元二次方程的一般形式,再求出x1+x2与x1•x2的值,代入代数式进行计算即可.【解答】解:一元二次方程x(3x﹣1)﹣1=0可化为3x2﹣x﹣1=0,∵x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,∴x1+x2=,x1•x2=﹣,∴x1+x2﹣3x1x2=﹣3×(﹣)=+1=.故答案为:.【点评】本题考查的是一元二次方程根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=是解题的关键.21.【分析】求出A,B,C三个点离抛物线对称轴的远近,结合抛物线的开口方向即可解决问题.【解答】解:由题知,平移后的抛物线函数解析式为:y=(x+a)2﹣b,则此抛物线的对称轴为直线x=﹣a,且开口向上,所以抛物线上的点离对称轴越近,其纵坐标越小.因为﹣a﹣(﹣a﹣2)=2,﹣a+1﹣(﹣a)=1,﹣a+3﹣(﹣a)=3,且1<2<3,所以y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.22.【分析】根据“白银矩形”的定义,列出方程即可求出“白银比率”,再利用求出的“白银比率”即可解决问题.【解答】解:令BC=x,由得,,解得AE=(舍负),所以AB=2x+AE=,则“白银比率”为:.如图所示,,x=,经检验x=是原方程的解,且符合题意.所以该“白银矩形”的面积为:.故答案为:,.【点评】本题考查矩形的性质及黄金分割,理解题中所给定义是解题的关键.23.【分析】将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,得到△ABM≌△EBM′,再由当CM⊥EF时,CM'有最小值,可得△EBG与△M′CG均为30°、60°、90°直角三角形,再证明△ABM为等腰直角三角形,△MBM是等边三角形,进而得到∠EM'B=∠AMB=60°,最后当CM′⊥EF于H时,CM′有最小值,由此可以求出∠MM'C =∠EM'C﹣∠EM'M=90°﹣15°=75°.【解答】解:将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,设EM交BC于G点,如下图所示:在矩形ABCD中,∠A=∠ABC=90°,AD=BC,根据折叠可知,∠MBM'=60°,BM=BM',∴∠ABM=∠ABE﹣∠MBE=60°﹣∠MBE,∠EBM'=∠MBM'﹣∠MBE=60°﹣∠MBE,∴∠ABM=∠EBM′,∵BA=BE,BM=BM′,∴△ABM≌△EBM′(SAS),∵AM=EM′,∠E=∠A=90°,∵∠EBG=90°﹣60°=30°,∴∠BGM'=∠EBG+∠BEG=90°+30°=120°,∴∠EGC=120°,∴∠CGM'=∠EGB=180°﹣120°=60°,∴点M在EF上,∵垂线段最短,∴当CM′⊥EF时,CM′有最小值,∴△EBG与△M′CG均为30°、60°、90°直角三角形,设EG=x,BC=2y,则BG=2EG=2x,CG=BC﹣BG=2y﹣2x,,∴,∵BC=2AB,,∴EM′=AB,∵AM=EM′,∴AB=AM,∴△ABM为等腰直角三角形,∴∠EM′B=∠AMB=45°,∵∠MBM'=60°,BM=M′B,∴△MBM是等边三角形,∴∠BM'M=60°,∴∠EM'M=∠BM'M﹣∠EM'B=60°﹣45°=15°,∴∠MM'C=∠EM'C﹣∠EM'M=90°﹣15°=75°,故答案为:75.【点评】本题考查了三角形全等的判定方法、矩形的性质、旋转的性质、轴对称的性质,等边三角形的判定和性质,属于四边形的综合题,难度较大,熟练掌握各图形的性质是解题的关键.24.【分析】(1)易得抛物线的顶点坐标为(1,3),用顶点式设出抛物线解析式,把点A 的坐标代入可得抛物线二次项系数的值,即可求得抛物线的解析式;(2)水流落回水面,即抛物线与x轴相交,那么纵坐标为0求得符合题意的x的值,再加上预留的一米即为该圆形喷水池的半径最少的米数.【解答】解:(1)由题意得:抛物线的顶点坐标为(1,3).∴设抛物线的解析式为:y=a(x﹣1)2+3(a≠0).∵抛物线经过点(0,2),∴a+3=2.解得:a=﹣1.∴该抛物线的函数表达式为:y=﹣(x﹣1)2+3;(2)∵水流落回水面,∴抛物线与x轴相交.∴﹣(x﹣1)2+3=0.(x﹣1)2=3,x﹣1=,x﹣1=﹣.∴x1=+1,x2=1﹣(不合题意,舍去).∴该圆形喷水池的半径至少设计为:+1+1=(+2)米.答:该圆形喷水池的半径至少设计为(+2)米.【点评】本题考查二次函数的应用.根据题意设出符合题意的函数解析式是解决本题的关键.用到的知识点为:若二次函数有顶点坐标,设二次函数的解析式为:y=a(x﹣h)2+k(a≠0)计算比较简便.25.【分析】(1)由待定系数法即可求解;(2)求出OM中垂线表达式中的k值为﹣,得到直线OM中垂线的表达式,即可求解;(3)证明tan∠ACN=tan∠BAM,得到,整理得:mn=﹣1,进而求解.【解答】解:(1)将点A、M的坐标代入函数表达式得:,解得:,则抛物线的表达式为:y=x2﹣1;(2)由点O、M的坐标得,直线OM的表达式为:y=x,则OM中垂线表达式中的k值为﹣,OM的中点坐标为:(1,),则直线OM中垂线的表达式为:y=﹣(x﹣1)+,联立上式和抛物线的表达式得:x2﹣1=﹣(x﹣1)+,解得:x=,即点B的横坐标为:;(3)直线BC过定点(0,0),理由:过点A作x轴的平行线交过点B和y轴的平行线于点M,交过点C和y轴的平行线于点N,设点B(m,m2﹣1)、C(n,n2﹣1),∵BA⊥CA,∴∠BAM+∠CAN=90°,∵∠ACN+∠CAN=90°,∴∠ACN=∠BAM,∴tan∠ACN=tan∠BAM,即,即,整理得:mn=﹣1,由点B、C的坐标得,直线BC的表达式为:y=(m+n)(x﹣m)+m2﹣1=(m+n)x﹣mn ﹣1=(m+n)x,当x=0时,y=(m+n)x=0,即直线BC过定点(0,0).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、中垂线的性质,数据处理是本题的难点,题目有一定的综合性,难度适中.26.【分析】(1)取AB的中点为H,连接EH、HC,证明△BCF是等腰直角三角形,∠BCF =45°,得BF=CF=,再证明△AEB是等腰直角三角形,得∠ABE=45°,然后证明∠BAC=∠BEF,即可解决问题;(2)①过点D作DM⊥EF于点M,DK⊥AB于点K,证明△CMD是等腰直角三角形,得CD=DM,再证明△DBC∽△GBF,得∠BCD=∠BFG=90°,==,进而证明△BKD是等腰直角三角形,得DK=BK,然后证明DK=AB,求出DK=,即可解决问题;②过点H作HP⊥EF于点P,连接EH,由①得点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,即N与①中的D重合,由等腰直角三角形的性质得AE=,再由锐角三角函数定义得sin∠ENA=,设∠BEF=∠BAC=α,则∠HEF=α+45°,然后证明∠HEF=∠EAN,即可得出结论.【解答】解:(1)如图1,取AB的中点为H,连接EH、HC,设AC交BE于点N,∵AC=2BC=4,∴BC=2,∵∠F=90°,BF=CF,∴△BCF是等腰直角三角形,∠BCF=45°,∴BF=CF=BC=×2=,∵AC⊥BC,∴∠ACB=90°,∴∠ACE=180°﹣∠ACB﹣∠BCF=180°﹣90°﹣45°=45°,∵BE⊥AE,AE=BE,∴△AEB是等腰直角三角形,∴∠ABE=45°,∴∠ABN=∠NCE,∵∠ANB=∠CNE,∴∠BAC=∠BEF,∴tan∠BAC=tan∠BEF,∵tan∠BAC===,∴tan∠BEF==,∴EF=2BF=2,∴CE=EF﹣CF=2﹣=;(2)①如图2,过点D作DM⊥EF于点M,DK⊥AB于点K,则∠DMG=90°,由(1)得:∠ACE=45°,∴△CMD是等腰直角三角形,∴CD=DM,∵△BCF、△BGD都是等腰直角三角形,∴DG=BG,∠BGD=90°,∠DBG=∠CBF=45°,==,∴∠DBG﹣∠CBG=∠CBF﹣∠CBG,即∠DBC=∠GBF,=,∴△DBC∽△GBF,∴∠BCD=∠BFG=90°,==,∴CD=FG,∴DM=FG,∵∠BFE=90°,∴点G在EF上,∵DG∥AB,∠BGD=90°,∴∠GBA=90°,∵∠ABE=45°,∠DBG=45°,∴D在BE上,∵tan∠BAC=,∴=,∴AK=2DK,∴AD===DK,∵DK⊥AB,∠ABE=45°,∴△BKD是等腰直角三角形,∴DK=BK,∵AK=2DK,AB=AK+BK,∴DK=AB,在Rt△ABC中,由勾股定理得:AB===2,∴DK=AB=×2=,∴AD=DK=×=;②HG存在最小值,理由如下:如图3,过点H作HP⊥EF于点P,连接EH,由①得:点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,则N与①中的D重合,由①得:AN=,∵△AEB是等腰直角三角形,∴AE=AB=×2=,∵点H为AB的中点,∴EH=AB=×2=,∠BEH=45°,∴sin∠ENA===,设∠BEF=∠BAC=α,则∠HEF=α+45°,∵∠EAN=∠ABE+∠BAC=45°+α,∴∠HEF=∠EAN,在Rt△PEH中,PH=EH•sin∠HEF=EH•sin∠ETA=×=,∴HG的最小值为.【点评】本题是三角形综合题,考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、平行线的性质以及锐角三角函数定义等知识,本题综合性强,难度较大,熟练掌握等腰直角三角形的判定与性质和锐角三角函数定义,证明三角形相似是解题的关键,属于中考常考题型.。

四川省成都2024届高三一模数学(文)试题含解析

成都2023-2024年度上期高2024届一诊模拟数学试题(文)(答案在最后)(总分:150分,时间:120分钟)第Ⅰ卷(共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知集合{}{}2,231x A y y B x x ===∈-≤N ,则A B = ()A.{}0,1,2 B.{}1,2 C.{}1,2,3 D.[]12,【答案】B 【解析】【分析】根据指数函数值域与绝对值不等式得出集合A 与B ,即可根据集合的交集运算得出答案.【详解】{}{}20xA y y y y ===>,{}{}2311,2B x x =∈-≤=N ,故{}1,2A B = .故选:B.2.已知纯虚数z 满足34i z =+,则i z =()A.5±B.34i- C.43i-+ D.5i±【答案】A 【解析】【分析】利用纯虚数的概念和复数及模的运算即可得出结果.【详解】令i(0)z b b =≠,则i 34i 5z b ==+=,故5b =±,5i z =±,i 5z =±.故选:A3.某公司一种型号的产品近期销售情况如表:月份x23456销售额y (万元)15.116.317.017.218.4根据上表可得到回归直线方程 ˆ0.75y x a=+,据此估计,该公司7月份这种型号产品的销售额为()A.18.85万元B.19.3万元C.19.25万元D.19.05万元【答案】D 【解析】【分析】根据题意,由回归直线方程过样本点的中心,即可求得 a,然后代入计算,即可得到结果.【详解】由表中数据可得()12345645x =++++=,()115.116.31717.218.416.85y =++++=,因为回归直线过样本点的中心,所以 16.80.754a=⨯+,解得 13.8a =,所以回归直线方程为ˆ0.7513.8yx =+,则该公司7月份这种型号产品的销售额为0.75713.819.05y =⨯+=万元.故选:D4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体最长的棱长为()A.B.C.D.【答案】C 【解析】【分析】由三视图可知多面体是如图所示的三棱锥1ABC D -,然后计算各棱长比较即可.【详解】由三视图可知多面体是如图所示的三棱锥1ABC D -,由图可知2,3,AB BC AC ===,11AD CD ====1BD ==所以最长的棱长为故选:C5.下列说法正确的是()A.已知非零向量a ,b ,c ,若a c b c ⋅=⋅ ,则a b=B.设x ,R y ∈,则“224x y +≥”是“2x ≥且2y ≥”的充分不必要条件C.用秦九韶算法求这个多项式()54322341f x x x x x x =+-+-+的值,当2x =时,3v (第三次计算一次多项式)的值为14D.从装有2个红球和2个黑球的口袋内任取2个球,“至少有一个黑球”与“至少有一个红球”是两个互斥且不对立的事件【答案】C 【解析】【分析】A 选项:根据a c b c ⋅=⋅,有()0c a b ⋅-=r r r 可推出()c a b ⊥- ;B 选项:代入特定值验证命题的充分性与必要性;C 选项:应用秦九韶算法求解;D 选项:应用事件的互斥对立定义判断.【详解】对于A 选项,若a c b c ⋅=⋅ ,则()0c a b ⋅-=r r r ,所以()c a b ⊥- ,不能推出a b =,故A 错误;对于B 选项,2,2x y ≥≥成立时,必有224x y +≥成立,反之,取3,0x y ==,则224x y +≥成立,但2,2x y ≥≥不成立,因此“224x y +≥”是“2,2x y ≥≥”的必要不充分条件,故B 错误;对于选项C ,因为()54322341f x x x x x x =+-+-+,所以可以把多项式写成如下形式:()((((2)3)4)1)1f x x x x x x =+-+-+,按照从内而外的顺序,依次计算一次多项式当2x =的值:02v =,1224v =+=,24235v =⨯-=,352414v =⨯+=,故C 正确;对于选项D ,至少有一个黑球包含的基本事件有“一黑一红,两黑”,至少有一个红球包含的基本事件有“一黑一红,两红”,所以两事件不互斥,故D 错误;故选:C.6.已知2sin sin αβ-=2cos cos 1αβ-=,则()cos 22αβ-=()A.18-B.4C.14 D.78-【答案】D 【解析】【分析】先对两式进行平方,进而可求出()cos αβ-的值,根据二倍角公式求出结论.【详解】解:因为2sin sin αβ-=,2cos cos 1αβ-=,所以平方得,()22sin sin 3αβ-=,()22cos cos 1αβ-=,即224sin 4sin sin sin 3ααββ-+=,224cos 4cos cos cos 1ααββ-+=,两式相加可得44sin sin 4cos cos 14αβαβ--+=,即1cos cos sin sin 4αβαβ+=,故()1cos 4αβ-=,()()217cos 222cos 121168αβαβ-=--=⨯-=-.故选:D.7.公差为d 的等差数列{}n a 的首项为1a ,其前n 项和为n S ,若直线1y a x m =+与圆()221x y -+=的两个交点关于直线2x dy -=-对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前100项和等于()A.100101 B.99100C.9899D.1【答案】A 【解析】【分析】由题意可知,直线1y a x m =+与直线2x d y -=-垂直,且直线2x dy -=-过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项相消法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前项100和.【详解】因为直线1y a x m =+与圆()2221x y -+=的两个交点关于直线2x dy -=-对称,所以直线2x d y -=-经过圆心()2,0,且直线1y a x m =+与直线2x dy -=-垂直,所以20d -=且1112a -=-,即2d =,12a =.则()()12212n n n S n n n -=+⨯=+,()111111n S n n n n ==-++,所以数列1n S ⎧⎫⎨⎬⎩⎭的前100项和为11111110011223100101101101-+-++-=-= .故选:A.8.已知函数f (x )=2dax bx c++(a ,b ,c ,d ∈R )的图象如图所示,则()A.a >0,b >0,c <0,d <0B.a <0,b >0,c <0,d >0C.a <0,b >0,c >0,d >0D.a >0,b <0,c >0,d >0【答案】B 【解析】【分析】由图像可得ax 2+bx +c =0的两根为1,5,由根与系数的关系得-b a =6,ca=5,从而可确定系数的正负.【详解】由图可知,x ≠1且x ≠5,则ax 2+bx +c =0的两根为1,5,由根与系数的关系,得-b a =6,ca=5,∴a ,b 异号,a ,c 同号,排除A 、C ;又f (0)=dc<0,∴c ,d 异号,排除D ,只有B 项适合.故选:B【点睛】本题考查利用图像信息分析函数解析式中的系数问题,属于基础题.9.如图,棱长为2的正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,以下四个命题:①三棱锥1D BPC -的体积为定值;②11C P CB ⊥;③若P ABCD ∈平面,则三棱锥1C P D B -;④1C P DP +的最小值为.其中真命题有()A .①②③B.①②④C.①②③④D.③④【答案】A 【解析】【分析】由题可证1//AD 平面1BDC ,即当点P 在线段1AD 上运动时P d 恒为定值,故①正确;由题可证1CB ⊥平面11ABC D ,故②正确;三棱锥1C P D B -的外接球即为三棱锥1C ABD -的外接球,找到球心即可求半径,故③;旋转,将空间问题平面化,判断④错误.【详解】正方体1111ABCD A B C D -中,1111//,AB D C AB D C =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,又1AD ⊄平面1BDC ,1BC ⊂平面1BDC ,所以1//AD 平面1BDC ,即当点P 在线段1AD 上运动时P d 恒为定值,又11113D BPC P BD P C BDC V V S d --==⨯ ,1BDC S 也为定值,所以三棱锥1D BPC -的体积为定值,①正确;在正方体1111ABCD A B C D -中,AB ⊥平面11BCC B ,1CB ⊂平面11BCC B ,所以1⊥CB AB ,在正方形11BCC B 中:11CB BC ⊥,又1AB BC B =I ,,AB BC ⊂平面11ABC D ,所以1CB ⊥平面11ABC D ,又1C P ⊂平面11ABC D ,所以11C P CB ⊥,②正确;因为点P 在线段1AD 上运动,若P ABCD ∈平面,则点P 与点A 重合,则三棱锥1C P D B -的外接球即为三棱锥1C ABD -的外接球,又正方体的中心到三棱锥1C ABD -四个顶点距离相等,所以正方体的中心如图所示:将三角形1ADD 沿1AD 翻折90︒得到该图形,连接1DC 与1AD 相交于点P ,此时1C P DP +取得最小值1DC ,延长11C D ,过D 作11DE C E ⊥于点E ,在1Rt DEC 中,1DC ==,故1C P DP +的最小值为,④错误.故选:A.10.执行如图所示的程序框图,则输出N 的值与下面的哪个数最接近()A.410π9B.32.510π9⨯ C.3510π9⨯ D.3410π9⨯【答案】B 【解析】【分析】该程序框图相当于在[0]3,上任取10000对数对()(,)03,03x y x y ≤≤≤≤,其中满足221x y +≤的数对有N 对,分别计算出不等式组0303x y ≤≤⎧⎨≤≤⎩所表示的区域面积和不等式组2203031x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩所表示的区域面积,再利用几何概型的面积公式可求得的N 近似值.【详解】该程序框图相当于在[0]3,上任取10000对数对()(,)03,03x y x y ≤≤≤≤,其中满足221x y +≤的数对有N对,显然该问题是几何概型.不等式组0303x y ≤≤⎧⎨≤≤⎩所表示的区域面积为9,不等式组2203031x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩所表示的区域面积为π4,故4π4910N ≈,因此32.510π9N ⨯≈.故选:B.11.已知函数()()22ln ln 2ea af x x x x x =-+有三个零点1x 、2x 、3x 且123x x x <<,则312123ln 2ln ln x x x x x x ++的取值范围是()A.21,0e e ⎛⎫-⎪-⎝⎭B.21,0e ⎛⎫-⎪⎝⎭C.1,02e ⎛⎫-⎪⎝⎭D.2,0e ⎛⎫-⎪⎝⎭【答案】D【解析】【分析】令()0f x =,将原函数的零点转化为方程()220ln ln 2ea ax x x x -=+的根,令ln (0)x t x x =>,转化为202e a at t -+=,再令ln ()(0)x g x x x=>,得到使()t x g =时的根的个数,再分类讨论a 的范围与根的关系,结合函数与方程性质及零点的关系即可得.【详解】令()0f x =,得()220ln ln 2ea ax x x x -=+,整理得20ln ln (2e x a x a x x +=-,令ln (0)x t x x=>,原方程化为202e a at t -+=,设ln ()(0)x g x x x=>,则21ln ()xg x x -'=,令()0g x '=,解得e x =,且ln e 1(e)e eg ==,当()0,e x ∈时,()0g x '>,则()g x 单调递增,当()e,x ∞∈+时,()0g x '<,则()g x 单调递减,则()g x 在e x =时,有最大值为()1e eg =,则当()(),0t g x =∈-∞时,有一个解,当()10,e t g x ⎛⎫=∈ ⎪⎝⎭时,有两个解,当()10,e t g x ⎧⎫=∈⎨⎬⎩⎭时,有一个解,当()1,et g x ∞⎛⎫=∈+ ⎪⎝⎭时,无解,因为原方程为202ea at t -+=,由题可知有三个零点,因此方程有两个不等实根1t 、2t ,设12t t <,则有122at t +=,12e a t t =,若0a =,则120t t ==,故舍去,若0a >,则1202at t +=>,120e a t t =>,有120t t <<,即有110e t <<,21e t =,代入得2e a =-,矛盾,故舍去,若a<0则10t <,210et <<,111ln x t x =,32223ln ln x x t x x ==设()22e a a h t t t =-+,则()0010e h h ⎧<⎪⎨⎛⎫> ⎪⎪⎝⎭⎩,得到20e a -<<,所以31212123ln 2ln ln 222,0e x x x t t a x x x ⎛⎫++=+=∈- ⎪⎝⎭.故选:D.12.已知双曲线2213y x -=的右焦点为F,M ,直线MF 与抛物线24y x =的准线交于点N ,点P 为双曲线上一动点,且点P 在以MN 为直径的圆内,直线MP 与以MN 为直径的圆交于点,M Q ,则PM PQ ⋅的最大值为()A.80 B.81C.72D.71【答案】A 【解析】【分析】根据题意,由条件可得cos PM PQ PM PN MPN PM PN ⋅=-⋅⋅∠=-⋅,再由平面向量的数量积运算,结合图形,即可得到结果.【详解】由题可知,点Q 在以MN 为直径的圆上,故90NQP ∠=︒,连接FP 、NP ,如图所示,可得cos PM PQ PM PN MPN PM PN ⋅=-⋅⋅∠=-⋅,其中()()()()()22PM PN PF FM PF FN PF FM PF FM PF FM-⋅=-+⋅+=-+⋅-=-- 22281FM PF PF=-=-由图可知,当点P 运动到双曲线右顶点时,即当1PF =时,PM PQ ⋅取最大值为80.故选:A.第Ⅱ卷(共90分)二、填空题(本题共4道小题,每小题5分,共20分)13.抛物线214y x =的焦点坐标是______.【答案】(0,1)F 【解析】【详解】抛物线21y x 4=即2x 4y =,2,12pp ∴==,所以焦点坐标为()0,1.14.如图所示的茎叶图记录着甲、乙两支篮球是各6名球员某份比赛的得分数据(单位:分).若这两组数据的中位数相等,且平均值也相等,则x y +=______.【答案】3【解析】【分析】根据茎叶图进行数据分析,列方程求出x 、y 即可求解.【详解】由题意,甲的中位数为:1220162+=,故乙的中位数1910162y++=①7+121220203110266x x x ++++++=甲,8+91910252899=66y yx ++++++=乙,因为平均数相同,所以1029966x y++=②,由①②可得3y =,0x =,所以3x y +=,故答案为:3.15.在等腰直角三角形ABC 中,2AB =,M 为斜边BC 的中点,以M 为圆心,MA 为半径作 AC ,点P在线段BC 上,点Q 在 AC 上,则AP MQ + 的取值范围是________.【答案】⎡⎣【解析】【分析】建立平面直角坐标系,利用向量的坐标运算,表示出AP MQ +,将其转化为点)Qθθ到点(R a -的距离,结合图形分析即可.【详解】以M 为圆心,以,MA MC 为,x y 轴,建立如图所示的平面直角坐标系,由于2,AB AC ==所以BC BM CM ===,由于点Q 在 AC ,不妨设)Qθθ,π0,2θ⎡⎤∈⎢⎥⎣⎦,((),,0A P a,其中a ≤≤,()(),,,a a AP MQ θθθθ=+=++,所以AP MQ +=可看作是 AC 上的点)Q θθ到点(R a -的距离,由于点(R a -在线段y x =≤≤上运动,故当点(R a -运动到点(E 时,此时距离最大,为CE ==当点(R a -运动到点(A 时,此时距离最小为0,综上可知:AP MQ ⎡⎣+∈.故答案为:⎡⎣.16.已知函数()e e 2sin x x f x x -=--,不等式2(e )(2ln )0x f a x f x x -++≤对任意的x ∈(0,)+∞恒成立,则a 的最大值为________.【答案】1【解析】【分析】先根据奇函数的定义推出()f x 为R 上的奇函数.利用导数推出()f x 在(,)-∞+∞上单调递增.利用奇偶性和单调性将不等式化为22ln e x x x x a +≤-对任意的,()0x ∈+∞恒成立,再参变分离得a ≤2ln e (2ln )x x x x +-+对任意的,()0x ∈+∞恒成立.然后构造函数()e x h x =x -,利用导数求出其最小值可得结果.【详解】因为()()e e 2sin()e e 2sin ()x x x x f x x x f x -----=---=-+=-,所以()f x 为R 上的奇函数.又()e e 2cos 2cos 22cos 0x x f x x x x -'=+-≥-=-≥,所以()f x 在(,)-∞+∞上单调递增.不等式2(e )(2ln )0x f a x f x x -++≤对任意的,()0x ∈+∞恒成立,即2(2ln )(e )x f x x f x a +≤-对任意的,()0x ∈+∞恒成立,所以22ln e x x x x a +≤-对任意的,()0x ∈+∞恒成立,即2e x a x ≤-2ln 2ln (2ln )e e (2ln )e (2ln )x x x x x x x x x x ++=⋅-+=-+对任意的,()0x ∈+∞恒成立.令()e x h x =x -,所以()e 1x h x '=-,所以当0x >时,()0h x '>,()h x 在(0,)+∞上为增函数;当x 0<时,()0h x '<,()h x 在(,0)-∞上为减函数.所以0min ()(0)e 01h x h ==-=,设()2ln g x x x =+,显然()g x 为(0,)+∞上的增函数,因为1111(2ln 20e e e eg =+=-+<,(1)10g =>,所以存在01(1)e ,x ∈,使得000()2ln 0g x x x =+=,所以2ln min [e(2ln )]1x xx x +-+=,此时2ln 0x x +=,所以1a ≤,即a 的最大值为1.故答案为:1【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,(1)若[],x a b ∀∈,总有()f x k <成立,故()max f x k <;(2)若[],x a b ∀∈,总有()f x k >成立,故()min f x k >;(3)若[],x a b ∃∈,使得()f x k <成立,故()min f x k <;(4)若[],x a b ∃∈,使得()f x k >,故()max f x k >.三、解答题(本题共6道小题,共70分)17.已知向量()sin ,1a x =,),2b x =- ,函数()()f x a b a =+⋅.(1)若//a b ,求cos2x 的值;(2)a ,b ,c 为ABC 的内角A ,B ,C 的对边,2a =,且()12f A =,求ABC 面积的最大值.【答案】(1)17(2【解析】【分析】(1)根据向量共线定理可得tan 2x =-,再利用二倍角的余弦公式,结合齐次式的应用可得解;(2)根据向量数量积公式可得()f x ,进而可得A ,再利用余弦定理和基本不等式求bc 的最大值,最后用三角形面积公式即可得解.【小问1详解】//a b,2sin x x =-,则3tan 2x =-;222222222212cos sin 1tan 1cos2cos sin sin cos tan 171x x x x x x x x x ⎛⎫-- ⎪--⎝⎭=-====++⎛+ ⎝⎭.故1cos27x =.【小问2详解】()()()()2sin sin 121sin cos 1f x a b a x x x x x x=+⋅=++-⨯=-311π1sin 2cos 2sin 222262x x x ⎛⎫=--=-- ⎪⎝⎭,即()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭.又()12f A =,所以πsin 216A ⎛⎫-= ⎪⎝⎭,得ππ22π,Z 62A k k -=+∈,又()0,πA ∈,即π3A =,因为2a =,且由余弦定理2222cos a b c bc A =+-可知,22π42cos 3b c bc =+-,所以224b c bc +=+,由基本不等式可得2242b c bc bc +=+≥,所以4bc ≤,(当且仅当2b c ==时取等),故()max11sin 4222ABC S bc A ==⨯⨯=△ABC 18.如图甲是由直角梯形ABCD 和等边三角形CDE 组成的一个平面图形,其中//BC AD ,AB ⊥BC ,222AD BC AB ===,将CDE 沿CD 折起使点E 到达点P 的位置(如图乙),使二面角P CD B --为直二面角.(1)证明:AC PD ⊥;(2)求点B 到平面PAC 的距离.【答案】(1)证明见解析(2)4【解析】【分析】(1)作出辅助线,得到AC CD ⊥,由面面垂直得到线面垂直,得到线线垂直;(2)作出辅助线,证明出线面垂直,得到12P ABC V -=,求出各边长,利用等体积法求出点到平面的距离.【小问1详解】证明:取AD 中点为F ,连接AC ,CF ,由//BC AD 且2AD BC =得//AF BC 且AF BC =,∴四边形ABCF 为平行四边形,又BC AB =且AB ⊥BC ,∴平行四边形ABCF 为正方形,∴CF AF DF ==,故,CAF ACF FCD FDC ∠=∠∠=∠,所以1180902ACF FCD ∠+∠=⨯︒=︒,∴AC CD ⊥,又∵二面角P CD B --为直二面角,且平面PCD 平面ABCD CD =,AC ⊂平面ABCD ,∴AC ⊥平面PCD ,∵PD ⊂平面PCD ,∴AC PD ⊥.【小问2详解】过点C 作CE AP ⊥于点E ,过点P 作PH CD ⊥于点H ,连接AH .因为二面角P CD B --为直二面角,且平面PCD 平面ABCD CD =,PH PCD ⊂平面,所以PH ACD ⊥平面,所以11166(11)332212P ABC ABC V S PH -=⨯⨯=⨯⨯⨯⨯=.因为AC PC ==AC CD ⊥,在Rt ACH中,2AH ==,在Rt PAH △中,2AP ===,因为AC ⊥平面PCD ,PC ⊂平面PCD ,所以AC ⊥PC ,所以112PAC S AC PC =⋅= .令点B 到平面PCA 距离为d ,所以13P ABC B PCA PCA V V S d --==⋅,331214P ABCPCAV d S -⨯=== ,即点B 到平面PCA距离为4.19.某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业,产品主要应用于森林消防、物流运输、航空测绘、军事侦察等领域,获得市场和广大观众的一致好评,该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十分娴熟,才能发挥更大的作用.该公司分别收集了甲、乙两种类型无人运输机在5个不同的地点测试的某项指标数i x ,()1,2,3,4,5i y i =,数据如下表所示:地点1地点2地点3地点4地点5甲型无人运输机指标数x 24568乙型无人运输机指标数y34445(1)试求y 与x 间的相关系数r ,并利用r 说明y 与x 是否具有较强的线性相关关系;(若0.75r >,则线性相关程度很高)(2)从这5个地点中任抽2个地点,求抽到的这2个地点,甲型无人运输机指标数均高于乙型无人运输机指标数的概率.附:相关公式及数据:()()nx x y y i i r--=∑0.95≈.【答案】(1)0.95,y 与x 具有较强的线性相关关系(2)310.【解析】【分析】(1)利用相关系数的公式计算求解,判断即可.(2)由列举法并利用古典概型求概率【小问1详解】2456855x ++++==,3444545y ++++==,所以()()()()513110000316iii x x y y =--=-⨯-+-⨯+⨯++⨯=∑,由于()5219101920ii x x =-=++++=∑,()52110001i i y y =-=++++=∑相关系数()()50.95iix x y y r --=∑,因为0.75r >,所以y 与x 具有较强的线性相关关系.【小问2详解】将地点1,2,3,4,5分别记为A ,B ,C ,D ,E ,任抽2个地点的可能情况有(),A B ,(),A C ,(),A D ,(),A E ,(),B C ,(),B D ,(),B E ,(),C D ,(),C E ,(),D E ,共10种情况,其中在地点3,4,5,甲型无人运输机指标数均高于乙型无人运输机指标数,即(),C D ,(),C E ,(),D E 3种情况,故所求概率为310.20.已知函数()2cos sin 1f x ax x x x =-+-.(1)若1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若1a =时,求函数()f x 的零点个数;(3)若对于任意π0,2x ⎡⎤∈⎢⎥⎣⎦,()12≥-f x a 恒成立,求a 的取值范围.【答案】20.1y =-21.两个22.[)1,∞+【解析】【分析】(1)当1a =,()2cos sin 1f x x x x x =-+-,然后即可求解;(2)求出导数()()2sin R f x x x x =-'∈,,然后根据()f x 的单调性并结合零点存在定理,即可求解.(3)利用(2)中结论,即证()22cos sin 20x a x x x +-+-≥恒成立,从而可求解.【小问1详解】当1a =时,函数()2cos sin 1f x x x x x =-+-,因为()01f =-,所以切点为()0,1-,由()()2cos sin cos 2sin R f x x x x x x x x x =-+++'=∈,,得()00f '=,所以曲线在点()()0,0f 处的切线斜率为0,所以曲线()y f x =在点()()0,0f 处的切线方程为1y =-.【小问2详解】由(1)可知()()2cos sin cos 2sin R f x x x x x x x x x =-+++'=∈,,因为[]sin 1,1x ∈-,所以2sin 0x +>,令()0f x '=,则0x =,当()0x ∈-∞,时,()0f x '<,()f x 单调递减;当()0x ∈+∞,时,()0f x ¢>,()f x 单调递增;又因为()010f =-<,22πππ0,202424f f π⎛⎫⎛⎫=>-=-> ⎪ ⎪⎝⎭⎝⎭,所以,由零点存在定理可知,存在唯一的1π,02x ⎛⎫∈-⎪⎝⎭使得()10f x =,存在唯一的2π0,2x ⎛⎫∈ ⎪⎝⎭使得()20f x =.故函数()f x 有且仅有两个零点.【小问3详解】因为π0,2x ⎡⎤∈⎢⎥⎣⎦,当0x =时,由(0)112f a =-≥-得1a ≥,下面证明:当1a ≥时,对于任意π0,2x ⎡⎤∈⎢⎥⎣⎦,()12≥-f x a 恒成立,即证2cos sin 112ax x x x a -+-≥-,即证()2cos sin 220x a x x x --++≥;而当1a ≥时,()222cos sin 2cos sin 2c si 2s 2o n x a x x x x x x x x x x x -+-≥-+-=-+++,由(2)知,2cos sin 0x x x x -+≥;所以1a ≥时,()2cos sin 220x a x x x --++≥恒成立;综上所述,[)1,a ∞∈+.21.已知()()2,0,2,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为(1)求点P 的轨迹Γ的方程;(2)过C 作不平行于坐标轴的直线交Γ于D ,E 两点,若DM x ⊥轴于点M ,EN x ⊥轴于点N ,直线DN 与EM 交于点Q .①求证:点Q 在一条定直线上,并求此定直线;②求DEQ 面积的最大值.【答案】(1)(22162x y x +=≠(2)①证明见解析,3x =;②4【解析】【分析】(1)根据椭圆的定义求解即可;(2)①求出直线DN 与EM 方程,得到Q 点坐标,即可判定;②将面积表示出来,然后换元,利用基本不等式求最值.【小问1详解】因为P 为ABC 的重心,且边,AC AB 上的两条中线长度之和为6,所以23PB PC BC +=⨯>,故由椭圆的定义可知P 的轨迹Γ是以()()2,0,2,0B C -为焦点的椭圆(不包括长轴的端点),且2a c ==,所以b =,所以P 的轨迹Γ的方程为(22162x y x +=≠.【小问2详解】①依题意,设直线DE 方程为()20x my m =+≠.联立222162x my x y =+⎧⎪⎨+=⎪⎩,得()223420m y my ++-=,易知()()22216832410m m m ∆=++=+>设()11,D x y ,()22,E x y ,则12243m y y m +=-+,12223y y m ⋅=-+.因为DM x ⊥轴,EN x ⊥轴,所以()1,0M x ,()2,0N x .所以直线DN :()1212y y x x x x =--,直线EM :()2121y y x x x x =--,联立解得()()122112211212121222223Q my y my y x y x y my y x y y y y y y ++++===+=+++.从而点Q 在定直线3x =上.②因为1212121113222DEQ Q S EN x x y x y my y =⋅-=⋅-=- ,又121212my y y y =+,则1211221122423DEQ y y S y y y m +=-=-=+,1t=>,则2122224DEQ t S t t t==≤++ ,当且仅当2t t=,即1m =±时,等号成立,故DEQ 面积的最大值为34.四/选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为22232x t t y t t ⎧=--⎨=--⎩(t 为参数且1t ≠-),1C 分别与x 轴、y 轴交于A 、B 两点.以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为221613cos ρθ=+.(1)1C 与坐标轴交于A ,B 两点,求AB ;(2)求2C 上的点P 到直线AB 距离的范围.【答案】(1)5(2)413120,5⎡⎤⎢⎥⎣⎦【解析】【分析】(1)取0x =得到()0,4B ,取0y =得到()30A -,,再计算AB 得到答案.(2)根据极坐标方程变换得到普通方程为221416x y +=,确定直线方程,设()2cos ,4sin P θθ,计算点到直线的距离,根据三角函数的有界性得到范围.【小问1详解】令0x =,则2230t t --=,解得3t =,或1t =-(舍),则23324y =--=,即()0,4B ,令0y =,则220t t --=,解得2t =,或1t =-(舍),则233222x --=⨯=-,即()30A -,,故5AB ==.【小问2详解】曲线2C 的极坐标方程为221613cos ρθ=+,即()()22sin 4cos 16ρθρθ+=,由cos x ρθ=,sin y ρθ=得2C 的普通方程为221416x y +=,设2C 上点的坐标为()2cos ,4sin P θθ,直线AB 的方程为134x y -+=,即43120x y -+=,令2C 上的点P 到直线AB 的距离为d ,则8cos 12sin 125d θθ-+==所以2C 上的点P 到直线AB的距离为120,5⎡⎤⎢⎥⎣⎦.[选修4-5:不等式选讲]23.已知函数()94(0)41f x x a x a a =++->+.(1)当12a =时,求不等式()8f x ≤的解集;(2)若()f x 的最小值为m ,求()2211681m a a ++++的最小值.【答案】(1)79,22⎡⎤-⎢⎥⎣⎦(2)18【解析】【分析】(1)分情况讨论化成代数不等式求解;(2)用a b a b +≥±进行转化,求()f x 的最小值m ,再结合基本不等式求()2211681m a a ++++的最小值.【详解】(1)当12a =时,不等式()8f x ≤可化为238x x ++-≤,∴2128x x ≤-⎧⎨-≤⎩,或2358x -⎧⎨≤⎩<<,或3218x x ≥⎧⎨-≤⎩,解得722x -≤≤-或23x -<<或932x ≤≤求并集得:7922x -≤≤,所以原不等式的解集为79,22⎡⎤-⎢⎥⎣⎦.(2)因为()999444414141f x x a x x a x a a a a =++-≥+-+=++++,当且仅当()94041x a x a ⎛⎫+⋅-≤ ⎪+⎝⎭时,即9441a x a -≤≤+时取到最小值,又因为0a >,所以()min 9441f x a a =++,所以9441m a a =++,所以()()2222229941241811681811411614m a a a a a a a a ⎛⎫++++=+⎭⎛⎫++=⎝+++++ ⎪++ ⎪⎝⎭,因为()22924118181841a a ⎛⎫+++≥+= ⎪+⎝⎭,当且仅当()22924141a a ⎛⎫+= ⎪+⎝⎭时,即41a =-时,。

2023年四川省成都市青羊区一诊 数学 试题(学生版+解析版)

2023年四川省成都市青羊区一诊数学试题A 卷(共100分〉第I卷〈选择题,共30分〉一、选择题〈本大题共8个小题,每小题4分,共32分〉l.如图是由5个相同的正方体搭成的几何休,这个几何体的左视图是(A日B.DcI I I I 1°Al2.下列方粮是一元二次方程的是(〉A.x 2+x -y =OB.a.x 2+2x -3=0C.x 2+2x+5=x(x-1) D.x 2-l=O3.下列各式计算正确的是〈)A.(x+y/=x 2+y2 B.(x 2)3=x 电C.x i 泸x5D.4x 2-y2 = (4x+ y)(4x-y)4.在一个不透明的口袋中浆有2个红球和!若干个臼球,官们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有()A.5个 B.6个C. 7个D.8个5.若点A(-3,只)• B(l ,川,C(3,为)在反比例函数y =三的图象上,则Y 1、Y 2、灼的大小关系是λ’()A.Y 1 >Y 2 >)'3B.Y 2 >)'3 > Y 1C.Y 1 > Y 3 > Y 2D.Y3>Y 2 > Y 16.如图,点P在A ABC 的边AC 上,要判断A A8PV>6.AC8,添加一个条件,不正确的是()Bc/气pAA.L三ABP=ζCPB=ζABCC.A P AB AB AC一一=一- D.一一=一-AB AC BP CB7.如图,小红居住的小区内有一条笔茧的小路,小路的正中间有一路灯,晚上小红囱A处径直走到8处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是(〉纤夕弓/A. B.8.下列说法中,正确的是〈)A.有一个角是蕴角的平行四边形是正万形B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形c.·s。

一组对边平行,另一组对:ill相等的四边形是平行四边形第E卷(非选择题,共68分〉二、填空题(本大题共5个小题,每小题4分,共20分〉, (5)9.比较大小: 3 +l 一.(;填“〉’\气”,或“=”〉守v2D.’Sk10.如囱,已知A为反比例函数y=一(x<O)的图像上一ι过点A作AB.ly轴,垂足为B若...OABx的商积为3,则k的值为一一-川如图,在缸4B C中,LACB=90。

四川省成都市2012届高三第三次诊断性检测(数学文)

5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

"6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

"7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

1."噢,居然有土龙肉,给我一块!"2.老人们都笑了,自巨石上起身。

而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

四川省成都市2012届高三第三次诊断性检测(数学文)(2012.05)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第II 卷(非选择题)3 至 4-页,共4页,满分150分,考试时间120分钟。

注意事项:1. 答题前,务必将自己的姓名、准考诬号填写在答题卡规定的位置上。

2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用擦橡皮擦干净后,再选涂其它答案标号。

3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4. 所有题目必须在答题卡上作答,在试题卷上答题无效。

5. 考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)参考公式:如果事件A ,B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A ,B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p , 343V R π=那么n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p k k n -=-=—、选择题:(本大题共12小题,每小题5分,共60分)在每小题给出的四个选项中,有且只有一项是符合题目要求的.(1) 不等式|x —l |〉2的解集是5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

2023年四川省成都市锦江区九年级一诊数学试题(含答案解析)

2023年四川省成都市锦江区九年级一诊数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,是一个由长方体截去一部分后得到的几何体,其主视图是()A .B .C .D .2.下列函数中,y 是x 的反比例函数的是()A .4y x=B .1y x =+C .3x y =D .2y x =3.若关于x 的一元二次方程x 2﹣2x +m =0有一个解为x =﹣1,则另一个解为()A .1B .﹣3C .3D .44.如图所示的两个四边形相似,则下列结论不正确的是()A .a =B .2m n =C .2x =D .60α∠=︒5.如图,已知在平面直角坐标系中,四边形ABCD 是菱形,其中点B 的坐标是()62,,点D 的坐标是()02,,点A 在x 轴上,则点C 的坐标是()A .()32,B .()33,C .()34,D .()24,6.一个不透明的箱子里共装有m 个球,其中红球5个,这些球除颜色不同外其余都相同.每次搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验发现,摸到红球的频率稳定在0.2附近,则可以估算出m 的值为()A .1B .5C .20D .257.如图,在方格纸上,以点O 为位似中心,把线段AB 缩小到原来的12,则点A 的对应点为()A .点D 或点GB .点E 或点FC .点D 或点F D .点E 或点G8.如图,在矩形ABCD 中,6AB =,8BC =,对角线AC ,BD 相交于点O ,点E ,F 分别是AO ,AD 的中点,连接EF ,则AEF △的周长为()A .6B .7C .8D .9二、填空题9.若2ba=则b a b +=_____.10.关于x 的一元二次方程2(1)1x a -=+有两个不相等的实数根,则a 的取值范围是__________.11.已知点11(,)A x y ,22(,)B x y 都在反比例函数3y x=的图象上,且120x x <<,则1y 和2y 的大小关系为__________.12.小颖将能够活动的菱形学具活动成为图1所示形状,并测得5AC =,=60B ∠︒.接着,她又将这个学其活动成为图2所示正方形,此时A C ''的长为__________.13.如图,在ABC 中,AB =C 为圆心,以适当的长为半径作弧,交CB 于点D ,交CA 于点E ,连接DE ;②以点B 为圆心,以CD 长为半径作弧,交BA 于点F ;③以点F 为圆心,以DE 的长为半径作弧,在ABC 内与前一条弧相交于点G ;④连接BG 并延长交AC 于点H ,若H 恰好为AC 的中点,则AC 的长为__________.三、解答题14.(1()11233-⎛⎫--- ⎪⎝⎭;(2)解方程:()21310x x -++=.15.中国共产党第二十次全国代表大会于10月16日至22日在北京举行,这是一次具有里程碑意义的大会,必将对中国和世界产生深远影响.某校积极组织学生学习二十大相关会议精神,并组织了二十大知识问答赛,将比赛结果分为A ,B ,C ,D 四个等级,根据如下不完整的统计图解答下列问题:(1)求该校参加知识问答赛的学生人数;(2)求扇形统计图中C 级所对应的圆心角的度数;(3)现准备从结果为A 级的4人(两男两女)中随机抽取两名同学参加二十大宣讲,请用列表或画树状图的方法,求恰好抽到一名男生和一名女生参加宣讲活动的概率.16.【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内:反射光线和入射光线分别位于法线两例;入射角i 等于反射角r .这就是光的反射定律.【问题解决】如图2,小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙,木板和平面镜,手电筒的灯泡在点G 处,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点E 到地面的高度 3.5m DE =,点F 到地面的高度 1.5m CF =,灯泡到木板的水平距离 5.4m AC =,木板到墙的水平距离为4m CD =.图中A ,B ,C ,D 在同一条直线上.(1)求BC 的长;(2)求灯泡到地面的高度AG .17.如图1,ABCD Y 的各内角的平分线分别相交于点E ,F ,G ,H .(1)求证:四边形EFGH 为矩形;(2)如图2,当ABCD Y 为矩形时,①求证:四边形EFGH 为正方形;②若10AD =,四边形EFGH 的面积为8,求AB 的长.18.如图1,已知反比例函数(0)ky k x=≠的图象与一次函数1y x =-的图象相交于A (2,a ),B两点.(1)求反比例函数的表达式及A ,B 两点的坐标;(2)M 是x 轴上一点,N 是y 轴上一点,若以A ,B ,M ,N 为顶点的四边形是以AB 为边的平行四边形,求点M 的坐标;(3)如图2,反比例函数ky x=的图象上有P ,Q 两点,点P 的横坐标为(2)m m >,点Q 的横坐标与点P 的横坐标互为相反数,连接AP ,AQ ,BP ,BQ .若ABQ 的面积是ABP 的面积的3倍,求m 的值.四、填空题19.已知一元二次方程2320230x x --=的两个根为12x x ,,则1212x x x x +的值为__________.20.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.21.如图,在平面直角坐标系xOy 中,AOB 的顶点A 在函数4(0)y x x=>的图象上,顶点B 在x 轴正半轴上,边AO ,AB 分别交的数1(0)y x x=>,4(0)y x x=>的图象于点M ,N .连接MN ,若MN x ∥轴,则AOB 的面积为__________.22.如图,在矩形ABCD 中,6AB =,12BC =,点P 是DC 上一点,且5DP =,点E ,F 分别是AD BC ,上的动点,连接EF AP ,,始终满足EF AP ⊥.连接AF PF PE ,,,记四边形AEPF 的面积为1S ,记ABF △的面积为2S ,记FCP 的面积为3S ,记EDP △的面积为4S ,则1423S S S S =++__________.23.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,C 的坐标分别为(1,1)A -,(1,1)C -.已知线段MN 的端点M ,N 的坐标分别为(3,3)M ,73(,)22N ,平移线段MN ,使得平移后的线段的两个端点均落在正方形ABCD 的边上,此时正方形ABCD 被该线段分为两部分,其中三角形部分的面积为__________;已知线段PQ 的端点坐标分别为11(,)P x y ,22(,)Q x y ,且12x x ≠,12y y ≠,2PQ =.平移线段PQ ,使得平移后的线段P Q ''的两个端点均落在正方形ABCD 的边上,且线段P Q ''将正方形的ABCD 面积分为6:19两部分,取P Q ''的中点H ,连接OH ,则OH 的长为__________.五、解答题24.电影《长津湖》是一部讲述抗美援朝题材影片,该片以朝鲜长津湖战役为背景,讲述一个志愿军连队在极寒严酷环境下坚守阵地奋勇杀敌、为战役胜利作出重要贡献的故事,2021年8月首映,深受人们的喜爱.2022年清明节来临之际某电影院开展“清明祭英烈共铸中华魂”系列活动,对团体购买该电影票实行优惠,决定在原定零售票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200元.(1)求每张零售电影票的原定价;(2)为了弘扬爱国主义精神,该影院决定对网上购票的个人也采取优惠,原定零售票价经过连续两次降价后票价为每张32.4元,求原定零售票价平均每次的下降率.25.已知在平面直角坐标系xOy 中,点(1,)a ,1(2,2a -在反比例函数k y x =的图像上.(1)求k 的值;(2)将反比例函数ky x=的图像中x 轴下方部分沿x 轴翻折,其余部分保持不变,得到新的函数图像如图1所示,新函数记为函数F .①如图2,直线y x b =+与函数F 的图像交于A ,B 两点,点A 横坐标为1x ,点B 横坐标为2x ,且120x x <<,124x x =.点P 在y 轴上,连接AP ,BP .当AP BP +最小时,求点P 的坐标;②已知一次函数2(0)y nx n n =-+≠)的图像与函数F 的图像有三个不同的交点,直接写出n 的取值范围.26.【问题背景】如图1,在矩形ABCD 中,点M ,N 分别在边BC ,AD 上,且1BM MC m=,连接BN ,点P 在BN 上,连接PM 并延长至点Q ,使1PM MQ m=,连接CQ .【尝试初探】求证:CQ BN ∥;【深入探究】若AN BM AB ==,2m =,点P 为BN 中点,连接NC ,NQ ,求证:NC NQ =;【拓展延伸】如图2,在正方形ABCD 中,点P 为对角线BD 上一点,连接PC 并延长至点Q ,使1(1)PC n QC n =>,连接DQ ,若22222(1)n BP DQ n AB +=+,求BPBD的值(用含n 的代数式表示)参考答案:1.C【分析】从正面看,确定主视图即可.【详解】解:几何体的主视图为:故选C .【点睛】本题考查三视图.熟练掌握三视图的确定方法,是解题的关键.注意,存在看不见的用虚线表示.2.A【分析】根据反比例函数的定义,即可判断.【详解】解:A 、4y x=,y 是x 的反比例函数,故A 符合题意;B 、1y x =+,y 不是x 的反比例函数,故B 不符合题意;C 、3xy =,y 不是x 的反比例函数,故C 不符合题意;D 、2y x =,y 不是x 的反比例函数,故D 不符合题意;故选:A .【点睛】本题考查了反比例函数的定义,熟练掌握正比例函数的定义是解题的关键,一般地,形如()0ky k x=≠且k 是常数的函数叫做反比例函数.3.C【分析】设方程的另一个解为x 1,根据两根之和等于﹣ba,即可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3,故选C .【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.4.B【分析】由相似三角形的性质:对应角相等,对应边成比例,即可求解.【详解】因为两个图形相似:244m x a n ===解得:a =A 选项正确,不符合题意;2n m =B 选项错误,符合题意;2x =C 选项正确,不符合题意;360904516560α∠=︒-︒-︒-︒=︒,D 选项正确,不符合题意;故选:B .【点睛】本题考查了相似多边形的性质;根据性质求出对应边和对应角是解题的关键.5.C【分析】首先连接AC 、BD 相交于点E ,由在菱形ABCD 中,点A 在x 轴上,点B 的坐标为()62,,点D 的坐标为()02,,可求得点E 的坐标,继而求得答案.【详解】解:连接AC ,BD 相交于点E ,四边形ABCD 是菱形,AE CE ∴=,BE DE =,AC BD ⊥,点A 在x 轴上,点B 的坐标为()62,,点D 的坐标为()02,,6BD =∴,BD y ⊥轴,2AE ∴=,13242DE BD AC AE ∴====,,∴点C 的坐标为:()34,.故选:C .【点睛】本题考查了菱形的性质以及坐标与图形的性质,解题的关键是注意菱形的对角线互相平分且垂直.6.D【分析】用红球的数量除以红球的频率即可.【详解】解:50.225÷=(个),所以可以估算出m的值为25,故选:D.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.7.A【分析】作射线AO,根据位似中心的概念、线段的位似比解答即可.【详解】解:作射线AO,,射线AO经过点D和点G,且1 2OD OA=,12OG OA=,∴点A的对应点为点D或点G,故选:A.【点睛】本题考查位似变换,正确记忆位似图形的特征是解题关键.8.D【分析】利用勾股定理算出AC 的长度,根据矩形的性质即可得出OA OD =的长度,再根据中位线的性质求出周长即可.【详解】在矩形ABCD 中,6AB =,8BC =,10AC =,对角线AC ,BD 相交于点O ,152OA OD AC ===,点E ,F 分别是AO ,AD 的中点,EF ∴是AOD △的中位线,1522EF OD ∴==,1522AE OA ∴==,142AF AD ==,AEF ∴ 的周长为:554922AE AF EF ++=++=,故选:D .【点睛】本题考查矩形的性质和中位线的应用,关键在于根据矩形的性质转变边长,中位线的性质求出边长.9.23【分析】将2b a=变形为2b a =,然后代入b a b +计算即可.【详解】解:∵2b a =∴2b a=将2b a =代入b a b+得2223a a a =+故答案为:23【点睛】本题考查了已知式子值,求代数式值,分式化简求值,熟练分式化简求值是解题关键.【分析】先将一元二次方程2(1)1x a -=+可转化为一般形式220x x a --=,再根据一元二次方程解的根的判别式的意义得到()4410a ∆=-⨯⨯->,然后求出a 的取值范围.【详解】一元二次方程2(1)1x a -=+可转化为220x x a --=,∵关于x 的一元二次方程2(1)1x a -=+有两个不相等的实数根∴()4410a ∆=-⨯⨯->∴440a +>∴1a >-【点睛】本题考查一元二次方程解的根的判别式的意义,解题的关键是掌握当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.11.12y y >##21y y <【分析】根据反比例函数的图象和性质进行判断即可,由于点()11,A x y ,()22,B x y 都在反比例函数3y x=的图象上,若120x x <<,在第三象限,y 随x 的增大而减小,进而得出答案.【详解】解:由于点()11,A x y ,()22,B x y 都在反比例函数3y x =的图象上,且120x x <<,由在第三象限内,y 随x 的增大而减小可得,12y y >.故答案为:12y y >或21y y <.【点睛】本题考查反比例函数的图象和性质,理解并掌握当0k >时,在每个象限内y 随x 的增大而减小的性质是正确解答的关键.12.【分析】根据菱形的性质和=60B ∠︒,求出AB BC =的长度,然后再运用勾股定理求解即可.【详解】由题意可知ABCD 是菱形,AB BC ∴==60B ∠︒ ,ABC ∴ 是等边三角形,5AC =A B C D ''''是正方形,5A B B C ''''∴==A C ='='故答案为:【点睛】本题考查了菱形、正方形的、等边三角形的性质以及勾股定理;灵活运用性质正确计算是解题的关键.13.【分析】连接FG ,如图所示,先证明()SSS BFG CDE △≌△得到ABH ACB =∠∠,进一步证明ABH ACB ∽得到AH AB AB AC=,再由H 是AC 的中点,得到2AC AH =,由此即可得到答案.【详解】解:连接FG ,如图所示,由题意得BF BG CD CE FG DE ====,,∴()SSS BFG CDE △≌△,∴ABH ACB =∠∠,又∵A A ∠=∠,∴ABH ACB ∽,∴AH AB AB AC =,∵H 是AC 的中点,∴2AC AH =,∴222AH AB =,∴AH =,∴2AC AH ==故答案为:【点睛】本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,证明()SSS BFG CDE △≌△得到ABH ACB =∠∠,进一步证明ABH ACB ∽是解题的关键.14.(14;(2)11x =-,22x =-【分析】(1)根据实数的混合计算法则,零指数幂和负整数指数幂的计算法则求解即可;(2)先把方程化为一般式,然后利用因式分解法解方程即可.【详解】解:(1)原式2321=-+-4=;(2)∵()21310x x -++=,∴21330x x -++=,∴2320x x ++=,∴()()120x x ++=,∴10x +=或20x +=,解得11x =-,22x =-.【点睛】本题主要考查了实数的混合计算,解一元二次方程,零指数幂和负整数指数幂,正确计算是解题的关键.15.(1)40,(2)108︒,(3)23.【分析】(1)根据A 在频数统计图数据除以扇形统计图中的数据即可;(2)根据(1)和频数统计图求出C 级人数,然后用360︒乘以C 的总人数所占的比例即可;(3)画树状图,求出所有可能和符合条件数,根据概率公式求解即可.【详解】(1)解:总人数为:410%40÷=(人);(2)C 级人数为:40416812---=(人),C 级所对应的圆心角的度数为:1236010840︒⨯=︒;(3)画树状图如下:从两男两女中随机抽取两名同学共有12种可能,恰好抽到一名男生和一名女生有8种可能,恰好抽到一名男生和一名女生的概率为:82123P ==.【点睛】本题考查了统计和随机抽样的概率;根据题意求出总人数、正确画出树状图并按照公式求解是解题的关键.16.(1)3m(2)1.2m .【分析】(1)先证明BFC BED ∽ ,再利用相似三角形的性质得出BC FC BD DE =,代入数据即可求BC 的长;(2)先证明BGA BFC ∽ ,再利用相似三角形的性质得出AG FC AB BC=,代入数据即可求AG 的长.【详解】(1)解:(1)由题意可得:FC DE ∥,则BFC BED ∽ ,∴BC FC BD DE =,∴ 1.54 3.5BC BC =+,解得:3BC =,答:BC 的长为3m ;(2)解:∵ 5.4m AC =,∴()5.43 2.4m AB =-=,∵光在镜面反射中的入射角等于反射角,∴FBC GBA ∠=∠,又∵FCB GAB ∠=∠,∴BGA BFC ∽ ,∴AG FC AB BC =,∴ 1.52.43AG =,解得: 1.2m AG =,答:灯泡到地面的高度AG 为1.2m .【点睛】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.17.(1)证明见解析(2)①证明见解析;②6【分析】(1)根据平行四边形的邻角互补,以及角平分线平分角,得到四边形EFGH 的四个内角均为90︒,即可得证;(2)①由(1)可知,四边形EFGH 为矩形,根据矩形的性质以及角平分线平分角,得到,,,ABE AFD CDG BHC 均为等腰直角三角形,进而推出EH HG =,得到四边形EFGH 为正方形;②根据正方形的面积为8,得到正方形的边长为的性质,求出AF 的长,进而求出AE 的长,再利用勾股定理和等腰三角形的性质,求出AB 的长.【详解】(1)解:∵四边形ABCD 为平行四边形,∴180,180,ABC DAB ABC BCD ∠+∠=︒∠+∠=︒180,180BCD CDA CDA DAB ∠+∠=︒∠+∠=︒,∵ABCD Y 的各内角的平分线分别相交于点E ,F ,G ,H ,∴()1902EAB EBA DAB ABC ∠+∠=∠+∠=︒,即:90AEB ∠=︒,同理可得:90AFD BHC CGD ∠=∠=∠=︒,∵90AEB ∠=︒,∴90HEF ∠=︒,∴四边形EFGH 为矩形;(2)解:①同(1)法可得:四边形EFGH 为矩形;∵ABCD Y 为矩形,∴45EAB EBA ∠=∠=︒,∴ABE 为等腰直角三角形,∴AE EB ==,同理可得:,22AF DF AD BH CH BC ====,∵AD BC =,∴BH AF =,∴BH BE AF AE -=-,即:EH EF =,又∵四边形EFGH 为矩形,∴四边形EFGH 为正方形;②由①得:2AF AD ==∵四边形EFGH 的面积为8,∴28EF =,∴EF =∴AE AF EF =-=∵2AE AB ==,∴6AB =.【点睛】本题考查平行四边形的性质,矩形的判定和性质,正方形的性质,等腰三角形的判定和性质,勾股定理.熟练掌握平行四边形的邻角互补,是解题的关键.18.(1)2y x=,A (2,1),()1,2B --(2)()3,0或()3,0-(3)1m =【分析】(1)将A (2,a ),代入一次函数解析式,求出a 值,再求出反比例函数的解析式,联立两个解析式,求出B 点坐标;(2)根据平行四边形的性质,对边平行且相等,利用平移思想进行求解即可;(3)分别用含m 的式子表示出ABQ ,ABP 的面积,再利用ABQ 的面积是ABP 的面积的3倍,列式计算即可.【详解】(1)解:反比例函数(0)k y k x=≠的图象与一次函数1y x =-的图象相交于A (2,a ),B 两点,将A (2,a ),代入1y x =-,得:211a =-=,∴A (2,1),∴212k =⨯=,∴2y x =,联立,得:12y x y x =-⎧⎪⎨=⎪⎩,整理,得:220x x --=,解得:121,2x x =-=,当=1x -时,112y =--=-,∴()1,2B --;(2)解:设(),0M x ,()0,N y ,∵A (2,1),()1,2B --,∴点B 是由点A 先向左平移3个单位,再向下平移3个单位得到的;∵以A ,B ,M ,N 为顶点的四边形是以AB 为边的平行四边形,①将点(),0M x 先向左平移3个单位,再向下平移3个单位,得到()0,N y ,则:30x -=,即:3x =,033y =-=-,∴()3,0M ;②将点()0,N y 先向左平移3个单位,再向下平移3个单位,得到(),0M x ,则:033x =-=-,30y -=,即:3y =,∴()3,0M -;综上:当M 点坐标为()3,0或()3,0-时,以A ,B ,M ,N 为顶点的四边形是以AB 为边的平行四边形;(3)如图,过点B 作BE x ⊥轴交AQ 于点E ,过点A 作AF x ⊥轴交BP 于点F ,由题意,可知:22(,),(,)P m Q m m m--,设直线AQ 的解析式为()0y kx b k =+≠,将()2,1A ,2(,)Q m m--代入()0y kx b k =+≠,则:12,2k b mk b m =+⎧⎪⎨-=-+⎪⎩解得:12k m m b m ⎧=⎪⎪⎨-⎪=⎪⎩则直线AQ 的解析式为12m y x m m -=+当1x =时,123(1)m m y m m m --=⨯-+=,则3(1,m E m --;∵()1,2B --∴333(2)m m BE m m--=--=,∴11()()22ABQ EBA EBQ B Q A B S S S BE x x BE x x =+=⨯-+⨯- 1()2A Q BE x x =⨯-133(2)2m m m-=⨯⨯+23362m m m+-=;设直线BP 的解析式为()0y ax z a =+≠将()1,2B --,2(,)P m m代入()0y ax z a =+≠得:2,2a z ma z m -=-+⎧⎪⎨=+⎪⎩解得:222a m m z m ⎧=⎪⎪⎨-⎪=⎪⎩则直线BP 的解析式为222m y x m m -=+当2x =时,222622,m m y m m m --=⨯+=则:622,m F m -⎛⎫ ⎪⎝⎭,∵()2,1A ,∴62361m m AF m m--=-=,11()()22ABP AFB APP A B P A S S S AF x x AF x x ∆∆∆=+=⨯-+⨯-1()2P B AF x x =⨯-136(1)2m m m-=⨯⨯+23362m m m--=;∵3ABQ ABP S S = ,∴22336336322m m m m m m+---=⨯,解得:11m =21m =,又∵m>2,∴1m =【点睛】本题考查反比例函数与一次函数的综合应用,反比例函数与几何的综合应用.正确的求出函数解析式,利用数形结合,分类讨论的思想进行求解,是解题的关键.19.32023-【分析】根据一元二次方程根与系数的关系求出1212x x x x +,的值即可得到答案.【详解】解:∵一元二次方程2320230x x --=的两个根为12x x ,,∴121232023x x x x =-+=,,121232023x x x x +=-,故答案为:32023-.【点睛】本题主要考查根与系数的关系,解题的关键是熟记两根之和与两根之积与系数之间的关系.20.50︒##50度【分析】根据矩形的性质,得到OBC OCB ∠=∠,利用三角形外角求出AOB ∠,利用垂直可求出结果.【详解】∵四边形ABCD 是矩形,OA OB OC OD ∴===,20ACB ∠=︒ ,20OBC OCB ∴∠=∠=︒,40AOB OBC OCB ∴∠=∠+∠=︒,OE BD ⊥ ,90BOE \Ð=°,904050AOE BOE AOB ∴∠=∠-∠=︒-︒=︒,故答案为:50︒.【点睛】本题考查了矩形的性质;灵活运用矩形的性质求解是解题的关键.21.6【分析】设M 点的坐标为1,b b ⎛⎫ ⎪⎝⎭,N 点的坐标为4,b b ⎛⎫ ⎪⎝⎭,表示出3MN b =,根据相似,求出6OB b=,2AF b =,进而求出AOB 的面积.【详解】∵MN x ∥轴,∴AMN AOB ∽,点M ,N 的纵坐标相同,设M 点的坐标为1,b b ⎛⎫ ⎪⎝⎭,N 点的坐标为4,b b ⎛⎫ ⎪⎝⎭,∴3MN b=,如图,过点M 作ME x ⊥轴,点A 作AF x ⊥轴,∴MOE AOF ∽,根据反比例函数与三角形的面积关系可得:2AOF S = ,0.5MOE S = ,∴0.5124MOE AOF S S == ,∵相似三角形中面积比等于相似比的平方,∴12OM OA =,∴12AM OA =,∵AMN AOB ∽,∴12AM MN OA OB ==,即312b OB =,∴6OB b=,∵M 点的坐标为4,b b ⎛⎫ ⎪⎝⎭,∴ME b =,∴2AF b =,∴1162622AOB S OB AF b b =鬃=创=,故答案为:6.【点睛】本题考查反比例函数与三角形面积的关系,解题的关键是根据题意作出相应的辅助线,并通过设坐标法进行求解.22.169119【分析】根据题意假设当当点E 和点D 重合时,首先证明出ADP DCF V V ∽,根据相似三角形的性质得到52FC =,然后根据三角形面积公式表示出1S ,2S ,3S 的大小求解即可.【详解】∵点E ,F 分别是AD BC ,上的动点,∴假设当点E 和点D 重合时,如图所示,∴40S =,∵在矩形ABCD 中,6AB =,12BC =,∴12,6AD BC CD AB ====,∵5DP =,∴1CP CD DP =-=,∵90AOD ADC ∠=∠=︒,∴DAP ADO CDF ADO ∠+∠=+∠,∴DAP CDF ∠=,又∵ADP DCF ∠=,∴ADP DCF V V ∽,∴AD DP CD FC=,即1256FC =,解得52FC =∴5191222BF BC FC =-=-=,∴3115512224S FC CP =⨯⨯=⨯⨯=,∴211195762222S AB BF =⨯⨯=⨯⨯=,∵6AB =,12BC =,∴矩形ABCD 的面积61272AB AD =⨯=⨯=,∴123575169=7272244S S S --=--=∴31421691694575119024S S S S ==++++.故答案为:169119【点睛】此题考查了矩形的性质,相似三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.23.38【分析】明确三角形部分与EMN 形状大小完全相同,即可求解;明确P Q ''的长度定了,不管怎么放,三角形部分,形状大小完全一样,OH 长度一样,即可求解.【详解】MN 平移之后,如图所示,三角形部分与EMN 形状大小完全相同,∴三角形部分的面积1733332228⎛⎫⎛⎫=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭,2PQ =,平移后两端点落在正方形边上,∵12x x ≠,12y y ≠,∴P Q ''不垂直四条边,P Q ''把正方形分成两部分为三角形部分和另一部分多边形,两部分的面积为6:19,可得62461925S S ==+正方形三角形,P Q ''的长度定了,P Q D S '' 的面积确定了,不管怎么放,三角形部分,形状大小完全一样,则OH 长度一样,令P Q ''在如图位置,且P D DQ '≥',221242254P D DQ P D DQ ⎧⋅'='''⎪⎨⎪+=⎩解得 1.61.2P D DQ ''=⎧⎨=⎩,∴P '的坐标为(0.6,1)-,Q '的坐标为(1,0.2)-,∴中点H 的坐标为0.6110.2(,)22-+-,即H 的坐标为(0.2,0.4),∴5OH ===故答案为:38【点睛】本题考查四边形的综合题和移动线段问题,解题的关键是理解题意,画出图形,学会利用特殊点解决问题.24.(1)每张零售电影票的原定价为40元.(2)原定零售票价平均每次的下降率为10%.【分析】(1)设每张零售电影票的原定价为x 元,根据“在原定零售票价基础上每张降价16元,这样按原定票价需花费2000元购买的门票张数,现在只花费了1200元”列方程,即可求解;(2)设原定零售票价平均每次的下降率为m ,根据“原定零售票价经过连续两次降价后票价为每张32.4元”列方程求解即可.【详解】(1)解:设每张零售电影票的原定价为x 元,则题意可得,2000120016x x =-,解得,40x =,经检验,40x =是原方程的根且符合题意,答:每张零售电影票的原定价为40元.(2)解:设原定零售票价平均每次的下降率为m ,由题意得,()240132.4m -=,解得10.1m =,2 1.9m =(不合题意,舍去),即原定零售票价平均每次的下降率为10%.答:原定零售票价平均每次的下降率为10%.【点睛】此题考查了分式方程和一元二次方程的实际应用,读懂题意,正确列出方程是解题的关键.25.(1)1k =;(2)①170,20P ⎛⎫ ⎪⎝⎭,②0n <或04n <<-.【分析】(1)用待定系数法,将点带入求解即可;(2)结合题意求出新函数解析式,设B 的横坐标为()0m m ->,表示出A ,B 的坐标,然后找到找()1,1B -关于y 轴的对称点()1,1C ,连接AC ,则AC 与y 轴的交点为P 为所求;一次函数和反比例函数联立方程,方程有两个不相等的实数根即可.【详解】(1)解:点(1,)a ,1(2,2a -在反比例函数k y x =的图像上,∴1122k a k a ⎧=⎪⎪⎨⎪-=⎪⎩,解得:11a k =⎧⎨=⎩,反比例函数解析式为:1y x=;(2)①依题意的新函数解析式为:1y x =,即:()()1010x x y x x⎧>⎪⎪=⎨-⎪<⎪⎩,120x x << ,124x x =,设B 的横坐标为()0m m ->,则A 的横坐标为()40m m ->,结合函数解析式:1,B m m ⎛⎫∴- ⎪⎝⎭,14,4A m m ⎛⎫- ⎪⎝⎭,∴1144m b m m b m ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得:1m =或1m =-,0m > ,1m ∴=,2b ∴=,14,4A ⎛⎫∴- ⎪⎝⎭,()1,1B -,找()1,1B -关于y 轴的对称点()1,1C ,连接AC ,则AC 与y 轴的交点为P ,设AC 所在直线解析式为11y k x b =+,则11111144k b k b =+⎧⎪⎨=-+⎪⎩,解得:113201720k b ⎧=⎪⎪⎨⎪=⎪⎩,3172020y x =+,与y 轴的交点为170,20P ⎛⎫ ⎪⎝⎭;②一次函数2(0)y nx n n =-+≠)的图像与函数F 的图像有三个不同的交点,20n ∴-+>2n ∴<当02n <<,2y nx n =-+与1y x=恒有一个交点,故2y nx n =-+与1y x -=有两个交点,此时12nx n x -=-+,即()2210nx n x +-++=,()22410n n -+-⨯>,2840n n -+>,当2840n n -+=,4n =或4n =-,∵284y n n =-+的图像开口向上,2840n n ∴-+>的解为:4n <-或4n >;02n <<04n ∴<<-当0n <,2y nx n =-+与1y x -=恒有一个交点,故2y nx n =-+与1y x =有两个交点,此时12nx n x=-+,即()2210nx n x +-+-=,()22410n n -++⨯>,240n +>,恒成立,所以0n <,综上所述:0n <或04n <<-.【点睛】本题考查了反比例函数、一次函数的综合运用以及一元二次方程解的情况;理解函数图像的交点就是方程的解是解题的关键.26.(1)见解析;(2)见解析;(3)12BP n BD n-=.【分析】(1)根据相似三角形的判定定理进行判定即可;(2)连接,,,NC BQ NM BQ ,证ABMN 是正方形,得PM 垂直平分BN ,BQ NQ =在证明CQBN 是平行四边形,利用平行四边形的性质判定即可;在矩形ABCD 中;(3)过Q 作QM BD 交BC 的延长线于M ,DG 于N ,连接DM ,结合题意用勾股定理逆定理证DQM 是直角三角形,然后借助45︒和相似三角形解决.【详解】(1)由题意可知在CQM 与BPM △中,CMQ BMP ∠=∠ ,1BM PM MC m MQ==,CQM BPM ∴~ ,CQM BPM ∴∠=∠,CQ BN ∴ ;(2)如图:连接,,,NC BQ NM BQ ,在矩形ABCD 中,90A ∠=︒AN BM ∥,AN BM AB == ,ABMN 是正方形,P 为BN 中点,PM ∴垂直平分BN ,2BN BP =,BQ NQ ∴=,由CQM BPM ~ 和2m =可知,12BP PM CQ CQ ∴==,2CQ BP ∴=,CQ BN ∴=,CQ BN ,CQBN ∴是平行四边形,BQ CN ∴=,NC NQ ∴=;(3)过Q 作QM BD 交BC 的延长线于M ,DG 于N ,连接DM ,在正方形ABCD 中,QM BD ,CBP CMQ ∴~ ,45DBC CMQ ∠=∠=︒,1BP BC PC QM CM CQ n∴===,1BP QM n ∴=,CM nBC nAB ==,222DM CD CM =+ ,()()222221DM AB nAB n AB ∴=+=+,()()2222222QM DQ nBP DQ n BP DQ ∴+=+=+,22222(1)n BP DQ n AB +=+ ,222QM DQ DM ∴+=,DQM ∴ 是直角三角形,90DQM ∴∠=︒,QM BD ,90DQM BDQ ∴∠=∠=︒,45BDC NDQ ∴∠=∠=︒,45DNC ∴∠=︒,NC BC∴=,()1MN nBC BC n BC ∴=-=-,在Rt MQN中,45CMQ∠=︒,QM nBP=,)12nQN QM BC-∴===,)111·2nBP QM BCn n-==,)11·122nBCBP nnBD n--=,【点睛】本题考查了相似三角形的判定和性质、正方形的判定和性质、矩形的性质、勾股定理的逆定理;三角形相似的证明和性质的应用是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市2012届高中毕业班第一次诊断性检测
(数学文)word版
第I卷(选择题,共60分)
一、选择题:(本大题共12小题,每小题5分,共60分)在每小题给出的四个选项中,有且只有一项是符合题目要求的.
⑴某小区有125户高收入家庭、280户中等收人家庭、95户低收入家庭.现采用分层抽样的
方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收人家庭中应抽
选出的户数为
(A)70 户 (B)17 户 (C) 56 户 (D) 25户
(2)已知和y=3x-3互为反函数,则常数m的值为:
(A)1 (B)-1 (C). (D)
(3)函数的值域为
A 0+)(B)(l,9] (C)(0,] (D)[,1]
(4)若首项为1的等比数列的前3项和为3,则公比q为
(A)-2 (B)1 (C)-2 或 1 (D)2 或-1
(5)已知向量i与j不共线,且,若A、B、D三点共线,则实数m、n应
该满足的条件是
(A)m+n=1 (B)m+n=-1 (c)mn=1. (D)mn=-1
(6)若展开式的各项系数和为,常数项是
(A) -7 (B)7 (C) (D)
(7)“0(A)充分不必要条件 (B)必要不充分条件
(C)充要条件. (D)既不充分也不必要条件
(8)设电流强度I(安)随时间t(秒)变化的函数
的图象如图所示,则
(A) (B)
(C) (D)
(9)已知函数,当且仅当X=A时,f(x)取得最小值则函数
的图象为

(10)设直三梭柱ABC-A1B1C1的底面为等腰直角三角形,AB=AC=2,动点E、F在侧棱CC1上,动
点P、Q分别碰AB1,BB1上,若EF==1,CE=x, BQ=y,BP=z,其中x,y,z>0,则下列结论中错误的
是.
(A)EF//平面 BPQ
(B)二面角P-EF-Q所成角的最大值为
(C)三棱锥P-EFQ的体积与y的变化有关,与x,z成的变化无关
(D)若D为线澳BC的中点,则异面直线EQ和AD所成角的大小与
x,y,z的变化无关
(11)已知定义在R上的奇函数f(x)满足,且时,
,则下列说法正确的是
(A)f(3)=1
(B)函数f(x)在[-6,— 2]上是增函数
(C)函数f(x)关于直线x=4对称
(D)若关于X的方程f(x)-m=0在[-8,8]上所有根之和为-8,则-定有
(12)设集合S={1,2,3,4,5,6},定义集合组(A,B):,A中含有3个元素,
B
中至少含有2个元素,且集合B中最小的元素不小于A中最大的元素.若满足AUB=S,,则称
这样的集合组(A,B)为“完美集合组”.在所有集合组(A,B)中任取一组,则恰好取得"完
美集合组”的概举为
(A) (B) (C) (D)
第II卷(非选择题,共90分)
填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡上.

(13) 的值为_________
(14) 不等式的解集为________.
(15)
已知点A、B、C、D在同一个球面上,AB丄平面BCD,BC丄BD,若AB=1;BC=2,BD=3,则此球的表面积是________.
(16)若函数f(x)满足丨在定义域D内存在实数x0,使得成立,则称函
数f(x)为“1的饱和函数”.有下列函数:

其中你认为是“1的饱和函数”的所有函数的序号为________
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知函数的周期为,其中.
(I)求的值及函数f(x)的单调递增区间;
(II)在中,设内角A、B、C所对边的长分别为a、b、c,若,
求b的值.

(18)(本小题满分12分)
如图甲,是边长为6的等边三角形,,点G为BC边的中点,
线段AG交线段ED于点F.将ΔAED沿ED翻折,使平面AED丄平面BCDE,连结AB、AC、AG
形成如图乙的几何体.
(I)求证:BC丄平面
(II)求二面角B—AE—D的大小.."
(19)(本小题满分12分)
某社区为丰富居民的业余文化生活,准备召并一次趣味运动会.在“射击气球”这项比赛活
动中,制定的比赛规则如下8每人只参加一场比赛,每场比赛每人都依次射击完编号为①、
②、③、④、⑤的5个气球,每次射击一个气球;若这5次射击中,④、⑤号气球都被击中,
且①、②、③号气球至少有1个被击中,则此人获奖;否则不获奖.已知甲每次射击击中气
球的概率都为2/3.,且各次击结果互不影响.
(I)求甲在比赛中获奖的概率;
(II)求甲至少击中了其中3个气球但没有获奖的概率.

(20)(本小题满分12分).
已知函数
(I)若不等式在R上恒成立,求实数m的取值范围
(II)设函数f(x)在[0,1]上的最小值为g(m),求g(m)的解析式及g(m)=1时实数m的值.
(21)(小题满分12分.)
已知等差数列{an}中,公差d>0,a2=9,且a1a3=65..数列前n项和满足2Sn=3n+1-3(n∈Nn)
(I)求数列{an}和{bn}的通项公式;
(II)设,求数列{cn)的前n项和Tn
(III)设,若对恒成立,求的
取值范围.

(22)(本小题满分14分)
设函数,记f(x)的导函数是.
(I)当a=—1,b=c=-1时,求函数f(x)的单调区间;
(II)当,时,若函数f(x)的两个极值点满足,求b的取值
范围;
(III)若令,记h(x)在[-1,1]上的最大值为H,当时,证
明:.

相关文档
最新文档