磁滞回线的定义

合集下载

电机学第一章 磁路

电机学第一章 磁路

2.磁路的欧姆定律
φ
F
Rm
铁磁材料的磁导率μ不是一个常数,所以由铁磁材 料构成的磁路,其磁阻不是常数,而是随着磁路中 磁通密度的大小而变化,这种情况称为非线性。
有一闭合铁心磁路,铁心的截面积 A =9×10-4m2,磁 路的平均长度L=0.3m,铁心的磁导率,套装在铁心上 的励磁绕组为500匝。试求在铁心中产生1T的磁通密度 时,所需的励磁磁动势和励磁电流。
O
If
F0
电机的磁化曲线体现了电机磁路的非线性,这种非 线性使电机运行特性的数学表达复杂化。工程分析 中,常用线性分析加上适当修正的办法来考虑非线 性的影响。
三、交流磁路的特点
1. 交流磁路中,激磁电流是交流,因此磁 路中的磁动势及其所激励的磁通均随时间而交 变,但每一瞬时仍和直流磁路一样,遵循磁路 的基本定律 2.就瞬时值而言,通常情况下,可以使用相 同的基本磁化曲线。 3.磁通量和磁通密度均用交流的幅值表示, 磁动势和磁场强度则用有效值表示。
∫ H ⋅ dl =I
l
1
+ I 2 − I3
在一个圆形铁磁材料的周围,布 置一圈如上图分布的载流导体
安培环路定律的特例
¾右图:沿回线l,磁场强度H的 方向总在切线方向、其大小处处 相等,且闭合回线所包围的总电 流是由通入电流i的N匝线圈所提 供,则有:
H ⋅ dl = Hl = Ni ∫
l
¾磁动势:F = Ni
四、铁心损耗
1.磁滞损耗
定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 公式: n h h m
p = C fB V
应用:由于硅钢片磁滞回线的面积较 小,故电机和变压器的铁心常用硅钢片叠成。

(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案

(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类第一章磁学基础知识答案:1、磁矩2、磁化强度3、磁场强度H4、磁感应强度 B磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。

其定义公式为中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。

5、磁化曲线6、磁滞回线()(6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。

)7、磁化率磁化率,表征磁介质属性的物理量。

常用符号x表示,等于磁化强度M与磁场强度H之比。

对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是一个二阶张量。

8、磁导率磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。

二矫顽力----内禀矫顽力和磁感矫顽力的区别与联系矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。

磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。

但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。

(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。

使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。

内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。

在磁体使用中,磁体矫顽力越高,温度稳定性越好。

(2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正?产生:能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

然而实际工作中,材料的尺寸收到限制,因此不可避免的受到退磁场的影响。

校正:由于受到退磁场的影响,作用在材料中的有效磁场Heff比外加磁场Hex要小。

材料物理性能FDBHⅠⅠ型磁性材料磁滞回线和磁化曲线测定

材料物理性能FDBHⅠⅠ型磁性材料磁滞回线和磁化曲线测定
根据物质在外磁场中表现出的特性,物质可分为五类:顺 磁性物质,抗磁性物质,铁磁性物质,亚磁性物质,反磁 性物质。
顺磁性物质和抗磁性物质称为弱磁性物质,把铁磁性物质 称为强磁性物质。通常所说的磁性材料是指强磁性物质。
磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性 材料。磁化后容易去掉磁性的物质叫软磁性材料,不容易 去磁的物质叫硬磁性材料。一般来讲软磁性材料剩磁较小, 硬磁性材料剩磁较大。
FD-BH-Ⅰ型磁性材料磁滞回线 和磁化曲线测定
一、实验目的
1.学习待测磁性样品的退磁,测量样品的 起始磁化曲线。
2.在待测样品达到磁饱和时,进行磁锻炼, 测量材料的磁滞回线。
3.学习安培回路定律在磁测量中的应用。
二、磁性材料的分类
定义:由过渡族元素铁、钴、镍及其合金元素等能够直接 或间接产生磁性的物质。
样品的尺寸 a=10.00cm;b=6.00cm;
c=d=2.00cm Lg=0.20cm;L=23.8cm;N=2000;μ0=4Л×10-7
H=NI/L-B Lg/μ0L=8403I-6.686×103B
利用上式对H值进行修正,得出H的准确结果, 绘制B-H关系曲线。
八、注意事项
1.霍尔探头请勿用力拉动,以免损坏。 2.在测量测量磁化曲线过程中,应保证磁
4.测量磁滞回线:通过磁化线圈的电流从饱和电流Im 开始逐步减小到0,然后双刀换向开关将电流换向, 电流又从0增加到-Im,重复上述过程,即(Hm,Bm) 到(-Hm,-Bm),再从(-Hm,-Bm)到(Hm,Bm)。 每隔100mA测一组(Ii,Bi)值。通过公式求出Hi值。
六、安培回路定律
在环形样品的磁化线圈中通过的电流为I,则磁化场的磁 场强度H为H=NI/L(N为磁化线圈的匝数,L为样品的平均 磁路长度)

磁学基础

磁学基础

这是因为在低温下,热运动造成
的无序作用很小,内场的作用显 著,原子的本征磁矩趋于平行排
列,此时自发磁化强度趋于饱和。
当温度上升时,热运动的无序作 用加强,自发磁化强度减小,当 温度达到Tc时,自发磁化强度为零,此时物体失去它的铁磁 性,转变成顺磁体。
Page 25
2.4.4 铁磁性的主要特征
Page
15
b) 低温 当温度降低到 导可得:
时,有
通过推
M0称为绝对饱和磁化强度,它等于所有原子磁矩的总和。 饱和磁化强度指在给定温度下可获得的磁化强度的最大值。 上式说明在低温下,只要磁场足够强,原子磁矩可与磁场 方向趋于相同。
Page
16
2.4.3 反铁磁性
反铁磁性:其磁化率在某一温度存在极大值,该温度称为 奈尔温度TN。当温度T>TN时,其磁化率与温度的关系与 正常顺磁性物质相似,服从居里-外斯定律;当温度T<TN 时,其磁化率不是继续增大,而是降低,并逐渐趋于定值, 这种磁性称为反铁磁性。包括过渡族元素的盐类和化合物 等。
Page
28
五种磁性对应于不同的磁结构:抗磁性物质由于是电子的抵抗 磁矩,所以值很小。顺磁性物质和反铁磁性物质由于磁矩混乱 取向和相互抵消,磁化率也很小,因此这三种磁性是弱磁性。 铁磁性物质中磁矩平行取向,磁化率很高。亚铁磁性物质磁矩 虽为反平行排列,但是磁矩不能完全抵消,因而显示较高的磁 化率,故铁磁性和反铁磁性是强磁性。通常所说的磁性材料指 具有铁磁性或亚铁磁性的强磁性材料。
Page
26
2.4.5 亚铁磁性
亚铁磁性:其宏观磁性与铁磁性相同,仅仅是磁化率低一 些,约为100-103数量级。典型的亚铁磁性物质为铁氧体, 其与铁磁性物质的显著区别在于内部磁结构的不同。 物质的磁性并不是恒定不变得。同一种物质,在不同的环 境下,可以具有不同的磁性。eg:铁磁性物质在居里点温 度以下是铁磁性的,到达居里点温度则转变为顺磁性。

电机学 第1章 磁路基础知识

电机学    第1章 磁路基础知识
第1章 磁路基础知识
1.1
1.2
磁路和磁路基本定律 铁磁材料及其特性
南通大学《电机学》
磁路基础知识
1.1磁路和磁路基本定律 1.1.1描述磁场的基本物理量
1、磁感应强度B(磁密) 2、磁通 3、磁导率:表示物质导磁能力强弱的物理量 真空磁导率0=4×10-7H/m 铁磁材料磁导率 >>0 4、磁场强度H=B/
南通大学《电机学》
dΨ dt
为负,而e为正,将企图增加磁链。
磁路基础知识
1.1.2电磁感应定律

线圈磁链的变化,可以有以下两种不同的方式: 若磁场由交流电流产生,则磁通随时间变化,所产 生的电动势称为变压器电动势。

若通过线圈的磁通不随时间变化,但线圈与磁场之 间有相对运动,也会引起线圈磁链的变化,所产生 的电动势称为运动电动势。
南通大学《电机学》
磁路基础知识
1.1.2电磁感应定律

若电动势、电流和磁通的正方向如图所示,则感应电 动势可表示为
e dΨ dt

e N
dΦ dt
必须指出:在建立上式时,各电、磁 量的正方向十分重要,其物理概念是: 线圈中的感应电动势倾向于阻止线圈 中磁链的变化。

1、磁链正向增加, d t 为正,而e为负值,将企图减少磁链; 2、磁链正向减少,
南通大学《电机学》 磁路基础知识
1.1.5磁路的基尔霍夫定律
1、磁路的基尔霍夫第一定律 闭合面A显然有:
- Φ1+ Φ 2+ Φ 3= 0
A
i
N
即:
Φ= 0
2
1
3
图1-4 磁路的基尔霍夫第一定律
穿出(或进入)任一闭合面的总磁通量恒等于零(或 者说,进入任一闭合面的磁通量恒等于穿出该闭 合面的磁通量)

电机学 第一章磁路

电机学 第一章磁路

起始磁化曲线
oa段
ab段
bc段
cd段
膝点
饱和
铁磁材料 图1-7.
µ Fe = f ( H ) 磁化曲线见示意
� 应用: 设计电机和变压器时,为使主磁路内得 到较大的磁通量而又不过分增大励磁磁动势, 通常把铁心内的工作磁通密度选择在膝。 剩磁:去掉外磁场之后,铁磁材料内仍然保留的 磁通密度 B r 。 矫顽力:要使B值从减小到零,必须加上相应的反 向外磁场,此反向磁场强度Hc称为矫顽力。 磁滞:铁磁材料所具有的这种磁通密度B的变化滞 后于磁场强度H变化的现象。 磁滞现象是铁磁材料的另一个特性。
2.硬磁(永磁)材料 定义:磁滞回线宽、剩磁和矫顽力都很大的铁磁材 料称为硬磁材料,又称为永磁材料。 附图1-11b 磁性能指标 剩磁 矫顽力 最大磁能积
铸造型 铝镍钴
种类示意图
粉末型 铝镍钴
永磁材料 种类
铁氧体
稀土钴
钕铁硼
四、铁心损耗 1.磁滞损耗 定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 n 公式: p = C fB V
Hδ lδ = 385A
F = H FelFe + H δ lδ = 432.6 A
返回
2.简单并联磁路 定义:指考虑漏磁影响,或磁回路有两个以上分 支的磁路。 点击书本进入例题1-3
例 题
� [例1—3] 图1—14a所示并联磁路,铁心所 用材料为DR530硅钢片,铁心柱和铁轭的截面 积均为 A = 2 × 2 × 10 −4 m 2 ,磁路段的平均长 −3 度l = 5 ×10−2 m ,气隙长度 δ1 =δ2 = 2.5×10 m 励磁线圈匝数 N 1 = N 2 = 1000 匝。不计漏磁通,试求在气隙内产生 B δ =1.211T的磁通密度时,所需的励磁电流i。

电机学第一章 磁路


H
随着磁场强度H的增大,饱和程度增加,μFe减 小,Rm增大,导磁性能降低.
B
c b
B = f ( H)
d
μFe = f ( H )
a
B = μ0 H
H
设计电机和变压器时,为使主磁路内得到较大的 磁通量而又不过分增大励磁磁动势.通常把铁心 内的工作磁通密度选择在膝点附近
B
c b
膝点 饱和点
B = f ( H)
四、铁心损耗
1.磁滞损耗
定义: 铁磁材料置于交变磁场中时,磁畴相 互间不停地摩擦、消耗能量、造成损耗,这种 损耗称为磁滞损耗。 公式: n h h m
p = C fB V
应用:由于硅钢片磁滞回线的面积较 小,故电机和变压器的铁心常用硅钢片叠成。
2.涡流损耗
¾涡流:铁磁材料在交变磁场将 有围绕磁通呈蜗旋状的感应电动 势和电流产生,简称涡流。 ¾涡流损耗:涡流在其流通路径 上的等效电阻中产生的I2R损耗 称为涡流损耗。 ¾涡流损耗与磁场交变频率f, 厚度d和最大磁感应强度Bm的平 方成正比,与材料的电阻率成反 比。 ¾要减小涡流损耗,首先应减小 厚度,其次是增加涡流回路中的 电阻。电工硅钢片中加入适量的 硅,制成硅钢片,显著提高电阻 率
表1.1 磁路和电路对比表 序 号 1 2 3 4 5 6 7 8 9 电 基本物理量 或基本定律 电 流 电 压 电 阻 电 导 电流密度 电导率 基尔霍夫 第一定律 基尔霍夫 第二定律 欧姆定律 路 符号或 定义 I U R=l/(γA) G=1/R J=I/A 单位 A V Ω S A/m2 S/m 磁 路 单 位 Wb A 1/H H Wb/m2(T) H/m 基本物理量或 符号或 基本定律 定义 磁 通 φ F 磁动势 磁 阻 磁 导 磁通密度 磁导率 磁通连续性 原理 Rm=l/(μA)

磁路饱和

磁感应强度B和磁场强度H满足B=uH的关系,在B-H曲线上就是磁滞回线。

当H较小时,B正比于H,u基本恒定,称为线性区。

当H很大时,B不再正比例于H增长,u值下降,称为饱和区。

所以饱和程度与H和u都有关系,与H有关是说励磁电流越大,越容易饱和;与u有关是指材料的u值拐点越低,越容易饱和,即与磁体的材质特性有关。

导磁率μ=导磁率(magnetic permeability of material) (Henrys/meter) 导磁率----又称导磁系数,是衡量物质的导磁性能的一个系数,以字母μ表示,单位是亨/米。

μ等于磁介质中磁感应强度B与磁场强度H之比,即通常使用的是磁介质的相对磁导率μr ,其定义为磁导率μ与真空磁导率μ0之比,即μ=B/H相对磁导率μ与磁化率χ的关系是磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。

对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。

在铁磁质中,B与 H 的关系是非线性的磁滞回线,μr不是常量,与H 有关,其数值远大于1。

例如,如果空气(非磁性材料)的磁导率是1,则铁氧体的磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。

在国际单位制(SI)中,相对磁导率μr是无量纲的纯数,磁导率μ的单位是亨利/米(H/m)。

磁饱和科技名词定义中文名称:磁饱和英文名称:magnetic saturation定义:铁磁性物质或亚铁磁性物质处于磁极化强度或磁化强度不随磁场强度的增加而显著增大的状态。

所属学科:电力(一级学科);通论(二级学科)本内容由全国科学技术名词审定委员会审定公布磁饱和是一种磁性材料的物理特性,磁饱和产生后,在有些场合是有害的,但有些场合有时有益的。

比方磁饱和稳压器,就是利用铁心的磁饱和特性达到稳定电压的目的的。

电源变压器,如果加上的电压大大超过额定电压,则电流剧增,变压器很快就会发热烧毁。

假定有一个电磁铁,通上一个单位电流的时候,产生的磁场强度是1,电流增加到2的时候,磁场强度会增加到2.3,电流是5的时候,磁场强度是7,但是电流到6的时候,磁场强度还是7,如果进一步增加电流,磁场强度都是7不再增加了,这时就说,电磁铁产生了磁饱和。

电机学:磁路


2.硬磁(永磁)材料
定义:磁滞回线宽、 Br和Hc都大的铁磁材料称
为硬磁材料 。
附图1-11b。
剩磁 矫顽力 最大磁能积
磁性能指标
铁磁材料 Ferromagnetic Materials
铸铁、铸钢 硅钢片
永磁材料
软磁材料的磁滞回线
硬磁材料的磁滞回线
种 类 示 意 图
常见的硬磁(永磁)材料
铁 氧 体
电机的常用材料 铁磁物质的磁化 磁化曲线与磁滞回线 铁磁材料 铁心损耗
电机常用的四大类材料
1. 导电材料(Electric Materials)
引导电流的电路,要求电导率大
2. 导磁材料(Magnetic Materials)
引导磁通的磁路,要求磁导率大
3. 绝缘材料(Insulating Materials)
Φ2 Rm2 Φδ
磁路和电路对比表

序 号 1 2 3 4 5 6 7 8 9

符号 或定义
I U=El R=l/(gA) G=1/R J=I/A 单位 A V Ω S A/m2 S/m

基本物理量 或基本定律
磁 通 磁动势 磁 阻 磁 导 磁通密度 磁导率

符号 或定义
单 位
基本物理量 或基本定律
N
磁路的欧姆定律
作用在磁路上的磁动势等于磁路内的磁通量乘以磁阻。
定理说明图1-3a。
公式: 式中:
F F F Rm l Rm A
与电路中的欧姆定律的相似性,附相应的模拟磁路图1-3b。
铁磁材料的磁导率不是一个常数,由铁磁材料构成的磁路,其磁 阻不是常数,而是随着磁路中磁通密度的大小而变化,这种情况称 为非线性。

电流互感器铁心剩磁总结(5篇)

电流互感器铁心剩磁总结(5篇)第一篇:电流互感器铁心剩磁总结电流互感器铁心剩磁总结电流互感器剩磁的定义饱和磁通ψsat:电流互感器二次匝链磁通的最高值,对应于铁心材料的磁饱和(完全饱和状态)。

剩磁通ψr:铁心在切断励磁电流3min之后剩余的二次匝链磁通值,此励磁电流应大到足以产生饱和磁通ψsat。

剩磁系数KR:剩磁通与饱和磁通之比值,用百分数表示。

动态剩磁ψdr:互感器的一次绕组断电以后,铁心中的磁通将从断电这一时刻开始逐渐衰减,这个衰减过程中的磁通称为动态剩磁。

动态剩磁衰减规律为ψdr=ψxe-tT2式中:ψx——断电瞬间铁心中的磁通,Wb2.铁磁材料磁滞回线及剩磁2.1磁滞回线及剩磁的形成过程磁滞回线。

(解释说明:铁磁材料的剩磁与电流互感器的剩磁通定义不一样。

)对于同一铁磁材料,选择不同的磁场强度反复磁化时,可得出不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得的曲线称为基本磁化曲线,或平均磁化曲线。

从图2系列磁化曲线可以看出,对同一铁磁材料,取低的磁化强度(对应低磁密)反复磁化时,铁磁材料的剩磁也越小(可以认为做伏安特性铁心的剩磁大致对应于磁滞回线上的剩磁)。

软磁性材料的磁滞回线狭窄,近似与基本磁化曲线相重合,所以进行磁路计算时常用基本磁化曲线代替磁滞回线使计算得以简化。

对于互感器做伏安特性时,由于硅钢片铁心磁通远未饱和,铁心会产生剩磁也很小,而且实践证明硅钢片的剩磁不会明显影响保护级的伏安特性及额定电流下的误差,微晶铁心的剩磁也不影响测量级的误差。

另根据硅钢片的矫顽力一般约为100/4π A/m,查硅钢片磁化曲线可得对应磁密为1590Gs, 也即矫顽力对应的剩磁为1590Gs(比较低),由于硅钢片铁心工作磁密远未饱和,所以做伏安特性的铁心剩磁也很小。

计量用CT多采用超微晶材料制造,由于矫顽力很小,只需要很小的工作电流(例如额定工作电流)就可以去除剩磁,可以不考虑剩磁的影响。

图1 基本磁化曲线2.2 铁磁材料的磁滞回线1)软磁性材料的磁滞回线狭长(见图2a),剩磁和矫顽力都较小,磁滞损耗小,磁导率高,适用于制作各种电机、电器的铁心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁滞回线的定义
1. 简介
磁滞回线是描述磁性材料在外加磁场作用下磁化过程的一种特性曲线。

它可以展示材料的磁性能,包括饱和磁化强度、剩余磁化强度、矫顽力等重要参数。

在物理学和工程学中,了解和分析材料的磁滞回线具有重要意义。

2. 磁滞现象
当一个物体被放置在外加磁场中时,其内部原子或分子会重新排列以响应该磁场。

这种响应可以导致物体自身产生一个额外的磁场,即所谓的剩余磁场。

当外加磁场发生变化时,物体内部的原子或分子会再次重新排列以适应新的条件。

这种重新排列过程导致剩余磁场发生变化,并且与外加磁场存在一定的延迟。

3. 磁滞回线示意图
上图展示了一个典型的磁滞回线示意图。

横轴表示外加磁场的强度H,纵轴表示物体的磁化强度M。

该曲线呈现出一个闭合的环形,表明在外加磁场变化的过程中,物体的磁化强度也发生了变化。

4. 磁滞回线的特征
磁滞回线具有以下几个重要特征:
4.1 饱和磁化强度(Ms)
在外加磁场逐渐增大时,物体逐渐达到饱和状态。

饱和状态指的是材料中所有原子或分子都已经排列到最大程度,无法再进一步增强磁化强度。

饱和磁化强度是指在饱和状态下,物体所具有的最大磁化强度。

4.2 剩余磁化强度(Mr)
当外加磁场逐渐减小至零时,物体仍然保留着一定的磁化效应。

这种剩余的磁化效应称为剩余磁化强度。

剩余磁化强度可以用来衡量材料对于外界磁场的敏感程度。

4.3 矫顽力(Hc)
当外加磁场逐渐减小时,物体需要达到零磁化强度所需要的外加磁场强度称为矫顽力。

矫顽力可以用来衡量材料对于外界磁场的抵抗程度。

4.4 磁滞损耗
在磁滞回线闭合的环形中,形成的面积表示了物体在外加磁场变化过程中所吸收或释放的能量。

这种能量损耗称为磁滞损耗,它是由于物体内部原子或分子重新排列所导致的。

5. 应用领域
了解和分析材料的磁滞回线对于许多应用领域都具有重要意义:
5.1 磁存储器件
在计算机和其他电子设备中,使用了大量的磁存储器件,如硬盘驱动器和磁带。

了解材料的磁滞回线可以帮助我们设计更高效、稳定的存储介质。

5.2 电力传输和变压器
电力传输过程中会产生大量的电流和磁场。

了解材料的磁滞回线可以帮助我们设计更高效、低能耗的电力传输系统和变压器。

5.3 磁性材料制备
磁性材料广泛应用于电机、传感器、磁性存储介质等领域。

了解材料的磁滞回线可以帮助我们选择合适的材料,优化制备工艺,提高产品性能。

6. 总结
磁滞回线是描述磁性材料在外加磁场作用下磁化过程的一种特性曲线。

它可以展示材料的饱和磁化强度、剩余磁化强度、矫顽力等重要参数,并揭示了物体在外加磁场变化过程中吸收或释放的能量。

了解和分析材料的磁滞回线对于许多应用领域都具有重要意义,包括磁存储器件、电力传输和变压器以及磁性材料制备等。

通过深入理解和应用磁滞回线,我们可以优化设计,提高产品性能,并推动科学技术的发展。

参考文献: - [Magnetic Hysteresis Loop](。

相关文档
最新文档