5章获得往复运动的机构解析
间歇运动机构(棘轮结构)详解

5.1 棘轮机构 5.1.1、 棘轮机构的工作 原理
棘轮机构是一种
常用的间歇机构, 主要 由棘轮、 棘爪和机架组
成。
棘轮机构是一种常用的间歇机构, 其工作原理见 图5- 1。棘轮3与轴用键连接, 弹簧5用来使制动棘爪4 和棘轮3保持接触, 驱动棘爪2与连杆机构的摇杆1组 成回转副N。摇杆空套在轴上, 可自由摆动。 当摇杆 逆时针摆动时, 驱动棘爪便插入棘轮的齿槽中, 推动棘 轮转过一定角度, 而制动棘爪则在棘轮的齿上滑过; 当摇杆顺时针摆动时, 驱动棘爪在棘轮的齿上滑过, 而制动棘爪将阻止棘轮作顺时针转动, 故棘轮静止不 动。 因此, 摇杆作连续的往复摆动时, 棘轮作单向间 歇转动。
图 5 - 14 刀架转位槽轮机构
图 5 - 8 提升机棘轮停止器
图 5 - 8 提升机棘轮停止器模型
图5 - 9所示为自行车后轮轴上的棘轮机构。 当 脚蹬踏板时, 经链轮1和链条2带动内圈具有棘齿的小 链轮3顺时针转动, 再经过棘爪推动后轮轴顺时针转动, 从而驱使自行车前进。
图 5 - 9 自行车后轴上的棘轮机构
图 5 - 9 自行车后轴上的棘轮机构模型
图 5 - 13 卷片槽轮机构
图 5 - 13 卷片槽轮机构模型
又如图5 - 14所示的六角车床刀架的转 位槽轮机构, 刀架3上可装六把刀具并与具 有相应的径向槽的槽轮2固连, 拨盘上装有 一个圆销A。 拨盘每转一周, 圆销A进入槽轮 一次, 驱使槽轮(即刀架)转60°, 从而将下一 工序的刀具转换到工作位置
运动开始和终止时, 棘轮和棘爪间都产生冲击, 因此不宜用在具有很大质量的轴上。
图5 - 7所示的牛头刨床工作台的横向进给机构利用 棘轮机构实现正反间歇转动, 然后通过丝杠螺母带动工作 台作横向间歇送进运动。
棘轮结构

图 5 - 13 卷片槽轮机构
图 5 - 13 卷片槽轮机构模型
又如图5 - 14所示的六角车床刀架的转 位槽轮机构, 刀架3上可装六把刀具并与具 有相应的径向槽的槽轮2固连, 拨盘上装有 一个圆销A。 拨盘每转一周, 圆销A进入槽轮 一次, 驱使槽轮(即刀架)转60°, 从而将下一 工序的刀具转换到工作位置
5.1 棘轮机构 5.1.1、 棘轮机构的工作 原理 棘轮机构是一种 常用的间歇机构, 主要 由棘轮、 棘爪和机架组 成。
棘轮机构是一种常用的间歇机构, 其工作原理见 图5- 1。棘轮3与轴用键连接, 弹簧5用来使制动棘爪4 和棘轮3保持接触, 驱动棘爪2与连杆机构的摇杆1组 成回转副N。摇杆空套在轴上, 可自由摆动。 当摇杆 逆时针摆动时, 驱动棘爪便插入棘轮的齿槽中, 推动棘 轮转过一定角度, 而制动棘爪则在棘轮的齿上滑过; 当摇杆顺时针摆动时, 驱动棘爪在棘轮的齿上滑过, 而制动棘爪将阻止棘轮作顺时针转动, 故棘轮静止不 动。 因此, 摇杆作连续的往复摆动时, 棘轮作单向间 歇转动。
图5 - 13所示的是电影放映机卷片机构, 槽轮2具有四个径向槽, 拨盘1上装一个圆销A。 拨盘转一周, 圆销A拨动槽轮转过1/4周, 胶片 移动一个画格, 并停留一定时间(即放映一个 画格)。 拨盘继续转动, 重复上述运动。 利用 人眼的视觉暂留特性, 当每秒放映24幅画面时 即可使人看到连续的画面。
图 5 - 6转角可调的棘轮机构
图 5 - 6转角可调的棘轮机构模型
5.1.3、 棘轮机构的特点与应用 棘轮机构结构简单, 加工容易, 改变转角 大小方便, 可实现送进(如图5 - 7所示)、 制动(如 图5 - 8所示)及超越(如图5 - 9所示)等功能, 故广 泛应用于各种自动机械和仪表中。 其缺点是在 运动开始和终止时, 棘轮和棘爪间都产生冲击, 因此不宜用在具有很大质量的轴上。
最新机械设计基础教案——第5章 凸轮机构

第5章凸轮机构(一)教学要求1.了解凸轮机构的工作原理2.掌握常用从动件运动规律及特性3.掌握盘形凸轮轮廓的设计4.了解凸轮机构的尺寸的确定(二)教学的重点与难点1.凸轮的工作原理2.用反转法设计凸轮轮廓3.凸轮的尺寸对其机构的影响(三)教学内容5.1概述5.1.1 概念1.凸轮机构的组成:凸轮是由从动件、机架、凸轮三部分组成的高幅机构。
2.凸轮:是一种具有曲线轮廓或凹糟的构件,它通过与从动什的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。
3.特点:结构相当简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。
但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。
4.凸轮机构的应用例:内燃机配气机构(如下图所示)靠模车削机构(如下图所示)自动送料机构(如下图所示)分度转位机构(如下图所示)5.1.2 凸轮机构的分类1、按照凸轮的形状分为:(1)盘形凸轮凸轮中最基本的形式。
凸轮是绕固定铂转动且向径变化的盘形零件,凸轮与从动件互作平面运动,是平面凸轮机构。
(2)移动凸轮可看作是回转半径无限大的盘形凸轮,凸轮作往复移动,是平面凸轮机构。
(3)圆柱凸轮可看作是移动凸轮绕在圆柱体上演化而成的,从动件与凸轮之间的相对运动为空间运动,是一种空间凸轮机构。
(4)曲面凸轮当圆柱表面用圆弧面代替时,就演化成曲面凸轮,它也是一空间凸轮机构。
2、按锁合方式的不同凸轮可分为:(1)力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;(2)几何锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。
3、按从动件型式分为:(1)尖顶从动件(2)滚子从动件(3)平底从动件根据从动件运动型式不同分为直动从动件和摆动从动件。
5.1.3 凸轮和滚子的材料凸轮机构的主要失效形式:磨损和疲劳点蚀要求凸轮和滚子的工作表面硬度高、耐磨并且有足够的表面接触强度。
对于经常受到冲击的凸轮机构还要求凸轮芯部有较强的韧性。
杨可桢《机械设计基础》(第5版)笔记和课后习题(间歇运动机构)

第6章 间歇运动机构6.1 复习笔记主动件连续运动(连续转动或连续往复运动)时,从动件做周期性时动、时停运动的机构成为间歇运动机构。
一、棘轮机构如图6-1所示,机构是由棘轮2、棘爪3、主动摆杆和机架组成的。
运动原理:主动棘爪作往复摆动,从动棘轮作单向间歇转动。
优点:结构简单、制造方便、运动可靠、棘轮轴每次转过角度的大小可以在较大范围内调节。
缺点:工作时有较大的冲击和噪音,运动精度较差。
因此棘轮机构适用于速度较低和载荷不大的场合。
棘轮机构按结构形式分:齿式棘轮机构和摩擦式棘轮机构;按啮合方式分:外啮合棘轮机构和内啮合机构;按运动形式分:单动式棘轮机构、双动式棘轮结构和双向式棘轮机构。
图6-1 棘轮机构1.棘爪工作条件在工作行程中,为了使棘爪能顺利进入棘轮的齿底,应满足:90αϕ>︒+-∑其中,α为棘齿的倾斜角,ϕ为摩擦角,∑为棘爪轴心和棘轮轴心与棘轮齿顶点的连线之间的夹角。
为了使传递相同的转矩时棘爪受力最小,一般取90∑=︒,为保证棘轮正常工作,使棘爪啮紧齿根,则有:αϕ>2.棘轮、棘爪的几何尺寸计算选定齿数z 和确定模数m 之后,棘轮和棘爪的主要几何尺寸计算公式如下: 顶圆直径 D m z =;齿高 0.75h m =;齿顶厚 a m =; 齿槽夹角6055θ=︒︒或;棘爪长度 2=L m π。
二、槽轮机构如图6-2中所示,该机构是由带圆销的主动拨盘1、带有径向槽的从动槽轮2以及机架组成的。
其中,拨盘和槽轮上都有锁止弧:槽轮上的凹圆弧、拨盘上的凸圆弧都是起锁定作用。
工作特点:拨盘连续回转,当两锁止弧接触时,槽轮静止;反之槽轮运动,实现了将连续回转变换为间歇转动。
特点:结构简单、制造容易、工作可靠、机械效率高,能平稳地、间歇地进行转位。
因槽轮运动过程中角速度有变化,存在柔性冲击,因此不适合高速运动场合。
图6-2 槽轮机构运动特性系数τ:槽轮每次运动的时间m t 对主动构件回转一周的时间t 之比,有:m 2=2-=t z t zτ 其中,z 为槽数,是槽轮机构的主要参数。
机械原理_凸轮机构1

s2
R O δ0 R h δ1 t δ1 t δ1 -∞ t
v2 υ0
O
a2 ∞
O
修正等速运动
组合(拼接)时注意:
保证在衔接点各段的运动参数( 位移、速度、加速度)连续,在运 动起始和终止处,运动参数满足边界 条件。
2" 1"
1' 2' 3'
4'
6"
h
5'
图/方程中δ1取0~δ0′ 事实上δ1=0‾360º 故运动方程中δ1应代: δ1- (δ1+δ01 )
0
6' 1 2 3 4 5 6 δ 0′
δ1
t
υ2 δ1
a2 t
δ1
t
各种运动规律可分别用于推程和回程:
推程 远休止 回程 近休止
① ② ③ ④ ⑤ 等加等减 ⑧ ⑥ ⑦ ⑨
AB段:推程
C
B D
BC段:远休止 CD段:回程 DA段:近休止
O
A
ω1
A-9
AB段:推程 BC段:远休止
C
D A
CD段:回程 DA段:近休止
B
O
ω1
A-10
AB段:推程 BC段:远休止
D A
CD段:回程 DA段:近休止
O C
ω1
B
A-11
AB段:推程 BC段:远休止
D A
CD段:回程 δ0′ DA段:近休止
ω1
C
B-3
S2
O
A B
δ1
t
rb
O
D
360°
从动件位移线图
C
ω1
B-4
S2 B
《机械基础》(教程全集)4、5章

第4章
机构的组成及自由度计算学习目的与要求
主要内容:本章主要介绍运动副的概念与机构的组成、自由度的计 算及计算中应注意的问题;平面机构具有确定运动的条件。
学习目的与要求:正确理解运动副及约束的基本概念,掌握平面机
构自由度的计算方法,会识别复合铰链、局部自由度和常见的虚约 束,能判断机构是否具有确定的相对运动。 学习重点与难点:重点是平面机构自由度的计算及机构具有确定运 动的条件,难点是自由度计算中应注意的三个问题。
4.2平面机构的组成 一个机构是由若干个构件按设计者的思路组合而成,组合为机构 后应能完成或达到设计者指定的运动要求,为实现这一要求,就 要求在组合为机构时应符合一定的要求。
4.2.1平面机构的自由度 1.平面机构自由度的计算 一个作平面运动的自由构件有三个独立的运动,如图4-6所示的xoy 坐标系中,构件M可以沿x轴线和y轴线移动,还能在xoy平面内转动 (绕垂直于xoy平面的轴线z,图中未画出)。该运动构件在平面内的 独立运动数目简称为自由度。因此,作平面运动的自由构件具有三 个自由度。
图4-4 平面低副
图4-5 平面高副
对常用机构和传动进行运动分析时,常常不考虑构件复杂的外形和 运动副的具体构造,而只关注机构中构件的数目、运动副类型及相 对位置,这是因为实际机器构件的外形和构造各式各样,但它们对 机构的运动并没有影响。因此,在反映机构的运动特性时,只用简 单的线条和规定的符号表示构件和运动副,并按比例确定各运动副 的相对位置。这种表明机构中各构件间相对运动关系的图形,称为 机构运动简图,如图4-2所示。若只是为了表示机构的组成及运动原 理,而不按严格比例绘制的机构简图称为机构示意图。
图5-11 双摇杆机构
图5-14 可逆式座椅
(NEW)杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(修订版)

【解析】①两构件组成转动副时,在转动副的中心位置的相对速度为 0,即转动副的中心是其瞬心;
②当两构件组成移动副时,所有重合点的相对速度方向都平行于移动方 向,其瞬心位于导路垂线的无穷远处;
③当两构件组成滑动兼滚动的高副时,接触点的速度沿切线方向,其瞬 心应位于过接触点的公法线上。Leabharlann 1-2-25由图中可测量出
,
,
滑块的速度:
由
得,连杆的角速度:
1-18.图1-2-26所示平底摆动从动件凸轮机构,已知凸轮l为半径 r=20mm的圆盘,圆盘中心C与凸轮回转中心的距离lAC=15mm,
lAB=90mm, =10rad/s,求θ=0°和θ=180°时,从动件角速度 的数值 和方向。
10.3 名校考研真题详解 第11章 齿轮传动
11.1 复习笔记 11.2 课后习题详解 11.3 名校考研真题详解 第12章 蜗杆传动 12.1 复习笔记 12.2 课后习题详解 12.3 名校考研真题详解 第13章 带传动和链传动
13.1 复习笔记 13.2 课后习题详解 13.3 名校考研真题详解 第14章 轴 14.1 复习笔记 14.2 课后习题详解 14.3 名校考研真题详解 第15章 滑动轴承 15.1 复习笔记 15.2 课后习题详解
目 录
第1章 平面机构的自由度和速度分析 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第2章 平面连杆机构 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第3章 凸轮机构
3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解 第4章 齿轮机构 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解 第5章 轮 系 5.1 复习笔记 5.2 课后习题详解
机械原理复习题(第3、4、5、8章)

第3章平面机构的运动分析第4章平面机构的力分析第5章机械的效率和自锁第8章平面连杆机构及其设计一、填空题:α=,则传动角γ=___________度,传动角越大,1、铰链四杆机构的压力角040传动效率越___________。
2、下图为一对心曲柄滑块机构,若以滑块3为机架,则该机构转化为机构;若以构件2为机架,则该机构转化为机构。
3、移动副的自锁条件是;转动副的自锁条件是。
4、曲柄摇杆机构中,当和共线时出现死点位置。
:5、曲柄摇杆机构中,只有取为主动件时,才有可能出现死点位置。
处于死点位置时,机构的传动角γ=__________度。
6、平行四边形机构的极位夹角θ=,它的行程速比系数K=。
7、曲柄滑块机构中,若增大曲柄长度,则滑块行程将。
8、如下图所示铰链四杆机构,70mm,150mm,110mm,90mm====。
若以a b c da杆为机架可获得机构,若以b杆为机架可获得机构。
9、如图所示铰链四杆机构中,若机构以AB杆为机架时,为机构;以CD 杆为机架时,为机构;以AD杆为机架时,为机构。
~10、在平面四杆机构中,和为反映机构传力性能的重要指标。
11、在曲柄摇杆机构中,如果将杆作为机架,则与机架相连的两杆都可以作运动,即得到双曲柄机构。
12、在摆动导杆机构中,若以曲柄为原动件,该机构的压力角为,其传动角为。
13、相对瞬心与绝对瞬心的相同点是,不同点是;在由N个构件组成的机构中,有个相对瞬心,有个绝对瞬心。
/二、判断题:1、对于铰链四杆机构,当机构运动时,传动角是不变的。
()2、在四杆机构中,若有曲柄存在,则曲柄必为最短杆。
()3、平面四杆机构的行程速度变化系数K 1,且K值越大,从动件急回越明显。
()4、曲柄摇杆机构中,若以摇杆为原动件,则当摇杆与连杆共线时,机构处于死点位置。
()5、曲柄的极位夹角θ越大,机构的急回特性也越显著。
()6、在实际生产中,机构的“死点”位置对工作都是不利的,处处都要考虑克服。