广东省中考数学试卷答案与解析

广东省中考数学试卷答案与解析
广东省中考数学试卷答案与解析

2014年广东省中考数学试卷

参考答案与试题解析

一、选择题(本大题10小题,每小题3分,共30分)

1.(3分)(2014?汕头)在1,0,2,﹣3这四个数中,最大的数是()

A.1B.0C.2D.﹣3

考点:有理数大小比较.

分析:根据正数大于0,0大于负数,可得答案.

解答:解:﹣3<0<1<2,

故选:C.

点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.

2.(3分)(2014?汕头)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.

考点:中心对称图形;轴对称图形.

分析:根据轴对称图形与中心对称图形的概念求解.

解答:解:A、不是轴对称图形,不是中心对称图形.故A选项错误;

B、不是轴对称图形,也不是中心对称图形.故B选项错误;

C、是轴对称图形,也是中心对称图形.故C选项正确;

D、是轴对称图形,不是中心对称图形.故D选项错误.

故选:C.

点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

3.(3分)(2014?汕头)计算3a﹣2a的结果正确的是()

A.1B.a C.﹣a D.﹣5a

考点:合并同类项.

分析:根据合并同类项的法则,可得答案.

解答:解:原式=(3﹣2)a=a,

故选:B.

点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.

4.(3分)(2014?汕头)把x3﹣9x分解因式,结果正确的是()

A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)

考点:提公因式法与公式法的综合运用.

专题:因式分解.

分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.

解答:解:x3﹣9x,

=x(x2﹣9),

=x(x+3)(x﹣3).

故选:D.

点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

5.(3分)(2014?汕头)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9C.8D.7

考点:多边形内角与外角.

分析:根据多边形的内角和公式(n﹣2)?180°,列式求解即可.

解答:解:设这个多边形是n边形,根据题意得,

(n﹣2)?180°=900°,

解得n=7.

故选:D.

点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.

6.(3分)(2014?汕头)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()

A.B.C.D.

考点:概率公式.

分析:直接根据概率公式求解即可.

解答:解:∵装有7个只有颜色不同的球,其中3个红球,

∴从布袋中随机摸出一个球,摸出的球是红球的概率=.

故选:B.

点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.

7.(3分)(2014?汕头)如图,?ABCD中,下列说法一定正确的是()

A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC

考点:平行四边形的性质.

分析:根据平行四边形的性质分别判断各选项即可.

解答:解:A、AC≠BD,故A选项错误;

B、AC不垂直于BD,故B选项错误;

C、AB=CD,利用平行四边形的对边相等,故C选项正确;

D、AB≠BC,故D选项错误;

故选:C.

点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.

8.(3分)(2014?汕头)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()

A.B.C.D.

考点:根的判别式.

专题:判别式法.

分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.

解答:解:根据题意得△=(﹣3)2﹣4m>0,

解得m<.

故选:B.

点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

9.(3分)(2014?汕头)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17

考点:等腰三角形的性质;三角形三边关系.

专题:分类讨论.

分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.

解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;

②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.

故这个等腰三角形的周长是17.

故选:A.

点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.

10.(3分)(2014?汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()

A.函数有最小值B.

对称轴是直线x=

C.

D.当﹣1<x<2时,y>0

当x<,y随x的增大而减小

考点:二次函数的性质.

专题:压轴题;数形结合.

分析:根据抛物线的开口方向,利用二次函数的性质判断A;

根据图形直接判断B;

根据对称轴结合开口方向得出函数的增减性,进而判断C;

根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.

解答:解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;

B、由图象可知,对称轴为x=,正确,故B选项不符合题意;

C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;

D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.

故选:D.

点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.

二、填空题(本大题6小题,每小题4分,共24分)

11.(4分)(2014?汕头)计算:2x3÷x=2x2.

考点:整式的除法.

专题:计算题.

分析:直接利用整式的除法运算法则求出即可.

解答:解:2x3÷x=2x2.

故答案为:2x2.

点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.

12.(4分)(2014?汕头)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.

考点:科学记数法—表示较大的数.

专题:常规题型.

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答:解:将618 000 000用科学记数法表示为:6.18×108.

故答案为:6.18×108.

点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

13.(4分)(2014?汕头)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.

考点:三角形中位线定理.

分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.

解:∵D、E是AB、AC中点,

解答:

∴DE为△ABC的中位线,

∴ED=BC=3.

故答案为:3.

点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.

14.(4分)(2014?汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.

垂径定理;勾股定理.

考点:

分析:

作OC ⊥AB 于C ,连接OA ,根据垂径定理得到AC=BC=AB=4,然后在Rt △AOC 中利用勾股定理计算OC 即可. 解答: 解:作OC ⊥AB 于C ,连结OA ,如图, ∵

OC ⊥AB , ∴AC=BC=AB=×8=4, 在Rt △AOC 中,OA=5, ∴OC=

=

=3,

即圆心O 到AB 的距离为3.

故答案为:3.

点评:

本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.

15.(4分)(2014?汕头)不等式组

的解集是 1<x <4 .

考点: 解一元一次不等式组. 专题: 计算题. 分析: 分别求出不等式组中两不等式的解集,找出两解集的公共部分即可. 解答:

解:,

由①得:x <4; 由②得:x >1,

则不等式组的解集为1<x <4. 故答案为:1<x <4. 点评: 此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键. 16.(4分)(2014?汕头)如图,△ABC 绕点A 顺时针旋转45°得到△A ′B ′C ′,若∠BAC=90°,AB=AC=

,则图中阴影部分的面积等于

﹣1 .

考点:旋转的性质;等腰直角三角形.

专题:压轴题.

分析:

根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,

AF=FC′=AC′=1,进而求出阴影部分的面积.

解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,

∴AD⊥BC,B′C′⊥AB,

∴AD=BC=1,AF=FC′=AC′=1,

∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.

故答案为:﹣1.

点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.

三、解答题(一)(本大题3小题,每小题6分,共18分)

17.(6分)(2014?汕头)计算:+|﹣4|+(﹣1)0﹣()﹣1.

考点:实数的运算;零指数幂;负整数指数幂.

专题:计算题.

分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.

解答:解:原式=3+4+1﹣2

=6.

点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.

18.(6分)(2014?汕头)先化简,再求值:(+)?(x2﹣1),其中x=.

考点:分式的化简求值.

分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.

解答:

解:原式=?(x2﹣1)

=2x+2+x﹣1

=3x+1,

当x=时,原式=.

点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2014?汕头)如图,点D在△ABC的AB边上,且∠ACD=∠A.

(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);

(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).

考点:作图—基本作图;平行线的判定.

专题:作图题.

分析:(1)根据角平分线基本作图的作法作图即可;

(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.

解答:解:(1)如图所示:

(2)DE∥AC

∵DE平分∠BDC,

∴∠BDE=∠BDC,

∵∠ACD=∠A,∠ACD+∠A=∠BDC,

∴∠A=∠BDC,

∴∠A=∠BDE,

∴DE∥AC.

点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.

四、解答题(二)(本大题3小题,每小题7分,共21分)

20.(7分)(2014?汕头)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A 处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)

考点:解直角三角形的应用-仰角俯角问题.

专题:几何图形问题.

分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.

解答:解:∵∠CBD=∠A+∠ACB,

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BC?sin∠CBD=10×=5≈5×1.732=8.7(米).

答:这棵树CD的高度为8.7米.

点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.

21.(7分)(2014?汕头)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.

(1)求这款空调每台的进价(利润率==).

(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?

考点:分式方程的应用.

专题:销售问题.

分析:

(1)利用利润率==这一隐藏的等量关系列出方程即可;

(2)用销售量乘以每台的销售利润即可.

解答:解:(1)设这款空调每台的进价为x元,根据题意得:

=9%,

解得:x=1200,

经检验:x=1200是原方程的解.

答:这款空调每台的进价为1200元;

(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.

点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.

22.(7分)(2014?汕头)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

(1)这次被调查的同学共有1000名;

(2)把条形统计图补充完整;

(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?

考点:条形统计图;用样本估计总体;扇形统计图.

专题:图表型.

分析:(1)用没有剩的人数除以其所占的百分比即可;

(2)用抽查的总人数减去其他三类的人数,再画出图形即可;

(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.

解答:解:(1)这次被调查的同学共有400÷40%=1000(名);

故答案为:1000;

(2)剩少量的人数是;1000﹣400﹣250﹣150=200,

补图如下;

(3)18000×=3600(人).

答:该校18000名学生一餐浪费的食物可供3600人食用一餐.

点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

五、解答题(三)(本大题3小题,每小题9分,共27分)

23.(9分)(2014?广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反

比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;

(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

考点:反比例函数与一次函数的交点问题.

专题:代数几何综合题.

分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;

(2)根据待定系数法,可得函数解析式;

(3)根据三角形面积相等,可得答案.

解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,

当﹣4<x<﹣1时,一次函数大于反比例函数的值;

(2)设一次函数的解析式为y=kx+b,

y=kx+b的图象过点(﹣4,),(﹣1,2),则

解得

一次函数的解析式为y=x+,

反比例函数y=图象过点(﹣1,2),

m=﹣1×2=﹣2;

(3)连接PC、PD,如图,

设P(x,x+)

由△PCA和△PDB面积相等得

××(x+4)=×|﹣1|×(2﹣x﹣),

x=﹣,y=x+=,

∴P点坐标是(﹣,).

点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.

24.(9分)(2014?汕头)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.

(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)

(2)求证:OD=OE;

(3)求证:PF是⊙O的切线.

考点:切线的判定;弧长的计算.

专题:几何综合题;压轴题.

分析:

(1)根据弧长计算公式l=进行计算即可;

(2)证明△POE≌△ADO可得DO=EO;

(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.

解答:(1)解:∵AC=12,

∴CO=6,

∴==2π;

答:劣弧PC的长为:2π.

(2)证明:∵PE⊥AC,OD⊥AB,

∠PEA=90°,∠ADO=90°

在△ADO和△PEO中,

∴△POE≌△AOD(AAS),

∴OD=EO;

(3)证明:如图,连接AP,PC,

∵OA=OP,

∴∠OAP=∠OPA,

由(2)得OD=EO,

∴∠ODE=∠OED,

又∵∠AOP=∠EOD,

∴∠OPA=∠ODE,

∴AP∥DF,

∵AC是直径,

∴∠APC=90°,

∴∠PQE=90°

∴PC⊥EF,

又∵DP∥BF,

∴∠ODE=∠EFC,

∵∠OED=∠CEF,

∴∠CEF=∠EFC,

∴CE=CF,

∴PC为EF的中垂线,

∴∠EPQ=∠QPF,

∵△CEP∽△CAP

∴∠EPQ=∠EAP,

∴∠QPF=∠EAP,

∴∠QPF=∠OPA,

∵∠OPA+∠OPC=90°,

∴∠QPF+∠OPC=90°,

∴OP⊥PF,

∴PF是⊙O的切线.

点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.

25.(9分)(2014?汕头)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD

的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD 于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).

(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;

(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;

(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.

考点:相似形综合题.

专题:几何综合题;压轴题;动点型.

分析:(1)如答图1所示,利用菱形的定义证明;

(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;

(3)如答图3所示,分三种情形,需要分类讨论,分别求解.

解答:(1)证明:当t=2时,DH=AH=4,则H为AD的中点,如答图1所示.又∵EF⊥AD,

∴EF为AD的垂直平分线,

∴AE=DE,AF=DF.

∵AB=AC,AD⊥BC于点D,

∴AD⊥BC,∠B=∠C.

∴EF∥BC,

∴∠AEF=∠B,∠AFE=∠C,

∴∠AEF=∠AFE,

∴AE=AF,

∴AE=AF=DE=DF,即四边形AEDF为菱形.

(2)解:如答图2所示,由(1)知EF∥BC,

∴△AEF∽△ABC,

∴,即,解得:EF=10﹣t.

S△PEF=EF?DH=(10﹣t)?2t=﹣t2+10t=﹣(t﹣2)2+10(0<t<),

∴当t=2秒时,S△PEF存在最大值,最大值为10cm2,此时BP=3t=6cm.

(3)解:存在.理由如下:

①若点E为直角顶点,如答图3①所示,

此时PE∥AD,PE=DH=2t,BP=3t.

∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;

②若点F为直角顶点,如答图3②所示,

此时PF∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.

∵PF∥AD,∴,即,解得t=;

③若点P为直角顶点,如答图3③所示.

过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,

EM∥FN∥AD.

∵EM∥AD,∴,即,解得BM=t,

∴PM=BP﹣BM=3t﹣t=t.

在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.

∵FN∥AD,∴,即,解得CN=t,

∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.

在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,

即:(10﹣t)2=(t2)+(t2﹣85t+100)

化简得:t2﹣35t=0,

解得:t=或t=0(舍去)

∴t=.

综上所述,当t=秒或t=秒时,△PEF为直角三角形.

点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;

第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.

广东省2020年东莞市中考数学模拟试题(含答案)

广东省2020年东莞市中考数学模拟试题 含答案 一、选择题(本大题10小题,每小题3分,共30分) 1.﹣2的相反数是() A. 2 B.-2 C. 1 2 D. 1 2 2.下列“慢行通过,禁止行人通行,注意危险,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是() A B C D 3.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为() A. 0.67×10-5 B. 67×10-6 C.6.7×10-6 D.6.7×10-5 4.下列运算正确的是() A. 2a+3b=5ab B. 5a﹣2a=3a C. a2?a3=a6 D. (a+b)2=a2+b2 5.一组数据6,﹣3,0,1,6的中位数是() A. 0 B. 1 C.2 D. 6 6.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为() A. 30° B. 35° C. 40° D. 45° 7.不等式组的解集在数轴上表示正确的是() A B C D 8.一个几何体的三视图如图所示,则这个几何体是()

A. 三棱锥 B. 三棱柱 C. 圆柱 D. 长方体 9.如图,在⊙O 中, = ,∠AOB=50°,则∠ADC 的度数是( ) A .50° B .40° C .30° D .25° 10.已知二次函数c bx ax y ++=2 的图象如下面左图所示,则一次函数c ax y +=的图象大致 是( ) 二、填空题(本大题6小题,每小题4分,共24分) 11.在函数y= 中,自变量x 的取值范围是______________. 12.分解因式:2a 2 ﹣4a+2= . 13.计算:18?2 1 2 等于 . 14.圆心角为120°的扇形的半径为3,则这个扇形的面积为 。 15.如果关于x 的方程x 2 -2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 16.如图所示,双曲线k y x = 经过Rt △BOC 斜边上的点A,且满足2 3 AO AB =,与BC 交于点D, 21BOD S ?=,求k= 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程组 . 18.先化简,再求值: ÷( + 1),其中x 满足022 =--x x 19.如图,BD 是矩形ABCD 的一条对角线.

广东省2017年中考数学模拟试题(一).doc

2017 广东中考模拟试题(一)一、选择题(本题共10 题,每小题 3 分,共30 分) 1.-2 的相反数是( ) A. 1 2 B. 1 2.下列各式运算正确的是( ) A. 2 3 5 a a a B. 2 3 5 a a a C. 2 3 6 (ab ) ab D. 10 2 5 a a a 3.2015 年,某省进出口货物总值393.3 亿美元。将393.3 亿用科学记数法表示应是( ) A.8 393.3 10 B. 9 3.933 10 C. 10 3.933 10 D. 11 3.933 10 4.下列二次根式中,最简二次根式是( ) A.51 B .0 5 C . 5 D .50 5.如果代数式x x 有意义,那么x 的取值范围是( ) 1 A.x>1 B.x0且x 1 C.x 1 D.x>0 且x 1 6.如图,数轴上点P表示的数可能是( ) A. 3 B .7 C.-3.5 D.10 7.若 2 x 2 x 1 x mx n,则m n ( ) A.1 B . 2 C . 1 D .2 8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是( ) A.70 B.72 C.74 D .76 9.已知 1 y 如果用y 的代数式表示x,那么x= ( ) x 1 A. 1 y y B.1 y y C. y 1 y y D. 1 y 10.从边长为 a 的大正方形纸板中挖去一个边长为 b 的小正方形纸板后,将其裁成四个完全一样的梯形( 如图甲) ,然后拼成一个平行四边形( 如图乙) 。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ) A. 2 2 ( ) 2 a b a b B . 2 2 2 (a b) a 2ab b C. 2 2 2 (a b) a 2ab b D . 2 2 (a b)( a b) a b 二、填空题(本题共 6 题,每小题 4 分,共24 分)11.函数y x 1的自变量x 的取值范围是. 12.分解因式: 3 m m = . –

广东省中考数学试题及解析

( 2015年广东省中考数学试卷 一、选择题:本大题10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。 1.(3分)|﹣2|=() A.2B.) ﹣2 C.D. 2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为() 》 A. ×106B.×107C.×108D.×109 : 3.(3分)一组数据2,6,5,2,4,则这组数据的中位数是( ) A.2B.4C.? 5 D.6 4.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是() A.| 75° B.55°C.40°D.35° # 5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形) D. 正三角形 6.(3分)(﹣4x)2=() A.﹣8x2B.! 8x2 C.﹣16x2D.16x2 7.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是() 【 A. 0B.2C.(﹣3)0D.﹣5 -

8.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是() A.a≥2B.a≤2C.; a>2 D.a<2 9.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为() A.{ 6 B.7C.8D.9 ! 10.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是() A.B.C.^D. 二、填空题:本大题6小题,每小题4分,共24分。请将下列各题的正确答案填写在答题卡相应的位置上。 11.(4分)正五边形的外角和等于(度). ( 12.(4分)如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是.

最新广东中考数学模拟题及答案

D C B A 2017年中考数学模拟试题 (本试卷共120分,考试时间100分钟). 一、选择题(本大题10小题,每小题3分,共30分) 1、-8的立方根是( ) A 、2 B 、22 C 、-2 D 、-22 2、下列等式成立的是( ) A 、a 2+a 4=a 6 B 、a 4-a 2=a 2 C 、a 2.a 4=a 8 D 、224a a a =÷ 3、2016年我国国内生产总值约51.9亿元,51.9亿用科学计数法表示为( ) A. 91051.9? B. 9105.19? C. 101051.9? D. 10105.19? 4、下列图形中,不是..轴对称图形的是 ( ) 5、已知x=-3是方程2x-3a=3的根,那么a 的值是( ) A 、a=3 B 、a=1 C 、a= -3 D 、a= -1 6、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为 甲x =83分,乙x =83分,甲2S =230,乙2S =190,那么成绩较为整齐的是( )。 A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定 7、小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm , 那么这个的圆锥的侧面积是( ) A . 15cm B .20cm C .25cm D .30cm 8、如图,在△ABC 中,∠C=90°,EF ∥AB ,∠1=30°,则∠A 的度数为( )。 A.30° B.40° C.50° D.60° 第8题图 9、下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为 2 5的 是( )。 O B A (第7题图) 5cm 学校:_______________ 班级: 姓名: 学号: ………………………… 密 ……………………………………… 封 ………………………………… 线 ……………………………………

2019年广东省中考数学模拟试卷(含答案)

2019年广东省中考数学模拟试卷 一、选择题(共10小题,每小题3分,满分30分) 1.﹣2的相反数是() A.2 B.﹣2 C. D.﹣ 2.如图所示,a与b的大小关系是() A.a<b B.a>b C.a=b D.b=2a 3.下列所述图形中,是中心对称图形的是() A.直角三角形 B.平行四边形 C.正五边形 D.正三角形 4.据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜游客约27700000人,将27700000用科学记数法表示为() A.0.277×107 B.0.277×108 C.2.77×107 D.2.77×108 5.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF 为边正方形EFGH的周长为() A. B.2 C.+1 D.2+1 6.某公司的拓展部有五个员工,他们每月的工资分别是3000 元,4000元,5000元,7000元和10000元,那么他们工资的中位数是()A.4000元 B.5000元 C.7000元 D.10000元 7.在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.如图,在平面直角坐标系中,点A的坐标为(4,3), 那么cosα的值是() A. B. C. D. 9.已知方程x﹣2y+3=8,则整式x﹣2y的值为() A.5 B.10 C.12 D.15 10.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()

A. B. C. D. 二、填空题(共6小题,每小题4分,满分24分) 11. 9的算术平方根是. 12.分解因式:m2﹣4= . 13.不等式组的解集是. 14.如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).15.如图,矩形ABCD中,对角线AC=2,E为BC边上一 点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在 对角线AC上的B′处,则AB= . 16.如图,点P是四边形ABCD外接圆上任意一点,且不与 四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA、PB、 PC,若PA=a,则点A到PB和PC的距离之和AE+AF= . 三、解答题(共3小题,每小题6分,满分18分) 17.(6分)计算:|﹣3|﹣(2016+sin30°)0﹣(﹣)﹣1.

2018年广东中考数学试题及答案

2018年广东省中考数学试题 一、选择题 1、-3.14、2中,最小的是(.四个实数0、)131A.0 B. C. -3.14 D. 2 32. 据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000 用科学记数法表示为() 778810?0.442?10.14421.442?100.1442?101 DA.。B。C。 )5个相同正方体组合而成的几何体,它的主视图是( 3. 如图,由 A C B D ).数据1、5、7、4、8的中位数是(47 . D C.6 A.4 B.5 ) 5. 下列所述图形中,是轴对称图形但不是中心对称图形的是( .等腰三角形D C.平行四边形.菱形A.圆 B 3??x3x?1).不等式6的解集是( 2x??4x?4x?2x D B..C.A. ABC??ABCACADE?DEAB中,点的中点,则、与的别为边7. 在的面积之比为、1111 D.B. A .C.6234?40?C?CD?DEC?100?B?AB)8. 如图,∥,且,则的大小是(,??604030??50D. B .C..A 20?3m?x?xmx的取值范围为有两个不相等的实数根,9. 关于则实数的一元二次方程 9999?m?m?mm? D..A C B..4444CABCDDBAPA路径匀速→→.如同,点是菱形边上的一动点,它从点→出发沿10xx yyPPAD?D的函数图象大致为关于点运动时间为,设运动到点的面积为,,则 1 A y y y y D P x

x x x O O O O B C D C B A 二、填空题?100ABAB11. 同圆中,已知弧所对的圆心角是,则.弧所对的圆周角是 2?1?2x?x.分解因式:12. ?x5?1xx?和,则.13. 一个正数的平方根分别是O 0?b?1a?b??1a?,则.已知14. D A 2ABCDBC?4CD?AD为直径的,以如图,矩形,中,15. B C E BCOBDE积面则阴影半圆部与分相切于点,连接的,.为 3?yBOA?BA0x?在双曲线2,)上,点,顶点(16. 如图,已知等边的坐标为( 1111xBABAAABOAABBx作交,得到∥∥交双曲线于点,过轴于点0).过作22122121112ABBAAABBAA?BABB∥交第二个等边作交双曲线于点∥;过作,过323333222211221B?BABBx轴于点,得到第三个等边.;以此类推,…,则点的坐标为63233 bBnAm?i、(3,0),、…,、1略解:设(2,),y iiiii 3bb??bb1221?)b(bn???m?b,,则A212121 222A2 A3 32222?3mn(b?b)?4b??b由,得,x1212 O BB4B1 2 3 28?b2?b∵,,∴212222222264??b4??b4??b4??bbbbb?b2.,从而得,,,同理,得665432345 2

2020年广东省中考数学模拟试卷

2020年广东省中考数学模拟试卷 一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列说法正确的是() A.无限小数都是无理数 B.没有立方根 C.正数的两个平方根互为相反数 D.﹣(﹣13)没有平方根 2.(3分)下列轴对称图形中,对称轴的数量小于3的是() A.B. C.D. 3.(3分)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为() A.25×103B.2.5×103C.2.5×104D.0.25×105 4.(3分)在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是() 金额(元)20303550100 学生数(人)20105105 A.20元B.30元C.35元D.100元 5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为() A.B.C.D.

6.(3分)如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为() A.108°B.120°C.136°D.144° 7.(3分)已知x>y,则下列不等式不成立的是() A.x﹣6>y﹣6B.3x>3y C.﹣2x<﹣2y D.﹣3x+6>﹣3y+6 8.(3分)若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1B.1或﹣1C.1D.2 9.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=5cm,则菱形ABCD的周长为() A.5cm B.10cm C.20cm D.40cm 10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为() A.B.2C.D.2

2020年广东省实验中学中考数学一模试卷(解析版)

2020年广东省实验中学中考数学一模试卷 一.选择题(共10小题) 1.0这个数() A.是正数B.是负数C.不是有理数D.是整数 2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米. A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011 3.下列各组数中互为相反数的是() A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2| 4.下列计算,正确的是() A.x4﹣x3=x B.x5÷x3=x2C.x?x3=x3D.(xy2)2=xy4 5.在下列因式分解的过程中,分解因式正确的是() A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4) C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)2 6.已知x=3是关于x的方程ax+2x﹣3=0的解,则a的值为() A.﹣1B.﹣2C.﹣3D.1 7.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为() A.y=2(x+2)2+3B.y=2(x﹣2)2+3 C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3 8.已知反比例函数图象如图所示,下列说法正确的是() A.k>0 B.y随x的增大而减小

C.若矩形OABC面积为2,则k=2 D.若图象上两个点的坐标分别是M(﹣2,y1),N(﹣1,y2),则y1<y2 9.如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为() A.44cm2B.36cm2C.96cm2D.84cm2 10.关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1B.k<1且k≠0C.k≤1且k≠0D.k≥1 二.填空题(共6小题) 11.使式子有意义的x的取值范围是. 12.把多项式9m2﹣36n2分解因式的结果是. 13.在平面直角坐标系中,若点M(﹣2,3)与点N(x,3)之间的距离是5,则x的值是.14.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大. 15.实数a在数轴上的位置如图所示,化简|a﹣2|+=. 16.二次函数y=ax2+bx+c(a<0)的图象与x轴的两个交点A、B的横坐标分别为﹣3、1,与y轴交于点C,下面四个结论: ①16a+4b+c>0: ②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1<y2; ③c=3a; ④若△ABC是等腰三角形,则b=﹣或﹣. 其中正确的有.(请将正确结论的序号全部填在横线上) 三.解答题(共9小题) 17.计算:.

2020年广东省中考数学试卷(含解析)打印版

2020年广东省中考数学试卷 一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)9的相反数是() A.﹣9B.9C.D.﹣ 2.(3分)一组数据2,4,3,5,2的中位数是() A.5B.3.5C.3D.2.5 3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为() A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2) 4.(3分)若一个多边形的内角和是540°,则该多边形的边数为() A.4B.5C.6D.7 5.(3分)若式子在实数范围内有意义,则x的取值范围是() A.x≠2B.x≥2C.x≤2D.x≠﹣2 6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4 7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3 8.(3分)不等式组的解集为() A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1 9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为() A.1B.C.D.2 10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()

A.4个B.3个C.2个D.1个 二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.(4分)分解因式:xy﹣x=. 12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=. 13.(4分)若+|b+1|=0,则(a+b)2020=. 14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为. 15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为. 16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m. 17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.

2020年广东省中考数学模拟试卷(1)

中考数学模拟试卷 题号一二三四总分 得分 一、选择题(本大题共10小题,共30.0分) 1.在0.3,-3,0,-这四个数中,最大的是() A. 0.3 B. -3 C. 0 D. - 2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名 片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为() A. 3.5×104 B. 35×103 C. 3.5×103 D. 0.35×105 3.如图所示的几何体左视图是() A. B. C. D. 4.一组数据3、-2、0、1、4的中位数是() A. 0 B. 1 C. -2 D. 4 5.下列图形既是轴对称图形,又是中心对称图形的是() A. B. C. D. 6.用不等式表示图中的解集,其中正确的是() A. x≥-2 B. x≤-2 C. x<-2 D. x>-2 7.如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的 面积是a,则四边形BDEC的面积是() A. a B. 2a C. 3a D. 4a 8.已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度 数为()

A. 140° B. 110° C. 90° D. 30° 9.如果关于x的一元二次方程x2-x+m-1=0有实数根,那么m的取值范围是() A. m>2 B. m≥3 C. m<5 D. m≤5 10.如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s 的速度沿AC向点C运动,到达点C停止;同时点Q从点 A出发,以2cm/s的速度沿AB-BC向点C运动,到达点C 停止,设△APQ的面积为y(cm2),运动时间为x(s), 则下列最能反映y与x之间函数关系的图象是() A. B. C. D. 二、填空题(本大题共7小题,共28.0分) 11.如图⊙O中,∠BAC=74°,则∠BOC=______. 12.分解因式:3y2-12=______. 13.若一个正数的平方根是2a-1和-a+2,则这个正数是______. 14.已知x、y满足+|y+2|=0,则x2-4y的平方根为______. 15.矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与 DE相切于点E(如图),延长DE交BC于F,若BF=, 则阴影部分的面积为______. 16.如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2, 0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到

2020广东省中考数学模拟试卷

2020中考模拟卷 数学 (考试时间:90分钟试卷满分:120分) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。 5.考试范围:广东中考全部内容。 第Ⅰ卷 一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 12的值在 A.0到1之间B.1到2之间C.2到3之间D.3到4之间 【答案】B. 【解析】Q34 ∴<,故选B. ∴<,122 2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是 A. B. C. D.

【答案】B . 【解析】A 、新图形不是中心对称图形,故此选项错误; B 、新图形是中心对称图形,故此选项正确; C 、新图形不是中心对称图形,故此选项错误; D 、新图形不是中心对称图形,故此选项错误; 故选B . 3.下列计算正确的是 A .22321x x -= B C .1 x y x y ÷=g D .235a a a =g 【答案】D . 【解析】A 、原式2x =,不符合题意;B 、原式不能合并,不符合题意; C 、原式2x y = ,不符合题意;D 、原式5 a =,符合题意,故选D . 4.如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+,②αβ-,③βα-, ④360αβ?--,AEC ∠的度数可能是 A .①②③ B .①②④ C .①③④ D .①②③④ 【答案】D . 【解析】(1)如图, 由//AB CD ,可得1AOC DCE β∠=∠=, 11AOC BAE AE C ∠=∠+∠Q ,1AE C βα∴∠=-. (2)如图,

【2020年】广东省中考数学模拟试题(含答案)

2020年广东省中考数学模拟试题 一、选择题(本题共10题,每小题3分,共30分) 1.方程4x -1=3的解是 ( ) A .x =1 B .x =-1 C .x =-2 D .x =2 2.已知,a b 满足方程组51234a b a b +=??-=? ,则a b +的值为( ) A . 4- B . 4 C . 2- D . 2 3.已知 3243x y k x y k +=,??-=+, ? 如果x 与y 互为相反数,那么 ( ) A .k =0 B .34k =- C .3 2k =- D .3 4k = 4.不等式组 221 x x -≤,??-

广东省2020年中考数学模拟冲刺试题(含答案)

最新广东省2020年中考数学模拟试题 含答案 一、选择题(本题共10题,每小题3分,共30分) 1.-2的相反数是 ( ) A .12- B .12 C .-2 D .2 2.下列各式运算正确的是 ( ) A .235a a a += B .235a a a ?= C .236()ab ab = D .1025a a a ÷= 3.2015年,某省进出口货物总值393.3亿美元。将393.3亿用科学记数法表示应是 ( ) A .8393.310? B .93.93310? C .103.93310? D .113.93310? 4.下列二次根式中,最简二次根式是 ( ) A . 1 5 B .05. C .5 D .50 5.如果代数式1x x -有意义,那么x 的取值范围是 ( ) A .x >1 B .0x ≥且1x ≠ C .1x ≥ D .x >0且1x ≠ 6.如图,数轴上点P 表示的数可能是 ( ) A .3- B .7- C .-3.5 D .10- 7.若()()2 21x x x mx n +-=++,则m n +=( ) A . 1 B . 2- C . 1- D . 2 8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律, m 的值是 ( ) A .70 B .72 C .74 D .76 9.已知11x y +=,如果用y 的代数式表示x ,那么 x = ( ) A .1y y + B .1y y - C .1 y y - D .1y y + 10.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板

后,将其裁成四个完全一样的梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为 ( ) A .222()a b a b -=- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+ D .22()()a b a b a b +-=- 二、填空题(本题共6题,每小题4分,共24分) 11.函数1y =的自变量x 的取值范围是 . 12.分解因式:3– m m = . 13.分解因式:244a b b -= . 14.若29x mx ++是一个完全平方式,那么常数m = . 15.已知2013 520144m n =,=-,则代数式(m +2n )-(m -2n )的值为 . 16. 若 ()() 1 21212121 a b n n n n = +-+-+,对任意自然数n 都成立,则a = ,b = ; 计算:11111335571921 m = +++???+=???? . 三、解答题(一)(本题共3题,每小题6分,共18分) 17.计算:(2014-π0)-|-5| . 18.计算 .

2015年广东省深圳市中考数学模拟试卷(二)

2015年广东省深圳市中考数学模拟试卷(二) 一、选择题(共12小题,每小题3分,共36分) 1.(3分)(2015?深圳模拟)在实数0.3,0,,,0.123456…中,无理数的个 2.(3分)(2009?凉山州)一个正方体的平面展开图如图所示,将它折成正方体后“建” 字对面是( ) 3.(3分)(2015?深圳模拟)北京时间2010年4月14日07时49分,青海省玉树县 发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的 4.(3分)(2015?深圳模拟)如果一个有理数的平方根和立方根相同,那么这个数是 5. ( 3分)(2015?深圳模拟)一组数据:2,4,5,6,x 的平均数是4,则这组数的 6.(3分)(2015?永州模拟)如图:下列四个图案中既是轴对称图形,又是中心对称 B

7.(3分)(2015?深圳模拟)一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是下 B 8.(3分)(2015?深圳模拟)下列各式计算正确的是() = 9 .(3分)(2009?临沂)从1,2,3,4这四个数字中,任意抽取两个不同数字组成 B 10.(3分)(2007?巴中)“五?一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x元,男装部购买 . . 11.(3分)(2009?鄂州)如图,直线AB:y=x+1分别与x轴、y轴交于点A,点 B,直线CD:y=x+b分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()

2019年广东省中考数学试卷与答案

2019年广东省中考数学试卷 一、选择题(本大题10小题,每小题3分,共30分) 1.﹣2的绝对值是() A.2B.﹣2C.D.±2 2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106 B.2.21×105C.221×103D.0.221×106 3.如图,由4个相同正方体组合而成的儿何体,它的左视图是() A.B.C.D. 4.下列计算正确的是() A.b6+b3=b2B.b3?b3=b9C.a2+a2=2a2D.(a3)3=a6 5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是() A.B.C.D. 6.数据3,3,5,8,11的中位数是() A.3B.4C.5D.6 7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是() A.a>b B.|a|<|b|C.a+b>0D.<0 8.化简的结果是() A.﹣4B.4C.±4D.2 9.已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1?x2=2 10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM 交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S

:S△ADM=1:4.其中正确的结论有() △AFN A.1个B.2个C.3个D.4个 二.填空题(本大题6小题,每小题4分,共24分) 11.计算:20190+()﹣1=. 12.如图,已知a∥b,∠1=75°,则∠2=. 13.一个多边形的内角和是1080°,这个多边形的边数是. 14.已知x=2y+3,则代数式4x﹣8y+9的值是. 15.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号). 16.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示). 三.解答题(一)(本大题3小题,每小题6分,共18分)

(完整版)2018年广东省汕头市中考数学模拟试卷(一)

2018年广东省汕头市中考数学模拟试卷(一) 一、选择题 1.(3分)﹣2018的绝对值是() A.±2018 B.﹣2018 C.D.2018 2.(3分)一种病毒长度约为0.000056mm,用科学记数法表示这个数为()A.5.6×10﹣6B.5.6×10﹣5C.0.56×10﹣5D.56×10﹣6 3.(3分)如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是() A.B.C.D. 4.(3分)下列计算正确的是() A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2 C.3a2+2a3=5a5D.a6÷a3=a3 5.(3分)某旅游公司2012年三月份共接待游客16万人次,2012年五月份共接待游客81万人次.设每月的平均增长率为x,则可列方程为() A.16(1+x)2=81 B.16(1﹣x)2=81 C.81(1+x)2=16 D.81(1﹣x)2=16 6.(3分)一元二次方程x2+2x﹣4=0的根的情况为() A.没有实数根B.有两个相等的实数根 C.有两个不相等的实数根D.无法确定 7.(3分)在△ABC中,∠C=90°,如果AB=6,BC=3,那么cosB的值是()A.B.C.D. 8.(3分)以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是() A.第一象限B.第二象限C.第三象限D.第四象限 9.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点

B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于() A.60m B.40m C.30m D.20m 10.(3分)如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B 与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了() A.0.9米B.1.3米C.1.5米D.2米 二、填空题 11.(3分)函数y=的自变量x的取值范围为. 12.(3分)因式分解:m3n﹣9mn=. 13.(3分)分式方程的解为x=. 14.(3分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为. 15.(3分)若+(b+4)2=0,那么点(a,b)关于原点对称点的坐标是.16.(3分)如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD

2017年广东省中考数学试卷及解析

2017 年广东省中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30 分) 1.(3分) 5 的相反数是() A. B.5 C.﹣ D.﹣ 5 2.(3 分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示, 2016 年广东省对沿线国家的实际投资额超过 4000000000 美元,将 4000000000 用科学记数法表示为() A.0.4×109B.0.4×1010 C.4×109 D.4×1010 3.(3分)已知∠ A=70°,则∠ A的补角为() A.110° B.70°C.30° D.20° 4.(3 分)如果 2 是方程 x2﹣3x+k=0 的一个根,则常数 k 的值为() A.1 B.2 C.﹣1 D.﹣ 2 5.(3 分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为: 90,85,90, 80,95,则这组数据的众数是()A.95 B.90 C.85 D.80 6.(3 分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形D.圆 7.( 3 分)如图,在同一平面直角坐标系中,直线 y=k1x( k1≠0)与双曲线 y= (k2≠0)相交于 A,B 两点,已知点 A 的坐标为(1,2),则点 B的坐标为() A.(﹣ 1,﹣ 2) B.(﹣ 2,﹣ 1)C.(﹣1,﹣1)D.(﹣ 2,﹣ 2)8.(3 分)下列运算正确的是() 2 3 2 5 4 2 6 4 2 4

A.a+2a=3a B.a ?a=a C.(a )=a D. a +a =a

2021年广东省中考数学模拟预测试卷(附答案).doc

广东省中考数学模拟预测试卷说明:把答案填涂在答题卡上,满分共120分,考试时间100分钟。一、选择题(本大题包括10小题,共30分。.) 1. 4的算术平方根是() A.2 ±B.2 C. 2 ±D .2 2. 0.000345用科学记数法表示为() A.0.345×10-3 B.3.45×104 C.3.45×10-4 D.34.5×10-5 3.下列图形中,是中心对称图形的是 ( ) A. B. C. D. 4.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°, 则∠BOD的度数是() A. 20° B.40° C.50° D.80° 5.下列说法正确的是() A.要调查人们对“低碳生活”的了解程度,宜采用普查方式; B.一组数据3,4,4,6,8,5的众数和中位数都是3; C.必然事件的概率是100%,随机事件的概率是50%; D.若甲组数据的方差2=0.128 S 甲 ,乙组数据的方差2=0.036 S 乙 , 则乙组数据比甲组数据稳定 6.下列运算正确的是(). A.ab b a3 2= + B.6 2 3a a a= ? C.a a a= ÷3 3 D.()2 225 5a a= 7.如图是由几块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的 个数,则该几何体的主视图 ...是() 8.把抛物线2 y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为() A.2 (1)3 y x =---B.2 (1)3 y x =-+- C.2 (1)3 y x =--+D.2 (1)3 y x =-++ 9.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是() A、 4 7 B、 3 7 C、 3 4 D、 1 3 A B C D

2021年广东省中考数学模拟试卷五

2021年广东省中考数学模拟试卷五 一、选择题(本大题共10小题,每小题3分,共30分) 1.5的相反数是() A.B.5 C.﹣ D.﹣5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为() A.0.4×109B.0.4×1010C.4×109D.4×1010 3.已知∠A=70°,则∠A的补角为() A.110°B.70°C.30°D.20° 4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为() A.1 B.2 C.﹣1 D.﹣2 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是() A.95 B.90 C.85 D.80 6.下列所述图形中,既是轴对称图形又是中心对称图形的是() A.等边三角形B.平行四边形C.正五边形D.圆 7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为() A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2) 第7题第9题第10题 8.下列运算正确的是() A.a+2a=3a2B.a3?a2=a5 C.(a4)2=a6D.a4+a2=a4

9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50° 10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结 论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是() A.①③B.②③C.①④D.②④ 二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:a2+a=. 12.一个n边形的内角和是720°,则n=. 13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”) 14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是. 15.已知4a+3b=1,则整式8a+6b﹣3的值为. 16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为. 三、解答题(本大题共3小题,每小题6分,共18分) 17.计算:|﹣7|﹣(1﹣π)0+()﹣1.

相关文档
最新文档