氨基酸的转运
氨基酸分解产物的代谢

然后谷氨酰胺通过血液循环运送到肾脏,经谷氨酰胺 酶作用分解成谷氨酸及氨,此氨是尿氨的主要来源, 占尿中氨总量的60%。
或者在运送到肝脏被利用。
谷氨酰胺是中性无毒物质,容易通过细胞膜,是氨的主要运输 形式;而谷氨酸带有负电荷,则不能通过细胞膜。
这里需注意的是在肌肉组织中,也可利用丙氨酸将氨运送到 肝脏。这以过程称为葡萄糖-丙氨酸循环。在此循环中,氨先转 化为谷氨酸的氨基,谷氨酸又与丙酮酸进行转氨形成丙氨酸。 丙氨酸在PH近于7的条件下是中性不带电荷的化合物,通过血 液运送到肝脏,再与α-酮戊二酸经转氨作用又变为丙酮酸和 谷氨酸。在肌肉中,所需的丙酮酸由糖酵解提供,在肝脏中, 多余的丙酮酸又可通过糖异生作用转化为葡萄糖。
2、转变成糖和脂肪:当体内不需将酮酸再合成
氨基酸,并且体内的能量供给又充分时,其酮酸可转变成 糖和脂肪,这已为动物实验所证明。在体内可转变成糖的 氨基酸称为生糖氨基酸,按糖代谢途径进行代谢;能转变 为酮体的氨基酸称为生酮氨基酸,按脂肪酸代谢途径进行 代谢;二者兼有的称为生糖兼生酮氨基酸,部分按糖代谢、 部分按脂肪酸途径进行代谢。
Gln+H2O Gln 酶Glu + NH4+
尿素循环
▪ 以Ala转运(葡萄糖-丙氨酸转运:肌肉)
NH4++ -酮戊二酸+NADPGHlu脱+氢H酶+ Glu+NAD丙P酮+酸+转H氨2酶O
Glu+丙酮酸 在肌肉 -酮戊二酸+Ala 丙酮酸转氨酶
尿素循环
在肝脏
在植物体内具有天冬酰胺合成酶,它 可催化天冬氨酸与氨作用形成天冬酰胺, 故是植物体内储氨的形式。当需要时, 其氨基又可通过天冬酰胺酶作用而分解 出来,供合成氨基酸之用。此酶在动物 体内也有发现,但在动物体内的作用时 不重要的。
氨基酸代谢

三、营养必需氨基酸决定蛋白质的营养价值 1、必需氨基酸(essential amino acid)
体内需要而又不能自身合成,必须 由食物供给的氨基酸。
必需氨基酸(8种):
缬 异亮 亮 苯丙 蛋 色 苏 赖 Val、 Ile、Leu、 Phe、 Met、Trp 、Thr、Lys 携一 两 本 淡 色 书 来
临床意义:ALT在肝组织含量高,急性肝炎 患者血清ALT升高。
谷氨酸 + 草酰乙酸 ASTa-酮戊二酸 +天冬氨酸 临床意义: AST在心肌组织含量较高,心肌 梗死患者血清AST可升高。
43
3、特点 *只有氨基的转移,没有游离氨的生成
* 催化的反应可逆
4、生理意义 是体内合成非必需氨基酸的重要途径
组胺 色胺 酪胺 尸胺
24
• 假神经递质(false neurotransmitter)
某些物质结构与神经递质结构相似,可取代正 常神经递质从而影响脑功能,称假神经递质。
苯乙胺
苯乙醇胺
酪胺
β-羟酪胺
• β-羟酪胺和苯乙醇胺结构类似儿茶酚胺,它们 可取代儿茶酚胺与脑细胞结合,但不能传递神经 冲动,使大脑发生异常抑制。
41
P186
2、转氨酶及辅酶 转氨酶的辅酶是磷酸吡哆醛
体内存在多种转氨酶,以L-谷氨酸与a酮酸的转氨酶最为重要。如:丙氨酸氨基转 移酶( ALT ,又称谷丙转氨酶,GPT)和 天冬氨酸氨基转移酶( AST ,又称谷草转 氨酶,GOT )。
42
P186
谷氨酸 + 丙酮酸 ALTa-酮戊二酸 + 丙氨酸
Digestion, Absorption and Putrefaction of Proteins
蛋白质的代谢过程

蛋白质的代谢过程
蛋白质代谢涉及到三个主要的过程:蛋白质合成、蛋白质降解、氨基酸转运。
1. 蛋白质合成(蛋白质合成作用)
蛋白质合成是指通过翻译机制,将mRNA上的信息转换为蛋白质的过程。
合成蛋白质时,先是需要氨基酸的输入,然后逐个将氨基酸通过肽键连接起来形成多肽链,最终形成具有特定功能的三维蛋白质。
2. 蛋白质降解
蛋白质的降解是指将蛋白质分解为氨基酸的过程。
这个过程涉及到多个酶类,比如蛋白酶、肽酶等。
蛋白质降解的目的是使有害的、老化的蛋白质分解并重新利用其组成的氨基酸。
3. 氨基酸转运
氨基酸转运指的是通过氨基酸转运体将氨基酸从细胞外部或内部转移到细胞内部(如细胞质和内质网),以满足蛋白质合成和其他代谢过程对氨基酸的需求。
这个过程是由多个运输蛋白协同完成的。
植物细胞中氨基酸转运蛋白的一些已知或未知的功能

植物细胞中氨基酸转运蛋白的一些已知或未知的功能膜蛋白对于氨基酸在细胞和细胞器之间的进出是非常必要的。
虽然很多推定的氨基酸转运蛋白已经被识别,但仅仅只有一些蛋白对植物细胞氮元素的转运功能起作用。
那些研究证实内流系统在细胞和整个植物水平的氨基酸分离中有着基础性的作用。
生理学的数据进一步表明氨基酸转运蛋白是植物新陈代谢的主要调节者,它们的活性会影响到植物的生长和发展。
相反地,氨基酸外排系统和细胞之间的转运载体的分子机制的研究还很少。
同样地,氨基酸转运蛋白的功能和参与氨基酸信号的转运蛋白的调控也是知之甚少。
未来的研究需要确认缺失的部分,阐明对整个植物生理和生产能力具有重要作用的氨基酸转运蛋白。
引言植物中的氨基酸有着高度不同,扮演着必要的角色。
通过构建酶和蛋白的模块,它们为植物的新陈代谢和结构提供了重要的成分。
此外,它们还是对植物起重要作用复合物的前体或者氮元素的提供者,这些复合物包括核苷酸、叶绿素、激素和次级代谢物。
植物可以从土壤中直接吸收氨基酸或者将无机氮(硝酸盐和铵)合成氨基酸。
20种氨基酸中很多是在根部和叶子中的质体中合成,但它们也会在细胞内其他细胞器中合成,包括线粒体、细胞质和过氧化物体。
依据合成,氨基酸会被用于新陈代谢,瞬时贮存,或者转运到韧皮部进行营养生长和生殖生长。
氨基酸在细胞或者细胞器,以及从源到汇器官的运输在细胞或亚细胞膜中都需要有外排或内流转运功能的蛋白。
不同转运蛋白家族对于氨基酸在植物细胞中的内流作用已经被识别至少在18年前,第一个植物氨基酸转运蛋白AAP1/NAT2(氨基酸透性酶1)在拟南芥中被识别。
AAP1属于这个家族的8大成员之一(AAP1-8),它们分别转运酸性、中性和碱性的氨基酸。
截止到现在,建立在不同的互补实验和序列同源性的基础上,有超过60种的可推测的氨基酸转运体已经在拟南芥中被识别出来了。
转运体在不同系统中通过功能分析表达和局部研究,进一步表征,大部分参与了植物细胞吸收氨基酸的过程,它们属于AAP(氨基酸透性酶)、LHT(类似赖氨酸和组氨酸转运蛋白)、ProT(脯氨酸转运蛋白)、ANT1-like(类似ANT1的芳香族和中性氨基酸转运蛋白)、GAT(γ-氨基丁酸转运蛋白)和CAT(阳离子氨基酸转运蛋白)。
氨基酸代谢

第十二章 氨基酸代谢第一节 体内氨基酸的来源一、 外源氨基酸(一)蛋白质在胃和肠道被消化被成氨基酸和寡肽1.场所一:胃酶类:胃蛋白酶原、胃酸、胃蛋白酶消化程度:多肽及少量氨基酸2.场所二:小肠酶类:肠激酶、胰液蛋白酶(原)、内/外肽酶 消化程度:氨基酸和小肽——小肠是蛋白质消化的主要部位3.场所三:小肠粘膜细胞内酶类:寡肽酶(例如氨基肽酶及二肽酶等) 消化程度:最终产生氨基酸。
(二)氨基酸的吸收是一个主动转运过程吸收部位:主要在小肠粘膜细胞 吸收形式:氨基酸、寡肽、二肽 吸收机制:耗能的主动吸收过程1.方式一:载体蛋白与氨基酸、Na+组成三联体,由ATP 供能将氨基酸、Na+转入细胞内,Na+再由钠泵排出细胞。
2.方式二:γ-谷氨酰基循环(三)未被吸收的蛋白质在肠道细菌作用下发生腐败作用腐败作用的产物大多有害,如胺、氨、苯酚、吲哚、硫化氢等;也可产生少量的脂肪酸及维生素等可被机体利用的物质,对机体有一定的营养作用。
组胺和尸胺:降血压;酪胺:升血压;酪胺和苯乙胺:假神经递质(肝性脑病)二、 内源氨基酸(一)蛋白质的降解及其半寿期1.半寿期:蛋白质降低其原浓度一半所需要的时间,用t1/2表示。
2. PEST 序列:脯-谷-丝-苏,快速降解标志序列。
(二)真核细胞内有两条主要的蛋白质的降解途径胃蛋白胃蛋白酶 + 多肽碎片胃酸、胃蛋白酶 (十二指肠分泌,胆汁激活)1.外在和长寿蛋白质在溶酶体通过ATP-非依赖途径降解 (1)不依赖ATP (2)利用溶酶体中的组织蛋白酶降解外源性蛋白、膜蛋白和长寿命的细胞内蛋白2.异常和短寿蛋白质在蛋白酶体通过需要ATP 的泛素途径降解 (1)依赖ATP (2)泛素共价地结合于底物蛋白质,蛋白酶体特异性地识别被泛素标记的蛋白质并将其迅速降解,泛素的这种标记作用是非底物特异性的,称为泛素化。
(3)降解异常蛋白和短寿命蛋白 3*.P53蛋白:细胞内的分子警察由这种基因编码的蛋白质是一种转录因子,其控制着细胞周期的启动。
简述葡萄糖或氨基酸跨膜转运过程

简述葡萄糖或氨基酸跨膜转运过程
葡萄糖或氨基酸是细胞内重要的营养物质,而它们无法通过细胞膜直接进入细胞内。
因此,细胞需要通过跨膜转运蛋白来将它们引入细胞内。
跨膜转运蛋白一般分为两类:一类是直接将物质从外部移入细胞内,另一类则是将物质从细胞内向外移动。
这些蛋白质通常具有高度选择性,只能将特定的物质转运入细胞内或转运出细胞。
葡萄糖跨膜转运过程主要涉及到两种蛋白质:GLUT和SGLT。
GLUT是一类被动转运蛋白,它能将葡萄糖从高浓度区域移动到低浓度区域。
而SGLT则是一类主动转运蛋白,它能将葡萄糖从低浓度区域移动到高浓度区域,这个过程需要耗费ATP。
氨基酸跨膜转运则涉及到不同的蛋白质。
一类是Na+/氨基酸转运蛋白,它能够利用细胞内的Na+浓度梯度将氨基酸转运入细胞内。
另一类则是H+/氨基酸转运蛋白,它利用细胞内外的pH差异来将氨基酸转运入或转运出细胞。
总之,葡萄糖或氨基酸跨膜转运是细胞内充分利用外部营养物质的关键过程,而这些过程需要复杂的跨膜转运蛋白来完成。
- 1 -。
氨基酸代谢库名词解释

氨基酸代谢库名词解释氨基酸代谢库是指人体或其他生物体内存储和调节氨基酸的机制和过程。
氨基酸是构成蛋白质的基本单位,同时也参与体内许多生化反应和代谢过程。
1. 氨基酸:氨基酸是一类有机化合物,它们是蛋白质的基本组成单位,由一个氨基(氮基)和一个羧基(酸基)以及一个侧链组成。
2. 蛋白质合成:氨基酸代谢库参与蛋白质的合成过程。
在细胞内,质体上的核糖体通过翻译机制使mRNA导出的信息指导合成蛋白质。
3. 蛋白质降解:氨基酸代谢库参与蛋白质降解过程。
细胞中的蛋白质会被降解为氨基酸,这些氨基酸可以再次被利用来合成新的蛋白质或参与能量产生。
4. 氨基酸转运:涉及氨基酸的转运过程,将氨基酸从一个细胞或组织向另一个细胞或组织转移,以满足不同部位对氨基酸的需求。
5. 氨基酸羧化:氨基酸的羧基(酸基)发生羧化反应,形成酮酸(α-酮基酸),从而提供能量给细胞。
6. 氨基酸脱羧:氨基酸中的酮酸部分经过脱羧反应,脱羧生成的氨基团进一步代谢,产生尿素等尿素循环中所需的物质。
7. 氨基酸互相转化:有些氨基酸可以通过代谢途径相互转化。
例如,天冬氨酸和α-酮戊二酸可以相互转化,这是一种重要的二氢堆积过程。
8. 氨基酸降解产物:氨基酸经过摄入、合成、降解等过程,最终会产生多种代谢产物,如尿素、脱氧胆酸、酪氨酸等。
9. 氨基酸代谢疾病:氨基酸代谢过程中的一些异常,如氨基酸酮症、苯丙酮尿症等,会导致氨基酸在体内的堆积或缺乏,引发一系列疾病。
总之,氨基酸代谢库涉及氨基酸的合成、降解、转运以及相关反应和调控过程,对于维持正常生物体的生理功能和代谢平衡具有重要作用。
深入理解氨基酸代谢库的机制和调控方式,能为相关疾病的治疗提供理论依据和手段。
生物化学简答题

⽣物化学简答题第⼆章蛋⽩质1、组成蛋⽩质的基本单位是什么?结构有何特点?氨基酸是组成蛋⽩质的基本单位。
结构特点:①组成蛋⽩质的氨基酸仅有20种,且均为α-氨基酸②除⽢氨酸外,其Cα均为不对称碳原⼦③组成蛋⽩质的氨基酸都是L-α-氨基酸2、氨基酸是如何分类的?按其侧链基团结构及其在⽔溶液中的性质可分为四类:①⾮极性疏⽔性氨基酸7种②极性中性氨基酸8种③酸性氨基酸2种④碱性氨基酸3种3、简述蛋⽩质的分⼦组成。
蛋⽩质是由氨基酸聚合⽽成的⾼分⼦化合物,氨基酸之间通过肽键相连。
肽键是由⼀个氨基酸的α-羧基和另⼀个氨基酸的α-氨基脱⽔缩合形成的酰胺键4、蛋⽩质变性的本质是什么?哪些因素可以引起蛋⽩质的变性?蛋⽩质特定空间结构的改变或破坏。
化学因素(酸、碱、有机溶剂、尿素、表⾯活性剂、⽣物碱试剂、重⾦属离⼦等)和物理因素(加热、紫外线、X射线、超声波、⾼压、振荡等)可引起蛋⽩质的变性5、简述蛋⽩质的理化性质。
①两性解离-酸碱性质②⾼分⼦性质③胶体性质④紫外吸收性质⑤呈⾊反应6、蛋⽩质中的氨基酸根据侧链基团结构及其在⽔溶液中的性质可分为哪⼏类?各举2-3例。
①⾮极性疏⽔性氨基酸7种:蛋氨酸,脯氨酸,缬氨酸②极性中性氨基酸8种:丝氨酸,酪氨酸,⾊氨酸③酸性氨基酸2种:天冬氨酸,⾕氨酸②碱性氨基酸3种:赖氨酸,精氨酸,组氨酸第三章核酸1.简述DNA双螺旋结构模型的要点。
①两股链是反向平⾏的互补双链,呈右⼿双螺旋结构②每个螺旋含10bp,螺距3.4nm,直径2.0nm。
每个碱基平⾯之间的距离为0.34nm,并形成⼤沟和⼩沟——为蛋⽩质与DNA相互作⽤的基础③脱氧核糖和磷酸构成链的⾻架,位于双螺旋外侧④碱基对位于双螺旋内侧,碱基平⾯与双螺旋的长轴垂直;两条链位于同⼀平⾯的碱基以氢键相连,满⾜碱基互补配对原则:A=T,G≡C⑤双螺旋的稳定:横向—氢键,纵向—碱基堆积⼒⑥DNA双螺旋的互补双链预⽰DNA 的复制是半保留复制2、从组成、结构和功能⽅⾯说明DNA和RNA的不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨基酸的转运
除了最近Buddington及其同事( Buddington等,2001)所做的
工作外,到目前为止,人们几乎忽略了对猪氨基酸吸收的研究。他们
采集肠道近端、中段和远端组织,研究从发育阶段一妊娠后期(出生
前11 d)到42日龄(断奶后12d)离体猪完整的小肠组织中氨基酸的吸
收情况。结果发现,产后头3h内单位组织对天冬氨酸、亮氨酸、赖
氨酸、蛋氨酸和脯氨酸等5种游离氨基酸的吸收速率显著下降。7日
龄时,每单位组织中脯氨酸的吸收速率显著增加。7一28日龄内,
每单位组织中个别氨基酸的吸收速率仍然在下降,此后一直保持稳
定。相对于体重来说,到7日龄时肠道吸收亮氨酸的能力增加1倍,
然后趋于稳定;其他3种氨基酸的吸收到28日龄时逐渐增加,此后,
天冬氨酸和蛋氨酸的吸收显著增加,但赖氨酸增加的幅度要小一些。
出生后24 h,小肠末端脯氨酸和天冬氨酸的吸收率一直很低。到目
前为止,没有其他关于仔猪年龄与肠道部位影响氨基酸吸收速率和吸
收能力的报道。在28^-42日龄(断奶后12 d)期间,除赖氨酸外,调
控其他氨基酸最大吸收率的亲和力常数((affinity constant)和载
体都降低了,并且与其表观稀释率的大量增加(平均增加49)是同步
的。Buddington等(2001)得到了肠道快速生长(rapid intesti-nal
growth)的结论,他们发现,肠道湿重从出生时的15 g增加到42日
龄时的862 g,氨基酸吸收能力的增加速度比代谢活重的增加还快。
因此,断奶减弱了肠道吸收氨基酸的能力,但氨基酸的吸收能力可能
只是短暂的下降,这与断奶后绒毛的快速变短是一致的。这还需要进
一步的试验验证。
断奶日粮中大多数氨基酸组成了复杂的蛋白质。在氨基酸吸收
前,这些蛋白质必须经过酶的降解。因此,胃、胰腺和粘膜酶系统的
同步发育是必须的。在蛋白质降解过程中会产生二肚和三肤,大多数
二肤和三肤可以直接从肠腔吸收。对于较大的猪,肤的吸收和氨基酸
的吸收同等重要,但我们目前还找不到有关断奶仔猪在肤的吸收方面
的文献。