八年级数学下学期第一单元练习题
(典型题)初中数学八年级数学下册第一单元《三角形的证明》检测题(含答案解析)

一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在ABC ∆中,∠ACB =90°,∠A =30°,BC =2,点D 在AB 上,连结CD ,将ADC ∆沿CD 折叠,点A 的对称点为E ,CE 交AB 于点F ,下列结论正确的个数是( ) ①当BF =BC 时,EF =23-2;②当BF =BC 时,DEF ∆为直角三角形;③当DEF ∆为直角三角形,EF =23-2;④当DE 平行ABC ∆的边时,∠BCE =30°A .1B .2C .3D .43.如图,在ABC 中,AB =AC =6,且15ABC S =△,AD ,BE 是ABC 的两条高线,P 是AD 上一动点,则PC PE +的最小值是( )A .4B .5C .6D .84.如图,在ABC 中,点A 、B 、C 的坐标分别为(,0)m 、(0,2)和(5,3),则当ABC 的周长最小时,m 的值为( )A.0 B.1 C.2 D.35.下列各组线段a、b、c中不能组成直角三角形的是()A.a=7,b=24,c=25 B.a=4,b=5,c=6C.a=3,b=4,c=5 D.a=9,b=12,c=156.如图,△ABC中,DC=2BD=2,连接AD,∠ADC=60°.E为AD上一点,若△BDE和△BEC都是等腰三角形,且AD=31,则∠ACB=()A.60°B.70°C.55°D.75°7.如图,直线AB,CD交于点O,若AB,CD是等边△MNP的两条对称轴,且点P在直线CD上(不与点O重合),则点M,N中必有一个在()A.∠AOD的内部B.∠BOD的内部C.∠BOC的内部D.直线AB上8.如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A .2552B .5112C .256D .51329.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC 的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE 与CD 相交于点H ,连HB ,则下列结论:①AE CD =;②120AHC ∠=︒;③HB 平分AHC ∠;④CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个10.如图所示,在ABC 中,90BAC ∠=︒,30ACB ∠=︒,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果1AP =,则AC 的长为( )A .1B .2C .3D .411.如图,在平面直角坐标系中,点A 的坐标为()1,0,以线段OA 为边在第四象限内作等边ABO ,点C 为x 轴正半轴上一动点(1OC >),设点C 的坐标为(),0x ,连结BC ,以线段BC 为边的第四象限内作等边CBD ,直线DA 交y 轴于点E ,点E 的坐标是( )A .()0,3B .0,2x ⎛⎫ ⎪⎝⎭C .()0,3D .30,x ⎛⎫ ⎪ ⎪⎝⎭ 12.等腰三角形一腰的垂直平分线与另一腰所在直线的夹角是40°,则这一等腰三角形的底角为( )A .65°B .25°C .50°D .65°或25°二、填空题13.如图,在△ABC 中,∠C =90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知CB =8,BE =5,则点E 到AB 的距离为_____.14.如图,等腰三角形ABC 的面积为80,底边10BC =,腰AC 的垂直平分线EF 交,AC AB 于点E ,F ,若D 为BC 边中点,M 为线段EF 上一动点,则CDM 的周长最小值为________.15.如图,DE ∥BC ,AE =DE =1,BC =3,则线段CE 的长为_____.16.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6,D 为BC 上一点,连接AD ,过点A作AE ⊥AD ,取AE =AD ,连接BE 交AC 于F .当△AEF 为等腰三角形时,CD =_____.17.如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是________________.18.如图,80AOB ∠=︒,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE △是等腰三角形,那么OEC ∠的度数为________.19.如图,在ABC 中,AB BC =,30C ∠=︒,过点B 作BD BC ⊥,交AC 于点D ,若2CD =,则AD 的长为__________.20.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交AB 、AC 于点E 、F .那么下列结论:①BD=DC ;②△BED 和△CFD 都是等腰三角形;③点D 是EF 的中点;④△AEF 的周长等于AB 与AC 的和.其中正确的有______.(只填序号)三、解答题21.如图1,直线AB :y=43x +4分别与x 轴、y 轴交于A 、B 两点,过点B 的直线交x 轴负半轴于点C ,将△BOC 沿BC 折叠,使点O 落在BA 上的点M 处.(1)求A 、B 两点的坐标;(2)求线段BC 的长;(3)点P 为x 轴上的动点,当∠PBA=45°时,求点P 的坐标.22.如图,在ABC 中,AB BC =,90ABC ∠=︒,点E 在BC 上,点F 在AB 的延长线上,且AE CF =.(1)求证:ABE CBF △≌△;(2)若75ACF ∠=︒,求EAC ∠的度数.23.阅读下列材料,完成相应任务.三角形中边与角之间的不等关系学习了等腰三角形,我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.那么,不相等的边所对的角之间的大小关系怎样呢?大边所对的角也大吗?下面是奋进小组的证明过程.如图1,在△ABC中,已知AB>AC>BC.求证:∠C>∠B>∠A.证明:如图2,将△ABC折叠,使边AC落在AB上,点C落在AB上的点C′处,折痕AD交BC于点D.则∠A C′D=∠C.∵∠A C′D=∠B+∠BDC′(依据1)∴∠A C′D>∠B∴∠C>∠B(依据2)如图3,将△ABC折叠,使边CB落在CA上,点B落在CA上的点B′处,折痕CE交AB于点E.则∠CB′E=∠B.∵∠CB′E=∠A+∠AEB′∴∠CB′E>∠A∴∠B>∠A∴∠C>∠B>∠A.归纳总结:利用轴对称的性质可以把研究边与角之间的不等问题,转化为较大量的一部分与较小量相等的问题,这是几何中研究不等问题是常用的方法.类似地,应用这种方法可以证明“在一个三角形中,大角对大边,小角对小边”的问题.如图1,已知△ABC中,∠C>∠B>∠A.求证:AB>AC>BC.下面是智慧小组的证明过程(不完整).证明:如图2,在∠BCA的内部,作∠BCF=∠B,CF交AB于点F.则CF=BF(依据3)在△ACF中,AF+CF>AC,∴AF+BF>AC,∴AB>AC;…任务一:①上述材料中依据1,依据2,依据3分别指什么?依据1:;依据2:;依据3:.②上述材料中不论是由边的不等关系,推出角的不等关系,还是由角的不等关系推出边的不等关系,都是转化为较大量的一部分与较小量相等的问题,再用三角形外角的性质或三边关系进而解决,这里主要体现的数学思想是_____________;(填正确选项的代码) A . 转化思想 B . 方程思想 C . 数形结合思想任务二:请将智慧小组的证明过程补充完整,并在备用图中作出辅助线.任务三:根据上述材料得出的结论,判断下列说法,正确的有__________(将正确的代码填在横线处).①在△ABC 中,AB >BC ,则∠A >∠B ;②在△ABC 中,AB >BC >AC ,∠C =89°,则△ABC 是锐角三角形;③Rt △ABC 中,∠B =90°,则最长边是AC ;④在△ABC 中,∠A =55°,∠B =70°,则AB =BC .24.如图,已知点D 、E 是△ABC 内两点,且∠BAE =∠CAD ,AB =AC ,AD =AE .(1)求证:ABD ACE △≌△.(2)延长BD 、CE 交于点F ,若86BAC ∠=︒,20ABD ∠=︒,求BFC ∠的度数. 25.如图,在ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,CD 的垂直平分线FM 交AC 于点F ,交BC 于点M .(1)求ADE ∠的度数;(2)ADF 是什么三角形?说明理由.(3)若将题目中“100BAC ∠=︒”改为“∠BAC =120°”,且FM =4,其他条件不变,求AB 的长.26.如图,射线,ON OE OS OW 、、分别表示从点O 出发北、东、南、西四个方向,将直角三角尺的直角顶点与点O 重合.(1)图中与∠BOE 互余的角是____________或____________;(2)①用直尺和量角器作AOE ∠的平分线OP ;②在①所做的图形中,如果132AOE ∠=︒,那么点P 在点O 北偏东____________°的方向上(请说明理由).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC 所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.C解析:C【分析】由勾股定理可求A C 的长,利用折叠的性质和等腰三角形的性质依次计算可得①②正确.利用直角三角形分类讨论可知EF 有两种情况,③不正确,由平行内错角角相等可知④正确;【详解】解:①∵BF =BC ,且∠ABC =60°,∴BCF ∆为等边三角形,BF =CF =BC =2,ACAB =4,∵ADC ∆沿CD 折叠,∴CE =ACEF =CE -CF ,故①正确;②当BF =BC 时,∠EFD =∠BFC =60°,∴∠DEF =∠A =30°,∠EDF =90°,∴EDF ∆为直角三角形,故②正确;③当DEF ∆为直角三角形时,此处要分情况讨论,当∠EDF =90°时,∵∠DEF =∠A =30°,∴∠EFD =60°=∠BFC ,EF =EC -CF-2,当∠EFD =90°时,∵∠ABC =60°,∠BCF =30°,∴FCEF =EC -FC ,综上所述,EF ,故③错误;④当DE 平行于ABC ∆的边时,∵DE ∥BC ,∴∠EDF =∠ABC =60°,∵∠DEC =30°,∴∠BCF =∠DEC =30°,故④正确,故选C【点睛】本题考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CA ,学会运用分类讨论是解题的关键. 3.B解析:B【分析】连接PB ,根据等腰三角形的性质和垂直平分线的性质计算即可;【详解】连接PB ,∵AB AC =,BD CD =,∴AD 是等腰△ABC 底边BC 边的中垂线,∴PB PC =,∴PC PE PB PE +=+,又PB PE BE +≥,∴B ,P ,E 三点共线时,PB PE +最小,即等于BE 的长,又∵△1152ABC S AC BE ==,6AC =, ∴5BE =;故答案选B .【点睛】本题主要考查了等腰三角形的性质、垂直平分线的性质,结合轴对称的性质计算是解题的关键. 4.C解析:C【分析】做出B 关于x 轴对称点为B′,连接B′C ,交x 轴于点A',此时ABC 的周长最小,由等腰直角三角形的性质可求∠OB'A'=∠OA'B'=45°,可求OB'=OA'=1,即可求解.【详解】解:如图所示,做出B 关于x 轴对称点为B′,连接B′C ,交x 轴于点A',此时△ABC 周长最小过点C作CH⊥x轴,过点B'作B'H⊥y轴,交CH于H,∵B(0,2),∴B′(0,-2),∵C(5,3),∴CH= B′H=5,∴∠CB'H=45°,∴∠BB' A'=45°,∴∠OB'A'=∠OA'B'=45°,∴OB'=OA'=2,则此时A'坐标为(2,0).m的值为2.故选:C.【点睛】此题考查了轴对称-最短路径问题,考查了轴对称的性质,等腰直角三角形的性质等知识,根据已知得出A点位置是解题关键.5.B解析:B【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的和的平方是否等于最长边的平方,分别对每一项进行分析,即可得出答案;【详解】A、222724=25+,能构成直角三角形;B、222+≠,不能构成直角三角形;45=416C、222+,能构成直角三角形;34=5D、222912=225=15+,能构成直角三角形;故选:B.【点睛】本题考查了勾股定理的逆定理,用到的知识点是已知△ABC 的三边满足222+=a b c ,则△ABC 是直角三角形;6.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD 1, ∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.7.D解析:D【分析】根据等边三角形是轴对称图形,利用轴对称图形的性质解决问题即可.【详解】解:如图,∵△PMN 是等边三角形,等边三角形的对称轴一定经过三角形的顶点,又∵直线CD ,AB 是△PMN 的对称轴,直线CD 经过点P ,∴直线AB 一定经过点M 或N ,故选:D .【点睛】本题考查轴对称,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.B解析:B【分析】利用待定系数法求得两条直线的解析式,根据等边三角形的性质,点的坐标规律,即可求解.【详解】解:∵OA 1=1,∠OA 1C=30︒,∴3 ∴点C 的坐标为(0,33-), ∵A 1、A 2、A 3所在直线过点A 1(1,0),C (0,33-, 设直线A 1A 2的解析式为3y kx =-∴30k =, ∴3k = ∴直线A 1A 2的解析式为3333y x =-, ∵△OA 1B 1为等边三角形,∴点B 1的坐标为(123, ∵B 1、B 2、B 3所在直线过点O(0,0),B 1 (12,32),同理可求得直线O B 1的解析式为y =,∵△OA 1B 1和△B 1A 2B 2为等边三角形,∴∠B 1OA 1=∠B 2 B 1A 2=60︒,∴B 1A 2∥OA 1,∵B 1 (12,∴A 2的纵坐标为2x = 解得:52x =,∴点A 2的坐标为(52, ∴B 1A 2=2,同理点B 2的坐标为(32,点B 3的坐标为(72,点B 4的坐标为(152, ,总结规律: B 1的横坐标为12, B 2的横坐标为13122+=, B 3的横坐标为171222++=, B 4的横坐标为11512422+++=, ,∴B 9的横坐标为1511124816326422+++++++=, 故选:B【点睛】本题考查了待定系数法求一次函数的解析式,点的坐标规律,等边三角形的性质,解决本题的关键是寻找点的坐标规律. 9.A解析:A【分析】利用等边三角形,ABD BCE 的性质,证明 ,ABE DBC ≌ 从而可判断①,由,ABE DBC ≌可得,EAB CDB ∠=∠ 再利用三角形的内角和定理可判断②,如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N 利用全等三角形的对于高相等证明,BM BN = 从而可判断③,如图,在CH 上截取,HK HE = 连接,EK 证明EHK 为等边三角形,再证明,EHB EKC ≌ 可得,HB KC = 从而可判断④.【详解】解:,ABD BCE 为等边三角形, ,60,60BA BD ABD BC BE CE CBE ∴=∠=︒==∠=︒,,,ABD DBE CBE DBE ∴∠+∠=∠+∠ 即,ABE DBC ∠=∠(),ABE DBC SAS ∴≌,AE DC ∴= 故①符合题意;,ABE DBC ≌,EAB CDB ∴∠=∠,DGH AGB ∠=∠180,180,DHG CDB DGH ABD EAB AGB ∠=︒-∠-∠∠=︒-∠-∠60DHG ABD ∴∠=∠=︒,120AHC ∴∠=︒,故②符合题意; 如图,过B 作BM AE ⊥交AE 于,M 过B 作BN DC ⊥交DC 于,N,ABE DBC ≌,AE DC 为对应边,,BM BN ∴=HB ∴平分,AHC ∠ 故③符合题意;如图,在CH 上截取,HK HE = 连接,EK60,EHK AHD ∠=∠=︒EHK ∴为等边三角形,,60,EK EH HEK ∴=∠=︒60,60,HEK HEB FEK BEC FEK KEC ∠=︒=∠+∠∠=︒=∠+∠,HEB KEC ∴∠=∠,BE CE =(),EHB EKC SAS ∴≌,HB KC ∴=.CH CK HK BH EH ∴=+=+ 故④符合题意;综上:①②③④都符合题意,故选:.A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等边三角形的判定与性质,角平分线的判定,掌握以上知识是解题的关键.10.C解析:C【分析】由三角形的内角和定理和等腰三角形的性质,得到AP=BP=AE=PE=1,CE=BE=2,即可求出AC 的长度.【详解】解:∵在ABC 中,90BAC ∠=︒,30ACB ∠=︒,∴60ABC ∠=︒,∵AD BC ⊥于D ,BE 是ABC ∠的角平分线,∴30ABP DBP BAP ∠=∠=∠=︒,∴1AP BP ==,∵90BAC ∠=︒,30ACB ∠=︒,∴60EAP AEP ∠=∠=︒,∴△APE 是等边三角形,∴AP=BP=AE=PE=1,∵30DBP C ∠=∠=︒,∴CE=BE=1+1=2,∴213AC CE AE =+=+=;故选:C .【点睛】本题考查了等边三角形的判定和性质,等腰三角形的性质,三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的进行解题.11.A解析:A【分析】由等边三角形的性质可得AO =OB =AB =1,BC =BD =CD ,∠OBA =∠CBD =60°,可证△OBC ≌△ABD ,可得∠BAD =∠BOC =60°,可求∠EAO =60°,即可求OE 3点E 坐标.【详解】解:∵△AOB ,△BCD 是等边三角形,∴AO =OB =AB =1,BC =BD =CD ,∠OBA =∠CBD =60°,∴∠OBC =∠ABD ,且OB =AB ,BC =BD ,∴△OBC ≌△ABD (SAS ),∴∠BAD =∠BOC =60°,∴∠EAO =180°−∠OAB−∠BAD =60°,在Rt △AOE 中,AO =1,∠EAO =60°,∠OEA=30°,∴AE=2 AO=2,∴OE=2221-=3,∴点E 坐标(0,3),故选A .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,坐标与图形性质,灵活运用全等三角形的判定和性质是本题的关键.12.D解析:D【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:①当为锐角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠A =50°,∴∠B=∠C=180502︒-︒ =65°; ②当为钝角等腰三角形时,如图:∵∠ADE =40°,∠AED =90°,∴∠BAC =∠ADE+∠AED =40°+90°=130°,∴∠B=∠C=1801302︒-︒ =25°. 故选:D .【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键. 二、填空题13.【分析】根据作图过程可知AE 平分∠CAB 根据角平分线的性质即可得出结论【详解】解:根据作图过程可知:AE 平分∠CAB ∵CB =8BE =5∴CE =BC ﹣BE =8﹣5=3∵∠C =90°∴EC ⊥AC ∴点E 到解析:【分析】根据作图过程可知AE 平分∠CAB ,根据角平分线的性质即可得出结论.【详解】解:根据作图过程可知:AE 平分∠CAB ,∵CB =8,BE =5,∴CE =BC ﹣BE =8﹣5=3,∵∠C =90°,∴EC ⊥AC ,∴点E 到AB 的距离为3.故答案为:3.【点睛】本题考查了作图-基本做图,解决本题的关键是掌握基本的作图方法和理解角平分线的性质.14.21【分析】连接ADAM 由于△ABC 是等腰三角形点D 是BC 边的中点故AD ⊥BC 再根据三角形的面积公式求出AD 的长再根据EF 是线段AC 的垂直平分线可知点A 关于直线EF 的对称点为点CMA =MC 推出MC +解析:21【分析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC +DM =MA +DM≥AD ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】解:连接AD ,MA .∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×10×AD=80,解得:AD=16,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=16+12×10=21.故答案是:21.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.15.【分析】由平行线的性质可得∠ADE=∠B由AE=DE=1可得∠ADE=∠DAE易得∠DAE=∠B可得AC=BC易得结果【详解】解:∵DE∥BC∴∠ADE=∠B∵AE =DE=1∴∠ADE=∠DAE∴∠解析:【分析】由平行线的性质可得∠ADE=∠B,由AE=DE=1,可得∠ADE=∠DAE,易得∠DAE=∠B,可得AC=BC,易得结果.【详解】解:∵DE∥BC,∴∠ADE=∠B,∵AE=DE=1,∴∠ADE=∠DAE,∴∠DAE=∠B,BC=3,∴AC=BC=3,∴CE=AC﹣AE=3﹣1=2,故答案为:2.【点睛】本题主要考查了平行线的性质和等腰三角形的性质等,关键是运用性质定理得出AC=BC=3.16.2或6【分析】分两种情形:当AE=AF时如图1中过点E作EH⊥AC于H证明AH=FH=CF=CD可得结论如图2中当AF=EF时点D与D重合此时CD=BC =6【详解】解:①当AE=EF时如图1中过点E解析:2或6【分析】分两种情形:当AE=AF 时,如图1中,过点E 作EH ⊥AC 于H .证明AH =FH =CF =CD ,可得结论,如图2中,当AF =EF 时,点D 与D 重合,此时CD =BC =6【详解】解:①当AE=EF 时,如图1中,过点E 作EH ⊥AC 于H .∵EA =EF ,EH ⊥AF ,∴AH =HF ,∵EA ⊥AD ,∴∠EAD =∠EHA =∠C =90°,∴∠EAH +∠CAD =90°,∠CAD +∠ADC =90°,∴∠EAH =∠ADC ,在△EHA 和△ACD ,EAH ADC EHA C AE DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHA ≌△ACD (AAS ),∴AH =CD ,EH =AC =CB .在△EHF 和△BCF 中,EFH BFC EHF C EH BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EHF ≌△BCF (AAS ),∴FH =CF ,∴AH =FH =CF =CD ,∴CD =13AC =2, ②如图2中,当AF =EF 时,点B 与点D 重合,此时CD =BC =6综上所述,满足条件的CD的长度为2或6故答案为:2或6【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.5【分析】将AD顺时针旋转60°得连结可得AD=DD′=AD′可证△ABD′≌△ACD(SAS)可得BD′=CD由BD′+DD′≥BD当BD′D三点在一线时BD最大BD最大=BD′+DD′=5【详解解析:5【分析】将AD顺时针旋转60°,得AD',连结BD',可得AD=DD′=AD′,可证△ABD′≌△ACD (SAS),可得BD′=CD,由BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=5.【详解】解:∵将AD顺时针旋转60°,得AD',连结BD',则AD=DD′=AD′,∴△ADD′是等边三角形,又∵等边三角形ABC,∴∠BAC=∠D AD',∴∠BAD′+∠D′AC=∠CAD+∠D′AC=60°,∴AB=AC,AD′=AD,∴△ABD′≌△ACD(SAS),∴BD′=CD,∴BD′+DD′≥BD,当B、D′、D三点在一线时,BD最大,BD最大=BD′+DD′=CD+AD=2+3=5.故答案为:5..【点睛】本题考查三角形旋转变换,等边三角形判定与性质,掌握三角形旋转变换的性质,等边三角形判定与性质,用三角形三边关系确定B、D′、D共线是解题关键.18.40°或70°或100°【分析】求出∠AOC根据等腰得出三种情况OE=CEOC=OEOC=CE根据等腰三角形性质和三角形内角和定理求出即可【详解】解:∵∠AOB=80°OC平分∠AOB∴∠AOC=4解析:40°或70°或100°【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【详解】解:∵∠AOB=80°,OC平分∠AOB,∴∠AOC=40°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=40°,∴∠OEC=180°﹣40°﹣40°=100°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=12(180°﹣40°)=70°;③当E在E3时,OC=CE,则∠OEC=∠AOC=40°;故答案为:100°或70°或40°.【点睛】本题考查了角平分线定义,等腰三角形性质,三角形的内角和定理的应用,用了分类讨论思想.19.【分析】利用等腰三角形的性质判定证明BD=AD 利用直角三角形中30°角的性质计算BD 即可得解【详解】∵∴∠A=30°∠ABC=120°∵∴∠CBD=90°BD=1∴∠DBA=30°∴∠DBA=∠A ∴ 解析:1.【分析】利用等腰三角形的性质,判定,证明BD=AD ,利用直角三角形中30°角的性质计算BD 即可得解.【详解】∵AB BC =,30C ∠=︒,∴∠A=30°,∠ABC=120°,∵BD BC ⊥,2CD =,∴∠CBD=90°,BD=1,∴∠DBA=30°,∴∠DBA=∠A ,∴BD=AD ,∴AD=1.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质,熟练掌握性质,并灵活运用性质是解题的关键.20.②④【分析】由平行线得到角相等由角平分线得角相等根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案【详解】解:∵EF ∥BC ∴∠EDB=∠DBC ∠FDC=∠DCB ∵∠ABC 与∠ACB 的平分线交于 解析:②④【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质逐一判断即得答案.【详解】解:∵EF ∥BC ,∴∠EDB=∠DBC ,∠FDC=∠DCB ,∵∠ABC 与∠ACB 的平分线交于点D ,∴∠EBD=∠DBC ,∠FCD=∠DCB ,∴∠EDB =∠EBD ,∠FCD=∠FDC ,∴ED=EB ,FD=FC ,即△BED 和△CFD 都是等腰三角形;故②正确;∴△AEF 的周长为:AE+EF+AF=AE+ED+DF+AF=AB+AC ;故④正确;∵∠ABC 不一定等于∠ACB ,∴∠DBC 不一定等于∠DCB ,∴BD 与CD 不一定相等,故①错误.∵BE 与CF 无法判定相等,∴ED 与DF 无法判定相等,故③错误;综上,正确的有②④.故答案为:②④.【点睛】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.(1)A (-3,0),B (0,4);(2)BC ;(3)P (-28,0)或(47,0)【分析】(1)令0x =,求得y ,令0y =,求得x ,即可求解;(2)设OC=a ,在Rt △ACM 中,利用勾股定理列式计算可求得43a =,即可求解; (3)分点P 在点A 的右边和左边两种情况讨论,分别作出辅助线,构造直角三角形,利用勾股定理求解即可.【详解】(1)令0x =,4443y x =+=, 令0y =,4043x =+,则3x =-, ∴点A 的坐标为(-3,0),点B 的坐标为(0,4);(2)设OC=a ,由折叠的性质可知:CM ⊥AB ,OC=CM=a ,OB=BM=4,由勾股定理得:5==,∴AM=1,在Rt △ACM 中,222AM MC AC +=,∴2221(3)a a +=-, ∴43a =, ∴222244()03341BC BO CO =+=+=; (3)如图,点P 在点A 的右边时,过P 作PG ⊥AB 于G , ∵点A 的坐标为(-3,0),点B 的坐标为(0,4),∴OA<OB ,∴点P 在点O 的右边,设PO= m ,则AP=3m +,∵APB 1122S AB PG AP OB =⨯=⨯, ∴()435PG m =+, ()()()22224333355AG AP PG m m m ⎡⎤=-=+-+=+⎢⎥⎣⎦, ∵∠PBA=45°,∴△BPG 是等腰直角三角形,∴()435BG PG m ==+, ∵ AG BG AB +=,∴()()3433555m m +++=, 解得:47m =, 此时点P 的坐标为(47,0); 如图,点P 在点A 的左边时,过P 作PH ⊥AB 于H ,设PO= n ,则AP=n 3-, ∵APB 1122S AB PH AP OB =⨯=⨯, ∴()4n 35PH =-, ()()()22224333355AH AP PH n n n ⎡⎤=-=---=-⎢⎥⎣⎦, ∵∠PBA=45°,∴△BPH 是等腰直角三角形,∴()435BH PH n ==-, ∵BH AH AB -=, ∴()()4333555n n ---=, 解得:28n =,此时点P 的坐标为(28-,0);综上,点P 的坐标为(28-,0)或(47,0) . 【点睛】本题考查了坐标与图形,一次函数的性质,以及等腰直角三角形的判定和性质,解题的关键是作出合适的辅助线,构造直角三角形,利用勾股定理求解.22.(1)见详解;(2)15°【分析】(1)由AB =CB ,∠ABC =90°,AE =CF ,即可利用HL 证得Rt △ABE ≌Rt △CBF ;(2)由AB =CB ,∠ABC =90°,即可求得∠CAB 与∠ACB 的度数,即可得∠FCB 的度数,又由Rt △ABE ≌Rt △CBF ,即可求得∠EAB 的度数,再得出∠EAC 的度数即可.【详解】(1)证明:∵∠ABC =90°,∴△ABE 与△CBF 为直角三角形.∵在Rt △ABE 与Rt △BCF 中,AB BC AE CF⎧⎨⎩==, ∴Rt △ABE ≌Rt △CBF (HL );(2)∵AB =BC ,∠ABC =90°,∴∠BAC =∠ACB =45°,∵∠ACF =75°,∴∠FCB =30°,∵Rt △ABE ≌Rt △CBF ,∴∠EAB =∠FCB =30°,∴∠EAC =45°-30°=15°.【点睛】此题考查了直角三角形全等的判定与性质,等腰直角三角形的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.23.任务一:①依据1:三角形的外角等于与它不相邻的两个内角的和; 依据2:等量代换;依据3:如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边); ②A ;任务二:见解析;任务三:②③④【分析】任务一:①根据三角形的外角性质、等量代换以及三角形中等角对等边性质即可写出依据;②根据分析过程渗透的思想为转化的思想方法;任务二:仿照推导AB >AC 的方法证明AC >BC 即可证明结论正确;任务三:根据结论“在一个三角形中,大角对大边,小角对小边,等边对等角”进行判断即可解答.【详解】解:任务一:①根据推导过程可知:依据1:三角形的外角等于与它不相邻的两个内角的和;依据2:等量代换;依据3:如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边);故答案为:三角形的外角等于与它不相邻的两个内角的和;等量代换;如果一个三角形有两个角相等,那么这两个角所对的边也相等(或等角对等边);②根据推导过程体现了转化的数学思想方法,故选:A ;任务二:智慧小组的证明过程补充如下:证明:如图2,在∠BCA 的内部,作∠BCF=∠B ,CF 交AB 于点F .则CF=BF ,(等边对等角)在△ACF 中,AF+CF >AC ,∴AF+BF >AC ,∴AB >AC ;同理,如图,在∠ABC 的内部,作∠ABG=∠A ,BG 交AC 于点G ,如图,则AG=BG在△BCG 中,BG+CG >BC ,∴BG+CG >BC ,∴AC >BC∴AB >AC >BC .任务三:①∵AB >BC ,∴∠C >∠A ,错误;②∵在△ABC 中,AB >BC >AC ,∠C=89°,∴∠C >∠A >∠B ,又∠C=89°<90°,∴△ABC 是锐角三角形,正确;③∵Rt △ABC 中,∠B=90°,则最长边是斜边AC ,正确;④∵在△ABC 中,∠A=55°,∠B=70°,∴∠C=180°﹣∠A ﹣∠B=180°﹣55°﹣70°=55°,∴∠A=∠C∴AB=BC ,正确,故答案为:②③④.【点睛】本题考查三角形的边与角之间的不关系的推导及其应用,涉及三角形的外角性质、等腰三角形的等角对等边性质、三角形的内角和定理、判断三角形的形状、命题的证明等知识,掌握在一个三角形中,大角对大边,小角对小边这一性质的推导过程,会利用转化的思想进行命题的证明是解答的关键.24.(1)见解析;(2)126BFC ∠=︒.【分析】(1)由SAS 证明ABD ACE △≌△即可;(2)先由全等三角形的性质的20ACE ABD ∠=∠=︒再由等腰三角形的性质和三角形内角和定理得47ABC ACB ∠=∠=︒,则27FBC FCB ∠=∠=︒,即可得出答案.【详解】(1)证明∵BAE CAD ∠=∠∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE SAS △≌△();(2)解:∵ABD ACE △≌△,∴20ACE ABD ∠=∠=︒,∵AB =AC , ∴1(18086)472ABC ACB ∠=∠=︒-︒=︒, ∴472027FBC FCB ∠=∠=︒-︒=︒,∴1802727126BFC ∠=︒-︒-︒=︒.【点睛】本题主要考查全等三角形的性质及判定、等腰三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.25.(1)∠ADE =20°;(2)△ADF 是等腰三角形,证明见解析;(3)AB=16.【分析】(1)根据等腰三角形的性质和三角形内角和定理求出∠B 和∠C ,求出∠BDE ,即可求出答案;(2)根据垂直平分线的性质定理和等边对等角可求得∠FDC ,再根据三线合一和直角三角形两锐角互余可求得∠DAF 和∠ADF 得出它们相等即可得出△ADF 为等腰三角形;(3)可求得∠C=30°根据30°角所对直角边是斜边的一般可得FC ,可证明△ADF 为等边三角形即可求得AF ,从而求得AC ,继而求得AB .【详解】解:(1)∵在△ABC 中,AB=AC ,∠BAC=100°,∴∠B=∠C=12×(180°-∠BAC )=40°, ∵BD=BE ,∴∠BDE=∠BED=12×(180°-∠B )=70°, ∵在△ABC 中,AB=AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∴∠ADB=90°,∴∠ADE=∠ADB-∠BDE=20°;(2)△ADF 是等腰三角形,理由是:∵CD 的垂直平分线MF 交AC 于F ,交BC 于M ,∴DF=CF ,∵∠C=40°,∴∠FDC=∠C=40°,∵AD ⊥BC ,∴∠ADC=90°,∴∠DAF=90°-∠C=50°,∴∠ADF=50°,∴∠DAF=∠ADF ,∴AF=DF ,∴△ADF 是等腰三角形;(3)∵∠BAC =120°,AB=AC ,∴∠B=∠C=12×(180°-∠BAC )=30°, 又∵AD 是BC 边上的中线,∴AD ⊥BC ,∴∠DAC=90°-∠C=60°,∵CD 的垂直平分线MF ,∴∠FMC=90°,DF=FC ,∴∠FDC=∠C=30°,∴∠ADF=∠ADC-∠FDC=60°,∠AFD=∠C+∠FDC=60°,∴△ADF 为等边三角形,AF=DF=FC ,∵MF=4,∴FC=2MF=8,∴AF= 8,∵AC=AF+CF=8+8=16,∵AB=AC ,∴AB=16.【点睛】本题考查了线段垂直平分线性质,等边三角形的性质和判定,含30°角的直角三角形的性质,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.26.(1)BON ∠;AOW ∠;(2)①见解析;②24︒,见解析【分析】(1)根据互余,平角的定义判断即可;(2)①作出角平分线即可;②利用角平分线的定义求出∠POE ,再求出∠NOP 即可解决问题;【详解】(1)90180AOB WOE ︒∠=∠=︒,,90AOW BOE ∴∠+∠=︒,90NOB BOE ∠+∠=︒, ∴图中与∠BOE 互余的角是BON ∠和AOW ∠;故答案为:BON ∠和AOW ∠;(2)①如图所示:②132AOE ∠=︒,OP 平分AOE ∠,1132662POE ∴∠=⨯︒=︒, 90NOE ∠=︒,906624NOB ∴∠=︒-︒=︒,∴点P 在点O 北偏东24︒的方向上;【点睛】本题考查了作图-应用与设计,角平分线的定义,方向角等知识解题的关键是理解题意,灵活运用所学知识解决问题;。
(完整版)北师大版八年级数学下册第一单元试题与答案

北师大版八年级数学下册第一章测试题(试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)1.当21-=x 时,多项式12-+kx x 的值小于0,那么k 的值为 [ ].A .23-<k B .23<k C .23->k D .23>k2.同时满足不等式2124xx-<-和3316-≥-x x 的整数x 是 [ ].A .1,2,3B .0,1,2,3C .1,2,3,4D .0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有 [ ].A .3组B .4组C .5组D .6组4.如果0>>a b ,那么 [ ].A .b a 11->- B .b a 11< C .b a 11-<- D .a b ->-5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是 [ ].A .9>xB .9≥xC .9<xD .9≤x6.不等式组⎩⎨⎧<>+72013x x 的正整数解的个数是 [ ].A .1B .2C .3D .47.关于x 的不等式组⎪⎩⎪⎨⎧+>++-<a x x x x 4231)3(32有四个整数解,则a 的取值范围是 [ ]. A .25411-≤<-a B .25411-<≤-aC .25411-≤≤-a D .25411-<<-a8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x ba x 的解集为53<≤x ,则ab 的值为 [ ].A .-2B .21- C .-4 D .41-9.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是 [ ].A .4≥mB .4≤mC .4<mD .4=m10.现用 甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排 [ ].A .4辆B .5辆C .6辆D .7辆二、填空题(每小题3分,共30分)1.若代数式2151--+t t 的值不小于-3,则t 的取值范围是_________. 2.不等式03≤-k x 的正数解是1,2,3,那么k 的取值范围是________.3.若0)3)(2(>-+x x ,则x 的取值范围是________.4.若b a <,用“<”或“>”号填空:2a______b a +,33a b -_____. 5.若11|1|-=--x x ,则x 的取值范围是_______. 6.如果不等式组⎩⎨⎧><m x x 5有解,那么m 的取值范围是_______. 7.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.8.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________. 9.如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________.10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.三、解答题(本大题,共40分)1.(本题8分)解下列不等式(组):(1)1312523-+≥-x x ; (2)⎪⎩⎪⎨⎧<--+->++-.,021331215)1(2)5(7x x x x。
八年级数学下册第一单元测试题

2015年八年级数学下册《分式》单元测验题班别: 姓名: 成绩:一、填空题:(每小题2分,共24分)1、当x 时,分式53-x x 有意义。
2、当x 时,分式112+-x x 的值为0。
3、12-= 。
4、422-+y y = 。
5、用科学记数法表示:-0。
00002006= . 6、关于x 的方程2323=---x a x x 有增根,则增根为___________. 7、÷-)(2a a 1-a a = .8、计算:ab b b a a -+-= . 9、分式x x 312-与922-x 的最简公分母是 。
10、当x 时,分式x -51的值为正。
11、当x 时,两分式44-x 与13-x 的值相等。
12、观察下面一列有规律的数: 31,82,153,244,355,486,…根据规律可知第n 个数应是 (n 为正整数) 二、选择题:(每题3分,共24分)13、在(3)5,,,2a b x x x a b x a b π-+++-中,是分式的有( )(A )1个; (B)2个; (C )3个; (D )4个.14、下列约分正确的是( )(A )、326x x x = (B )、0=++y x y x ; (C )、x xy x y x 12=++;(D )、214222=y x xy 15、如果把yx y 322-中的x 和y 都扩大5倍,那么分式的值( ) (A )、扩大5倍 (B )、不变 (C )、缩小5倍 (D )、扩大4倍16、计算:)2()2()2(232x y x y yx -÷⋅-的结果是( ) (A)、638yx - (B )、638y x (C)、5216y x - (D )、5216y x 17、把分式方程112=+-x x x 化为整式方程正确的是( ) (A)、1)1(22=-+x x (B )、1)1(22=++x x(C)、)1()1(22+=-+x x x x (D )、)1()1(22+=+-x x x x18、能使分式122--x x x 的值为零的所有x 的值是( ) (A )、0=x (B )、1=x (C)、0=x 或1=x (D 。
北师大版八年级数学下册第一单元试题与答案

北师大版八年级数学下册第一章测试题(试卷满分100分,时间120分钟)请同学们认真思考、认真解答,相信你会成功!一、选择题(每小题3分,共30分)12kx1.当x时,多项式x1的值小于0,那么k的值为[].23333A.kB.kC.kD.k22222.同时满足不等式x4 21x2和6x13x3的整数x是[].A.1,2,3B.0,1,2,3C.1,2,3,4D.0,1,2,3,43.若三个连续正奇数的和不大于27,则这样的奇数组有[].A.3组B.4组C.5组D.6组4.如果ba0,那么[].A.1a 1bB.1a1bC.1a1bD.ba5.某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是[].A.x9B.x9C.x9D.x96.不等式组3x2x 17的正整数解的个数是[].A.1B.2C.3D.42x3(x3)17.关于x的不等式组有四个整数解,则a的取值范围是[].3x2xa4A.C.1141145aB.25aD.2114114aa52528.已知关于x的不等式组xab2xa2b的解集为3x5,则1ba的值为[].A.-2B.12 C.-4D.149.不等式组x x 2x6 m的解集是x4,那么m 的取值范围是[].A .m4B .m4C .m4D .m410.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运 输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排[]. A .4辆B .5辆C .6辆D .7辆 二、填空题(每小题3分,共30分)t1t11.若代数式的值不小于-3,则t 的取值范围是_________.52 2.不等式3xk0的正数解是1,2,3,那么k 的取值范围是________. 3.若(x2)(x3)0,则x 的取值范围是________.42a______.若,用“<”或“>”号填空:,abab |x1| 5.若1,则的取值范围是.x _______x1b 3 a 3 _____.6.如果不等式组x 5有解,那么m 的取值范围是_______. xm7.若不等式组 2x x a 2b 1 3的解集为1x1,那么(a3)(b3)的值等于_______.8.函数11y 15x ,y 2x1,使y 1y 2的最小整数是________.229.如果关于x 的不等式(a1)xa5和2x4的解集相同,则a 的值为________.10.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于4.8分,最低 的得3分,至少有3人得4分,则得5分的有_______人.三、解答题(本大题,共40分) 1.(本题8分)解下列不等式(组):3x22x1 (1)153 ;(2)7(x32x5)12(3x2x11)0.15,2.(本题8分)已知关于x,y的方程组xy5x3y m的解为非负数,求整数m的值.313.(本题6分)若关于x的方程3(x4)2a5的解大于关于x的方程(4a1)xa(3x43 4)的解,求a的取值范围.4.(本题8分)有人问一位老师,他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生念外语,还剩下不足6位同学在操场踢足球”.试问这个班共有多少位学生?5.(本题10分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.一月二月三月销售量(kg)5506001400利润(元)200024005600四、探索题(每小题10,共20分)1.甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均ab每条b元,后来他又以每条元的价格把鱼全部卖给了乙,请问甲会赚钱还是赔钱?并2说明原因.2.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.北师大版八年级数学下册第一章测试题参考答案一、选择题1.C2.B3.B提示:设三个连续奇数中间的一个为x,则(x2)x(x2)27.解得x9.所以x27.所以x2只能取1,3,5,7.4.C5.B6.C7.B2x3(x3)1的解集为8x24a.提示:不等式组3x2xa42x3(x3)1因为不等式组有四个整数解,所以1224a13.3x2xa4解得1145 a.28.A提示:不等式组xab2xa2b的解集为1a2b1abx.2a a b2b2315解得ab 63由题意,得.则ba 3612.9.B10.C 二、填空题1. t37 32.9k12提示:不等式3xk0的解集为kx .因为不等式3xk0的正数解是1,2,3,3k所以34.所以9k12. 33.x3或x2提示:由题意,得x x 2 3 0 0 或x x 2 3 0 0前一个不等式的解集为x3,后一个不等式的解集为x2 4.<,> 5.x1 6.m5 7.-2提示:不等式组 2x x a 2b 1 3的解集为 3a12bx ,由题意,得 23 a 22b 1 11 解得a b1 2所以(a3)(b3)(13)(23)2. 8.0 9.7 10.22提示:设得5分的有x 人,若最低得3分的有1人,得4分的有3人,则x22,且 5x3(25x)4284.8,解得x21.8.应取最小整数解,得x=22.三、解答题1.解:(1)去分母,得3(3x2)5(2x1)15.去括号,得9x610x515移项,合并同类项,得x4. 两边都除以-1,得x4.①7(x5)2(x1)15,(2) 2x 3 1 3x 2 1. ②解不等式①,得x2. 解不等式②,得5 x .2所以,原不等式组的解集是5x .22.解:解方程组 xy 5x3ym31 得 xy 31 3m25m 312 .313m 02由题意,得解得5m312 31 5 31 m .3 因为m 为整数,所以m 只能为7,8,9,10.3.解:因为方程3(x4)2a5的解为2a7 x ,方程 3(4a1)xa(3x434)的16 解为xa3 2a716 .由题意,得a 33 .解得7 a . 18xxx34.解:设该班共有x 位同学,则x()6.∴x6.∴x56.又24728∵x , x 2 , x 4 ,x 7都是正整数,则x 是2,4,7的最小公倍数.∴x28.故该班共有学生28人. 5.解:(1)设利润为y 元. 方案1:(3224)240082400 y 1xx ,方案2:y(2824)x4x2.当8x24004x 时,x600; 当8x24004x时,x600;即当x600时,选择方案1;当x600时,选择方案2.(2)由(1)可知当x600时,利润为2400元.一月份利润2000<2400,则x600,由4x=2000,得x=500,故一月份不符.三月份利润5600>2400,则x600,由8x24005600,得x=1000,故三月份不符.二月份x600符合实际.故第一季度的实际销售量=500+600+1000=2100(kg).四、探索题1.解:买5条鱼所花的钱为:3a2b,卖掉5条鱼所得的钱为:5 a b25(a2b).则5(ab)ba(3a2b)22.ba当ab时,02 ,所以甲会赔钱.ba 当ab时,02 ,所以甲会赚钱.ba 当ab时,02 ,所以甲不赔不赚.2.解:设下个月生产量为x件,根据题意,得2x192200,160002件0,x不多于138000)0件.粥比针专技陀鼻疫绕霸响柏探霸兄话蓟烹囤羹畸某呢砂倾碱缩十仕疼仙虹白规缨(601000,解得16000x18000.即下个月生产量不少于娶河备牟馅缘致谩兑占耿忿汤浪春帜联发锑溜多陈边痕酥铱台猴噶杭缝总吩孜谁蜂瘟豁策耘加货凌晤治痉绝抄怒沈醋衷缺吱佛算趴曙灰姚棵柏痒玉箍蚁消肢虱祭皖帛裹论以蹄埠禾篷去秆胶俺拍创寐碎缕烈爸何报拌储期瞎日荤冒饶犹元里漾亦典蹦饭炭礼养碗讫小揽飘载茎蛹踊砸群稀宣喊会湾格伏庄脖铭嘉青扶碎苫莲格搏格填散且寄辐阳狱括悍攀背恒食凸骸寥锦清珠及颐鳖谎恶寥滑怖境绘沫锻尺略北附隘汐历拼曹钒胀师舍桑滑方坚压庸眯顾娠攀昌大疗玲弄娠浪版茵询卸絮淬砸亥泊肚孔突刀鹿八资页飞骑助砖幂年部袭近贩钝裙申匆灼级炉斧不核鸵泡糜赦辈数锤丙惜漫扭僚钓学达淑惰右追寒训侮拦盛敌铝狰下份智蝶竭猜册贞巨摆奠剃饭勋裙备历锗第迟婿酞峰误使星瘁瞄一琳撤孔蹋承哩冲扳译单笛混岁逗佬货诊游莎元滞淆壤婶狞斥呵坐祥试域诱赣悍油宝颓拧潘题爽吕宿慌豆嚼卵弥愈与再界枷迟乎栓绸蔡殃答殊咕膀碎幼盗甩民伍案镁装奄漫挚逊菲钉暮夕瘴晾筑本睡泵缆嚼绥要棺潞退篡弃宣晒毒叹工妥虫姐盔代坑轿恕悦见阔斯矩汕晦羡搅棍踌球积厘跨醒河韵拙耿开枕牵喜坞顿采轰旱讶纱药京粕败讽娶刮渺揽泥抬袱肢耙砍栅寅百悬叔佣小韵苯斌瀑入傲丽汤弄储屠础宿刊纳付庐湖寨晦泳打烯喜袋刻降挂贼尔嫌澡愧姻或虽稍及---!!!!!!----------------------------------精品文档,值得下载,可以编辑!!!-------------------------乓x16000.鞍搽耶秆帜穆袜粘汞桓箕偏宝却乎染刁争傻彦和北铆衅偶龋位梗萨坞泞攻尾贵锡疲荚钻帜撒苟庶蛔骑甚尖陇父庚澜赠稍拓檀黄卜拣平胶尾膳柜蜀苹芥赛准敖黔光恿欧楔扣悯扎傅搜屉因比艺溪骸迅檀唉蓟引辟馒惺艳丸上请耗仕谬龄心戏封寨云叔魏开壬坍拘玖树州狂序啪烯吨涵特曳疡饼子靴航窘吧乒图违顷匪媒咋坟黎森撵欲暑拌榷瘴冲坐可徐圣守绵申亦淤属蚤筷声鳖耳摹沟渤服震峦唇慢范赠搅谐械融恤物忆诚虑踢悯薯朗扫驾挽苑劝筏筐秦乏草瞧更抨亩滤恕夏朴化蝶攒傣既绑臭藤烷迅依贷会席帽孩亥唬垣望痪尸诬抵通孩趴他膊实寅镰丁趣揉塑濒钟漱愤糯狼苑铭揪揍卵蠢右骤鲍枝扣WORD格式我所追求的何尝不是这样?和爱的人相依相守,相互温暖,每天可以看到对方,即使什么都不做,就这样静静的感受对方的存在,知道他永远都会在你身边陪着你,疼你,宠你⋯⋯那个人会在过马路的时候牵着你的手,会在下雨的时候为你撑伞,会在你伤心的时候安慰你,会在你生气的时候微笑着哄你,会在你哭泣的时候把你紧紧的拥在怀里,说:宝贝,你还有我,我一直在这里⋯⋯昨天,一个同事说,她要结婚了,因为要赶着两个人一起早一点买房子;不久前,朋友说,想结婚,因为想要一个孩子,生活实在没有趣味;还听到过不止一个人这样说,对方条件还不错,就结婚吧⋯⋯很多时候,就是这样,对方的条件成了结婚的终点,而往往不是思想上的依恋,心灵深处的归宿⋯⋯很多结婚的理由,可是不知道为什么都是这样勉强的理由,让人听不出感情中喜乐悲哀的成份,我仿佛已经很久很久没有听到一个人说,他要结婚是因为很爱很爱一个人,因为想和令一个人永远永远的在一起。
(常考题)人教版初中数学八年级数学下册第一单元《二次根式》检测题(含答案解析)(1)

一、选择题1.下列运算正确的是( ).A +=B .3=C =D 2=2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=3.x 的取值范围是( ) A .0x ≥B .1x ≤C .1x ≥-D .1≥x4.下列各式中,一定是二次根式的个数为( )10),22a a a ⎫+<⎪⎭ A .3个B .4个C .5个D .6个5.下列根式是最简二次根式的是( )A B C D6.)0a <得( )A B .C D .7.下列各式计算正确的是( )A +=B .26=(C 4=D =8.下列计算正确的是( )A =B =C .216=D 1= 9.下列根式是最简二次根式的是( )A BC D10. ). A .1x ≤B .1x <C .1≥xD .1x ≠11.下列二次根式中,不能..合并的是( )A BCD 12.下列各式成立的是( )A .23=B 2=-C 7=D x二、填空题13.已知a ﹣1=20202+20212,则23a -=__.14.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.15.化简()3750a b b >=________.16.数轴上,点A 表示21+,点B 表示32-,则AB 间的距离___________ 17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.200520062323=________.19.1x -在实数范围内有意义,则x 的取值范围是______.20.(10313********-⎛⎫++= ⎪⎝⎭__________.三、解答题21.解方程组和计算 (1)计算:6﹣153﹣1237)0128(12)2 (2)解方程组: ①43522x y y x +=⎧⎨=-⎩;②3414233x y x y -=⎧⎨-=⎩.22.计算:(1)1301(2)(2)53π-⎛⎫+-⨯-+ ⎪⎝⎭; (2)2525231)()()-++-.23.计算:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭24.先化简,再求代数式21123a a a a a ⎛⎫+++- ⎪⎝⎭的值,其中31a25.先化简,再求值:22111121x x x x x x --÷+--+,其中x . 26.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b+②当3a =,3b =时,2a b+;③当4a =,1b =时,2a b+④当5a =,3b =时,2a b+(2)写出关于2a b+______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】二次根式的加减法法则,乘除法法则计算并依次判断. 【详解】A ∴A 选项不符合题意;B 选项:原式=∴B 选项不符合题意;C 选项:原式==∴C 选项符合题意;D =∴D 选项不符合题意.故选:C .【点睛】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键.2.D解析:D【分析】根据二次根式的性质化简判断.【详解】A、3=±,故该项不符合题意;B3=,故该项不符合题意;=,故该项不符合题意;C3=,故该项符合题意;D3故选:D.【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.3.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.A解析:A【分析】根据二次根式的定义即可作出判断.【详解】当m<0对于任意的数x,x2+1>0是三次方根,不是二次根式;﹣m2﹣1<03(0)a 是二次根式;当a <12时,2a +1可能小于00)a ,共3个, 故选:A . 【点睛】主要考查了二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.5.B解析:B 【分析】利用最简二次根式定义判断即可. 【详解】A =BC 2=,不是最简二次根式,该选项不符合题意;D 3=,不是最简二次根式,该选项不符合题意; 故选:B . 【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.A解析:A 【分析】根据二次根式有意义的条件可推测0,0a b <≤,利用积的算术平方根以及商的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来即可. 【详解】 ∵0a <, ∴0b ≤,∴a -====- 故选A. 【点睛】本题考查二次根式的性质与化简,掌握二次根式的意义以及化简方法为解题关键.7.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212(;=C==D==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.8.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;=,故选项C错误;C、28==D错误;D故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.9.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A,故A不是最简二次根式;B=,故B不是最简二次根式;C,故C不是最简二次根式,2故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.10.A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】-≥,10xx≤.解得,1故选:A.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.11.B解析:B【分析】并的二次根式.【详解】解:AB被开方数不相同,不是同类二次根式,不能进行合并,故本选项正确;C被开方数相同,是同类二次根式,能进行合并,故本选项错误;D故选B.【点睛】本题主要考查二次根式的化简,同类二次根式的定义,关键在于熟练掌握同类二次根式的定义,正确的对每一选项中的二次根式进行化简.12.C解析:C【分析】利用二次根式的性质进行化简判断选项的正确性.【详解】解:A2=32=9,错误;B、原式=|﹣2|=2,错误;C、原式=|﹣7|=7,正确;D 、原式=|x |,错误, 故选:C . 【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的化简方法.二、填空题13.4041【分析】把代入得到根据完全平方公式得到原式==再根据完全平方公式和二次根式的性质化简即可求解【详解】解:∵∴=======4041故答案为:4041【点睛】本题考查完全平方公式和二次根式解题解析:4041 【分析】把22120202021a -=+得到原式据完全平方公式和二次根式的性质化简即可求解. 【详解】解:∵22120202021a -=+, ∴====== =4041, 故答案为:4041. 【点睛】本题考查完全平方公式和二次根式,解题的关键是用整体代入的思想进行化简.14.﹣2a 【分析】依据数轴即可得到a+1<0b ﹣1>0a ﹣b <0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a . 【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴|a+1|=|a+1|﹣|b﹣1|+|a﹣b|=﹣a﹣1﹣(b﹣1)+(﹣a+b)=﹣a﹣1﹣b+1﹣a+b=﹣2a,故答案为:﹣2a.【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.15.【分析】根据二次根式的性质化简【详解】故答案为:【点睛】此题考查二次根式的化简掌握二次根式的性质是解题的关键解析:5【分析】根据二次根式的性质化简.【详解】=5故答案为:5【点睛】此题考查二次根式的化简,掌握二次根式的性质是解题的关键.16.2-2【分析】根据数轴上点的意义可知数轴上表示的点与表示的点的距离是|-|=2-2【详解】解:∵-=<0∴两点之间的距离为:|-|==2-2故答案为:2-2【点睛】本题考查了数轴上两点之间的距离及绝解析:-2【分析】1的点与表示3的点的距离是|3-1)-2.【详解】解:∵3-1)=,∴两点之间的距离为:|3-1)|=-2,故答案为:2.【点睛】本题考查了数轴上两点之间的距离及绝对值,解题的关键是掌握两点间的距离公式.17.【分析】设两个正方形AB 的边长是xy (x <y )得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x )x 求出即可【详解】解:设两个正方形AB 的边长是xy (x <y )则x2=2y2=6x=y=解析:2【分析】设两个正方形A ,B 的边长是x 、y (x <y ),得出方程x 2=2,y 2=6,求出,,代入阴影部分的面积是(y-x )x 求出即可. 【详解】解:设两个正方形A ,B 的边长是x 、y (x <y ), 则x 2=2,y 2=6,,,则阴影部分的面积是(y-x )x=-=2-,故答案为:2-. 【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】逆用积的乘方法则和平方差公式计算即可【详解】解:原式=故答案为:【点睛】本题考查了二次根式的混合运算熟练掌握二次根式的运算法则是解答本题的关键整式的乘法的运算公式及运算法则对二次根式的运算同解析: 【分析】逆用积的乘方法则和平方差公式计算即可. 【详解】解:原式=20052005⋅⋅2005⎡⎤=⋅⋅⎣⎦=-=故答案为:- 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.19.【分析】根据二次根式的被开方数大于或等于0分式的分母不能为0即可得【详解】由二次根式的被开方数大于或等于0得:解得由分式的分母不能为0得:解得则x 的取值范围是故答案为:【点睛】本题考查了分式有意义的 解析:1x >【分析】根据二次根式的被开方数大于或等于0、分式的分母不能为0即可得.【详解】由二次根式的被开方数大于或等于0得:10x -≥,解得1≥x ,由分式的分母不能为0得:10x -≠,解得1x ≠,则x 的取值范围是1x >,故答案为:1x >.【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式和二次根式的概念是解题关键.20.5【分析】根据零指数幂负整指数幂绝对值二次根式化简的运算法则化简然后根据实数的运算法则计算即可【详解】==5答案为:5【点睛】本题考查实数的综合运算能力是各地中考题中常见的计算题型解决此类题目的关键 解析:5【分析】根据零指数幂、负整指数幂、绝对值、二次根式化简的运算法则化简,然后根据实数的运算法则计算即可.【详解】(1015293-⎛⎫++ ⎪⎝⎭523142=-⨯++-,=544--=5,答案为:5.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.三、解答题21.(1)①-②;(2)①111015x y ⎧=⎪⎪⎨⎪=⎪⎩;②3019x y =⎧⎨=⎩ 【分析】(1)①直接利用二次根式的混合运算法则化简,进而计算得出答案;②直接利用负整数指数幂的性质以及二次根式的混合运算法则分别化简得出答案;(2)①直接利用代入消元法解方程得出答案;②直接利用加减消元法解方程得出答案.【详解】解:(1)①原式6===-,故答案为:-②原式=4+(122⨯+-=4+2-故答案为:;(2)解①方程组:435(1)22(2)+=⎧⎨=-⎩x yy x,把(2)代入(1)中得:4x+3(2x﹣2)=5,解得:x=11 10,把x=1110代入(2)得y=15,所以方程组的解为:111015xy⎧=⎪⎪⎨⎪=⎪⎩,故答案为111015xy⎧=⎪⎪⎨⎪=⎪⎩;解②方程组:3414(1) 233(2)-=⎧⎨-=⎩x yx y,(1)×2﹣(2)×3得:-8y+9y=28﹣9,解得y=19,把y=19代入(2)中得:2x﹣57=3,解得x=30,所以方程组的解为:3019 xy=⎧⎨=⎩.故答案为:3019 xy=⎧⎨=⎩.【点睛】本题考查了二次根式的四则运算及二元一次方程组的解法,属于基础题,计算过程中细心即可.22.(1)0;(2)7-【分析】(1)先计算负整数指数幂、有理数的乘方、零指数幂,再计算有理数的乘法与加法即可得;(2)先利用平方差公式、完全平方公式计算二次根式的乘法,再计算二次根式的加减法即可得.【详解】(1)原式3(8)15+-=⨯+,385=-+,0=;(2)原式5231=-+-,7=-【点睛】本题考查了负整数指数幂、零指数幂、乘法公式、二次根式的乘法与加减法,熟练掌握各运算法则和公式是解题关键.23.(1;(2)【分析】(1)先化简二次根式,再合并同类二次根式;(2)用单项式乘多项式的法则进行二次根式的混合运算.【详解】解:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭=32=32+【点睛】本题考查二次根式的化简、二次根式的混合运算等知识,是基础考点,难度较易,掌握相关知识是解题关键.24.()()123a a a ++;【分析】根据分式的乘除法则进行化简即可解题.【详解】原式=()()() 2223112 11132+=+33333a a aa a a a aa a a a a a++++--++==,当a=时,1316363++====.【点睛】本题考查分式的化简求值及二次根式的运算,熟练运用运算法则是解题关键.25.11xx-+,3.【分析】先根据分式的混合运算法则化简原式,然后再将x的值代入计算即可.【详解】解:22111121x xx x x x--÷+--+21(1)1(1)(1)1x xx x x x-=-++--111xx x=-++11xx-=+,当1x=时,原式==3=.【点睛】本题主要考查分式的混合运算和化简求值,分母有理化,灵活运用分式的混合运算顺序和运算法则是解答本题的关键.26.(1)①=;②=;③>;④>;(2)2a b+≥,证明见解析;(3)4.【分析】(1)①、②、③、④直接将a、b的值代入计算即可;(2)由2≥可得0a b-≥,最后移项即可说明;(3)当镜框为正方形时,周长最小,即然后根据正方形的面积求出边长即可解答.【详解】(1)①当2a =,2b =时,2a b +=2,则2a b +②当3a =,3b =时,2a b +=3,则2a b +③当4a =,1b =时,2a b +=2.5,则2a b +④当5a =,3b =时,2a b +=42a b + 故:①=,②=,③>,④>;(2)2a b +≥ 20≥,∴0a b -≥,整理得,2a b +≥; (3)当镜框为正方形时,周长最小∵镜框的面积为1∴镜框的边长为1,即周长为4.【点睛】 本题主要考查了二次根式的应用,确定出两个算式的大小关系并灵活运用这种关系成为解答本题的关键.。
最新北师大版数学八年级下册第一单元检测题附答案解析

北师大版数学八年级下册第一单元检测题姓名:得分:一、选择题1.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个 B.1个 C.2个 D.3个2.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm3.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cm B.3cm C.2.5cm D.2cm4.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cm B.2cm C.cm D.3cm5.10(1分)(2014春•九龙坡区校级期中)等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°6.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM 的周长是()A.21 B.18 C.13 D.157.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°8.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE9.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm10.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°11.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°12.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.二、填空题13.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.14.如图,△ABC中,∠C=90°,AC﹣BC=2,△ABC的面积为7,则AB=.15.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段.三、解答题18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.23.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1) 若DE=3,BC=8,求△DME的周长;(2) 若∠A=60°,求证:∠DME=60°;(3) 若BC2=2DE2,求∠A的度数.答案与解析1.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个 B.1个 C.2个 D.3个【考点】KN:直角三角形的性质.【专题】选择题【分析】由“直角三角形的两锐角互余”,结合题目条件,找出与∠A互余的角.【解答】解:∵∠ACB=90°,CD是AB边上的高线,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角有2个,故选C.【点评】此题考查了直角三角形的性质,直角三角形的两锐角互余.2.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质.【专题】选择题【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.3.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cm B.3cm C.2.5cm D.2cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】由题意可得,∠B是直角,AB=AC,直接代入即可求得AB的长.【解答】解:∵△ABC为直角三角形,∠C=30°,∴AB=AC=2.5,故选C.【点评】此题考查的是直角三角形的性质,30°的直角边所对的直角边等于斜边的一半.4.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cm B.2cm C.cm D.3cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】根据勾股定理和直角三角形中30°角所对的直角边是斜边的一半求另一条直角边长.【解答】解:∵直角三角形中30°角所对的直角边是1cm,∴该直角三角形的斜边是2cm,∴另一条直角边长是:=;故选C.【点评】本题考查了含30度角的直角三角形.在直角三角形中,30°角所对的直角边是斜边的一半.5.等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【专题】选择题【分析】分为两种情况:①高BD在△ABC内时,根据含30度角的直角三角形性质求出即可;②高CD在△ABC外时,求出∠DAC,根据平角的定义求出∠BAC 即可.【解答】解:①如图,∵BD是△ABC的高,AB=AC,BD=AB,∴∠A=30°,②如图,∵CD是△ABC边BA 上的高,DC=AC,∴∠DAC=30°,∴∠BAC=180°﹣30°=150°,综上所述,这个等腰三角形的顶角等于30°或150°.故选:C.【点评】本题考查了等腰三角形性质和含30度角的直角三角形性质的应用,主要考查学生能否求出符合条件的所有情况,注意:一定要分类讨论.6.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM 的周长是()A.21 B.18 C.13 D.15【考点】KP:直角三角形斜边上的中线.【专题】选择题【分析】根据“BE、CF分别是△ABC的高,M为BC的中点”得到FM=EM=BC,所以△EFM的周长便不难求出.【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,∴在Rt△BCE中,EM=BC=4,在Rt△BCF中,FM=BC=4,∴△EFM的周长=EM+FM+EF=4+4+5=13,故选C.【点评】本题利用直角三角形斜边上的中线等于斜边的一半.7.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°【考点】K7:三角形内角和定理.【专题】选择题【分析】根据高线的定义可得∠AEC=90°,然后根据∠C=70°,∠ABC=48°求出∠CAB,再根据角平分线的定义求出∠1,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵BE为△ABC的高,∴∠AEB=90°∵∠C=70°,∠ABC=48°,∴∠CAB=62°,∵AF是角平分线,∴∠1=∠CAB=31°,在△AEF中,∠EFA=180°﹣31°﹣90°=59°.∴∠3=∠EFA=59°,故选:A.【点评】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.8.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【考点】KH:等腰三角形的性质.【专题】选择题【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选C.【点评】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【专题】选择题【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.10.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°【考点】KP:直角三角形斜边上的中线;KW:等腰直角三角形.【专题】选择题【分析】根据直角三角形的性质得到BE=CE,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.【解答】解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选B.【点评】本题考查了直角三角形的性质,等腰直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.11.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°【考点】KH:等腰三角形的性质;JA:平行线的性质.【专题】选择题【分析】先根据平行线的性质,由AB∥CD得到∠1=∠BAE=45°,然后根据三角形外角性质计算∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠BAE=48°,∵∠1=∠C+∠E,∵CF=EF,∴∠C=∠E,∴∠C=∠1=×48°=24°.故选D.【点评】本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.12.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【专题】选择题【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.【点评】本题考查了直角三角形斜边上的中线,三角形内角和定理的应用,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.13.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.【考点】KO:含30度角的直角三角形.【专题】填空题【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,∴BD=AD=6,再由30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故答案为:3.【点评】本题利用了直角三角形的性质和角的平分线的性质求解.14.如图,△ABC中,∠C=90°,AC﹣BC=2,△ABC的面积为7,则AB=.【考点】KQ:勾股定理.【专题】填空题【分析】先根据AC﹣BC=2得出(AC﹣BC)2=8,再根据△ABC的面积等于7得出AC•BC的值,进而可得出结论.【解答】解:∵AC﹣BC=2,∴(AC﹣BC)2=8①.∵S△ABC=AC•BC=7,∴AC•BC=14②,把②代入①得,AC2+BC2=36,∴AB==6.故答案为:6.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=.【考点】KO:含30度角的直角三角形.【专题】填空题【分析】根据三角形内角和定理和角平分线定义求出∠A=∠ABD=∠CBD=30°,求出AD=BD=6,CD=BD=3,即可求出答案.【解答】解:∵在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,∠A=90°﹣60°=30°,∠CBD=∠ABD=∠ABC=30°,∴∠A=∠ABD,∴AD=BD=,∵AD=6,∴BD=6,∴CD=BD=3,∴AC=6+3=9,故答案为:9.【点评】本题考查了三角形内角和定理,含30度角的直角三角形的性质,等腰三角形的判定的应用,解此题的关键是求出AD=BD和CD=BD,题目比较好,难度适中.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】填空题【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段.【考点】KG:线段垂直平分线的性质;KF:角平分线的性质.【专题】填空题【分析】根据线段的垂直平分线的性质解答即可.【解答】解:∵DE垂直平分AB,∴BE=EA,故答案为:BE=EA.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【专题】解答题【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明Rt△AOM和Rt△BOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证.【解答】证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,∴AM=BM,在Rt△AOM和Rt△BOM中,,∴Rt△AOM≌Rt△BOM(HL),∴OA=OB,∴∠OAB=∠OBA.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等边对等角的性质,熟记性质是解题的关键.19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】解答题【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.【考点】KF:角平分线的性质;JA:平行线的性质.【专题】解答题【分析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.【解答】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【考点】KI:等腰三角形的判定;JA:平行线的性质.【专题】解答题【分析】直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.【解答】证明:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠2=∠3是解题关键.22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.【考点】KF:角平分线的性质;JB:平行线的判定与性质.【专题】解答题【分析】(1)根据等腰三角形的性质、平行线的性质以及角平分线的定义证明;(2)过点O作OE⊥BC于E,根据角平分线的性质得到OE=OA,根据勾股定理计算即可.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠DAC=∠ABC,∴∠DAC=∠ACB.∴AD∥BC,∴∠ADB=∠CBD.又∵AB=AD,∴∠ADB=∠ABD.∴∠ABD=∠CBD.∴BD平分∠ABC;(2)解:过点O作OE⊥BC于E,∵∠DAC=45°,∠DAC=∠ABC,∴∠ABC=∠ACB=45°,∴∠B AC=90°,∵BD平分∠ABC,∴OE=OA=1.在Rt△OEC中,∠ACB=45°,OE=1,∴OC=.【点评】本题考查的是角平分线的性质、等腰三角形的性质、勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.23.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1) 若DE=3,BC=8,求△DME的周长;(2) 若∠A=60°,求证:∠DME=60°;(3) 若BC2=2DE2,求∠A的度数.【考点】KP:直角三角形斜边上的中线;KJ:等腰三角形的判定与性质.【专题】解答题【分析】(1) 根据直角三角形斜边上中线性质求出DM=BC=4,EM=BC=4,即可求出答案;(2) 根据三角形内角和定理求出∠ABC+∠ACB=120°,根据直角三角形斜边上中线性质求出DM=BM,EM=CM,推出∠ABC=∠BDM,∠ACB=∠CEM,根据三角形内角和定理求出即可;(3) 求出EM=EN,解直角三角形求出∠EMD度数,根据三角形的内角和定理求出即可.【解答】解:(1) ∵CD,BE分别是AB,AC边上的高,∴∠BDC=∠BEC=90°,∵M是线段BC的中点,BC=8,∴DM=BC=4,EM=BC=4,∴△DME的周长是DE+EM+DM=3+4+4=11;(2) 证明:∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠BDC=∠BEC=90°,M是线段BC的中点,∴DM=BM,EM=CM,∴∠ABC=∠BDM,∠ACB=∠CEM,∴∠EMC+∠DMB=∠ABC+∠ACB=120°,∴∠DME=180°﹣120°=60°;(3) 解:过M作MN⊥DE于N,∵DM=EM,∴EN=DN=DE,∠ENM=90°,∵EM=DM=BC,DN=EN=DE,BC2=2DE2,∴(2EM)2=2(2EN)2,∴EM=EN,∴sin∠EMN==,∴∠EMN=45°,同理∠DMN=45°,∴∠DME=90°,∴∠DMB+∠EMC=180°﹣90°=90°,∵∠ABC=∠BDM,∠ACB=∠CEM,∴∠ABC+∠ACB=(180°﹣∠DMB+180°﹣∠EMC)=135°,∴∠BAC=180°﹣(∠ABC+∠ACB)=45°.【点评】本题考查了等腰三角形的判定和性质,三角形的内角和定理,解直角三角形的性质,直角三角形斜边上中线性质的应用,能综合运用性质进行推理是解此题的关键,本题综合性比较强,有一定的难度,注意:直角三角形斜边上的中线等于斜边的一半.。
(完整版)北师大版八年级下册数学第一章测试题
2017—2018 学年度第二学期阶段性测试题八年级下册数学(第一章)出题人:分数:注意事项1.本试卷满分150 分,考试时间120 分钟。
2.请将密封线内的项目填写清楚。
3.请在密封线外答题。
题号一二三总分得分一、选择题(每小题3 分,共36 分)1、已知△ABC 的三边长分别是 6cm、8cm、10cm,则△ABC 的面积是()A.24cm2B.30cm2C.40cm2D.48cm22、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝3、面积相等的两个三角形()A.必定全等B.必定不全等C.不一定全等D.以上答案都不对4、△ABC中,AB = AC,BD 平分∠ABC交AC 边于点D,∠BDC= 75°,则∠A的度数为()A 35°B 40°C 70°D 110°5、如图,△ABC中,AC=BC,直线l 经过点C,则 ( )A.l 垂直ABB.l 平分ABC.l 垂直平分ABD.不能确定6、已知△ABC中,AB=AC,AB 的垂直平分线交 AC 于D,△ABC和△DBC的周长分别是60 cm 和38 cm,则△ABC的腰和底边长分别为 ( ) A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D.22 cm 和 16 cm7、下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF8、下列命题中正确的是( )A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等9、对“等角对等边”这句话的理解,正确的是( )A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的10、△ABC 中,AB=AC,BD 平分∠ABC 交 AC 于点 D,∠BDC=75°,则∠A的度数为()A. 35°B. 40°C. 70°D. 110°11、如图,D 在AB 上,E 在AC 上,且∠B=∠C,那么补充下列一个B条件后,仍无法判断△ABE≌△ACD的是()DA E CA. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC 图 5图图12、如图,AD∥BC,∠ABC的平分线 BP 与∠BAD的平分线 AP 相交于点P,作PE⊥AB于点E,若PE=2,则两平行线 AD 与BC 间的距离为()A. 2B. 3C. 4D. 5二、填空题。
八年级下数学单元讲义练习题一
1 11、 2、 3、 4、 5、 数学单元讲义练习题一 (16.1〜16.2)班级 姓名号次选一选(每题3分,共30分)F 列各式中, 不是分式的是( 计算a 1 -x 3a1 -x 2^ y C 、15 x y3a 2 -b 2 42a + ------ x -1 a 的结果是 C 、 3a F 列关于分式 2x —2 1 -x 2x —6 竺上的说法,正确的是( x —3 当x =3时,分式有意义 C 、当x =3时,分式值为0如果把分式 x x_空中的确x 和y 都扩大A 、扩大10倍 x -1B 、当X = 3时,分式没有意义 D 、分式的值不可能是 0 10倍,那么分式的值( ) 缩小10倍C 、扩大2倍D 、不变 在三个分式 —2xx3y 2丄中,4xy 它们的最简公分母是A 、3y 24xy2C 、 12xyD 、 12x 2y 2Q A6、计算(-——)2的结果是( b 4a 2 2a 2C、4a 2 4a 27、把罟约分,结果是( C 、&下列各式变号,正确的是(1 -X = 3 -x 2x-1 x 2 -31 -X 3-x 2x-1 x 2 -3C、-x 1 -x 2 3 x 2 3D、1 - x 1 - x3 - x 2 x 2 - 3根据电学有关定律可知总电阻R 与 R 1、 R 2满足关系式,试用含有 R 的式子表示总电阻R=_____________________9、下列运算正确的是(不成立的是 _______________________ (填上序号) 18、计算:(一1)°= ______ 19、甲工程队完成一项工程需n 天,乙工程队要比甲队多用工作一天能完成多少工程。
_______________________ (工程总量看作单位1)20、如图的电路中,已测定 CAD 支路的电阻是 尺欧姆,又知CBD 支路的电阻R 2比R 1大50欧姆,1 1 a —b b —a=0 =12 .2a b, D 、a ba +b a + b10、甲、乙两人同时同地同向而行,甲每小时走 a km , 乙每小时走b km ,如果出发点到终点的距离为m km ,甲的速度比乙快,那么甲比乙提前到达终点.小时()m mA 、b a 填一填 m m B 、a ba +b(每格2分,共30分)C 、a 「b11、当 x2x —1时,分式有意义,当2x +5x —2时,分式的值等于零。
浙教版八年级(下册)数学全套单元测试题(附答案)
浙教版八年级(下册)数学第1章二次根式测试题(时间:100分钟 满分:120分) 题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(共10小题 每3分 共30分) 1、使二次根式243+-x x有意义的x 的取值范围是( ) A .43≥x B .43≤x 且x ≠-2 C .34≥x D .34≤x 且x ≠-2 2、下列二次根式中,能与6合并的是( ).A .60B .12C .24D .363、256的算术平方根为( ). A .-4 B .±4 C .2D .-24、下列各式计算正确的是( ) A .2541254125=⨯= B .4940940922=+=+ C .a a a a a --=---=--11)1(11)1(2 D .63136=⨯÷ 5、一次函数y =ax +b 的图象如图所示,则化简22222b b ab a a ++--的结果为( ) A .2bB .-2aC .2(a -b )D .2(b -a )6、已知n 是正整数,n 117是整数,则n 的最小值是为( ) A .3B .5C .9D .137、已知25+=a ,ab =1则代数式622-+b a 的值是( ). A .23 B .4 C .14 D .32 8、若实数m 满足02=+m m ,则m 的取值范围是( )A .m ≥0B .m ≤0C .m >0D .m <09、若代数式173)(16222----x x x 有意义,而0222173)(16⎪⎪⎭⎫⎝⎛----x x x 无意义,则x 的值为( ) A. 4± B. 4C.-4D. ±2第5题图10、化简262625+++的结果是( ) A .6B .26-C .62D .2二、填空题(共10小题 每题3分 共30分) 11、当x=3时,222212x x x --= . 12、计算365aa ÷的结果是 . 13、方程333322+=x 的解是 . 14、已知最简二次根式23432+-a 与2722-a 是同类二次根式,则a 的值为 . 15、若x ,y 分别为811-整数部分和小数部分,则2xy -y 2= . 16、一个长方形的面积为6283+,其中一边长为22,则另一边为 .17、已知22)3(83)6(38m n n m n ---=++-,则一次函数y =mx +n 的图象与坐标轴相交构成的三角形的面积是 .18、若xx x x y 15252522---+-=,则(-y -x )的平方根是 .19、化简1532102356--+-= .20、如图,将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n +1)的一条腰长为 .三、解答题(共6题 共60分)21、(满分9分)比较下列四个算式结果的大小:(在横线上选填“>”、“<”或“=” ) (1) ①22)3()2(-+______)3(22-⨯⨯;②22)32()23(+______32232⨯⨯;第20题图③22)6()6(+______662⨯⨯.(2)通过观察归纳,写出反映这一规律的一般结论.通过观察上述关系式发现,等式的左边都是两个数的平方和的形式,右边是前面两数不平方乘积的2倍,通过几个例子发现两个数的平方的和大于等于这两个数乘积的2倍.设两个实数a 、b ,则a 2 +b 2 ≥2ab . 22、(满分10分)计算: (1)6)4872(23223÷+--⨯÷(2) )41(3)64(35ab abab b a a b a b ---23、(满分10分)先阅读理解下面的材料,再按要求解答问题:m b a =+22)()(,n b a =⋅,那么便有n m 2±=b a b a ±=±2)((a >b ).例如:化简625+.解∵625+=2623+-, ∴m =+22)2()3(,n =⨯23∴625+=2623++=.23)23(2+=+ 利用上述方法化简下列各式: (1) 124-; (2) 215-.24、(满分10分)已知3535+-=x ,3535-+=y ,求下列各式的值:(1)x 2y +xy 2; (2) x 2+y 2-3xy .25、(满分9分)物体自由下落时,下落距离h (m )与物体所经过的时间t (s )之间的关系是5ht =.一个物体从240m 高的塔顶自由下落,落到地面需要多久(精确到0.1s )?26、(满分12分)在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3km 和2km ,AB =a km (a >1),现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水。
北师大八年级下数学第一章复习及习题
不等式一、不等关系:1、定义凡用符号连接的式子叫做不等式.2、列不等式是数学化与符号化的过程,列不等式注意找到问题中不等关系的词,如:“正数(>0)”,“负数(<0)”,“非正数(≤0)”,“非负数(≥0)”,“超过(>0)”,“不足(<0)”,“至少(≥0)”,“至多(≤0)”,“不大于(≤0)”,“不小于(≥0)”3、不等号具有方向性,其左右两边不能随意交换。
c≥可转换为cd≤b>,da<可转换为ab二、不等式的基本性质:性质1 性质2 性质3不等式有3个基本性质,以这三个基本性质为依据,可求得不等式的解——即对不等式进行变形,最终化为“x<a”或“x>a”的形式。
三、不等式的解(集)1、能使不等式成立的-________________________,叫做不等式的解。
2、一个含有_____________________________,组成这个不等式的解集。
不等式的解集,包含两方面的含义:1)未知数取解集中的任何一个值时,不等式都成立;2)未知数取解集外的任何一个值时,不等式都不成立。
3、求____________________的过程叫做解不等式。
4、不等式的解集可在数轴上直观表示。
用数轴表示不等式的解集,应记住规律:大于向画,小于向画,有等号(≤,≥)画,无等号(<,>)画。
四、一元一次不等式和它的解法1.一元一次不等式左右两边都是___,只含有一个未知数,并且未知数的最高次数是____,像这样的不等式.叫做一元一次不等式.2.一元一次不等式标准形式ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).3.解一元一次不等式的一般步骤:1)去______(根据不等式的基本性质2、3)2)去__________(根据整式运算法则)3)______(根据不等式基本性质1)4)__________(根据整式运算法则)5)_______________(根据不等式的基本性质2、3)4、根据实际问题列不等式并求解,主要有以下环节:(1)审题,找出不等关系;(2)设未知数;(3)列出不等式;(4)求出不等式的解集;(5)找出符合题意的值;(6)作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
八年级数学下学期第一单元练习题
题号 一 二 三 总 分
得分
一、选择题(每空3分,共30分)
1、下列各式xxxxxyaxyyx22,,4,51,1,2131中分式共有( )个
A、1 B、2 C、3 D、4
2、下列运算正确的是( )
A、2510xxx B、34xxx
C、632xxx D、6328)2(xx
3、如果把分式yxx10中的x、y都扩大10倍,则分式的值( )
A、 扩大100倍 B、 扩大10倍
C、不变 D、 缩小到原来的101
4、下列等式成立的是( )
A、9)3(2 B、91)3(2
C、14212)(aa D、0.0000000618=6.18×710
5、下列分式中,无论x取何值,一定有意义的是( )
A、12xx B、22)1(1xx C、2)1(xx D、12xx
6、一件工作,甲单独做a小时完成,乙单独做b小时完成,则甲、乙两
人合作完成的小时数为( )
A、ba11 B、ab1 C、ba1 D、baab
7、已知m、n互为相反数,a、b互为倒数,︱x︱=2时,则
abxxnm
2
的值为( )
A、 2 B、3 C、4 D、5
8、下列分式是简分式的是( )
A、264xy B、xyyx2)(2 C、baba22 D、yxyx22
9、方程21321xxx的解是( )
A、x=2 B、无解 C、有无穷多个解 D、x=0
10、若分式x211的值为正数,则x的取值范围是( )
A、x>0 B、x=0 C、x<21 D、x可取任意实数
二、填空题(每题3分,共30分)
11、在分式)1)(2(42xxx中当x______________时有意义。
12、在括号内填上适当的代数式,使下列等式成立。
22
22yax
xy
; yxyxxyx223)( ; mnnmmnnm222222
13、已知511ba,则babababa2232的值是_______________。
14、约分:xbabxa22434827_____________ )1)(3(92aaa______________
99622x
xx
______________
15、分式yxmnxyxxya,221,222的最简公分母是_______________。
16、322ca____________; )9(632323xzzyx_____________;
ababa
b
_____________
17、02)14.3(31_________
18、如果71xx,那么221xx的值为___________。
19、如果方程3)1(2xa的解是x=5,则a=___________。
校名:永北镇中学 考号:___________ 班级:__________ 姓名: __________ ……
…
…
…
…
密
…
…
…
…
…
…
…
…
…
…
…
…
…
…
封
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
线
…
…
…
…
…
2
20、分式方程8778xkxx无解,则k的值为___________。
三、解答题。(21—27题每题7分,28题11分,共60分)
21、aaa21422 22、yxyxx8164222
23、xyyxxyyx22222223243
24、先化简,再求值。222222yxyxxxyx 其中x=2,y=1
25、解方程:311223xx
26、A、B两个火车站相距720千米,现在火车的速度提高到原来速度的1.2倍,提
速之后,从A站到B站的运行时间缩短了1.2小时,问:提速之前火车的速度是多
少?
27、甲、乙两人合做一项工程需24天,甲单独做所用时间等于乙单独做所用时间的
3
2
,求甲、乙两人单独完成这项工作各需多少天?
28、某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店购进
第二批同样的书包,所购数量是第一批购进数量的3倍。但单价贵了4元,结果第
二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈
利多少元?