高中数学函数解题思路的多元化分析
高中函数题型及解题方法

高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型的考察也是比较灵活多样的,下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1.函数的定义和性质题型。
这类题型主要考察对函数定义和性质的理解,学生需要掌握函数的定义、定义域、值域、奇偶性、周期性等基本性质。
解题方法是根据函数的具体性质,进行逻辑推理和数学运算,得出题目要求的结论。
2.函数的图像和性质题型。
这类题型主要考察对函数图像和性质的理解,学生需要掌握函数图像的基本特征、对称性、单调性、极值点、拐点等性质。
解题方法是根据函数图像的特点,进行分析和推理,得出题目要求的结论。
3.函数的运算题型。
这类题型主要考察对函数的运算和复合的理解,学生需要掌握函数的加减乘除、复合函数、反函数等运算规则。
解题方法是根据函数运算的性质,进行逻辑推理和数学运算,得出题目要求的结果。
二、综合函数题型。
1.函数的应用题型。
这类题型主要考察对函数的实际应用的理解,学生需要掌握函数在各个领域的具体应用,如经济学、物理学、生物学等。
解题方法是根据具体问题,建立函数模型,进行分析和推理,得出问题的解决方案。
2.函数方程题型。
这类题型主要考察对函数方程的解法和应用的理解,学生需要掌握函数方程的求解方法和应用技巧。
解题方法是根据函数方程的具体形式,进行分析和推理,得出方程的解或满足条件的函数形式。
三、解题方法。
1.理清思路,明确目标。
在解函数题型时,首先要理清思路,明确题目要求的目标,分析题目中给出的条件和限制,明确解题的方向和方法。
2.运用函数的基本性质。
在解题过程中,要灵活运用函数的基本性质,如定义、图像、运算规则等,根据题目的具体要求,进行逻辑推理和数学运算。
3.建立函数模型,进行分析。
对于应用题型,要善于建立函数模型,将实际问题转化为数学问题,进行逻辑分析和推理,得出问题的解决方案。
4.多做练习,掌握技巧。
高考数学中的解二次方程问题解析

高考数学中的解二次方程问题解析在高中数学中,解二次方程是一个不可避免的重要知识点。
而在高考数学中,二次方程解题的要求更加严格复杂。
为此,本文将针对高考数学中二次方程解题中的一些常见问题进行分析,以期帮助广大考生更好地解决这些问题。
一、一元二次方程的基本知识1. 解一元二次方程的常用方法一元二次方程指的是形如ax²+bx+c=0的方程,其中a、b、c分别为常数,且a≠0。
解这类方程,常用的方法有以下几种:(1)因式分解法:当方程的三个系数为整数时,可以通过因式分解的方法简单地求出方程的解。
例如,将方程x²-5x+6=0分解成(x-2)(x-3)=0,便可得到方程的两个解x1=2和x2=3。
(2)配方法:对于一元二次方程ax²+bx+c=0,如果a≠1,则可以通过配方法将其变形为(x+m)²=n的形式,从而求出方程的两个解。
例如,对于方程2x²+8x-6=0,我们可以将其变形为2(x²+4x-3)=0。
然后,再用配方法得到式子x²+4x-3=(x+2)²-7.从而可以得到方程的两个解x1=-2+√7和x2=-2-√7。
(3)公式法:当方程的三个系数为实数或者复数时,可以通过二次公式直接求解方程的两个解。
二次公式为x1,2=[-b±√(b²-4ac)]/2a,如果方程无解,则根据二次公式可知其判别式D=b²-4ac<0。
2. 一元二次方程无解的情况在高考数学中,有一种特殊的情况是一元二次方程无解。
当方程的判别式D=b²-4ac<0时,方程无实数解,但是可以有复数解。
因此,解题时需要特别注意此类情况。
例如,对于方程x²+1=0,我们可以用二次公式求解:x1,2=[-0±√(0²-4*1*1)]/2*1,由此可知方程无实数解。
二、高考数学中的二次方程解题1. 解二次方程的基本思路在高考数学中,二次方程解题并不仅仅是将方程的三个系数代入公式,而是需要考虑方程的实际应用和解题思路。
高中数学中三角函数解题错误的成因分析及解决方法

高中数学中三角函数解题错误的成因分析及解决方法高中数学中,三角函数是一个重要的知识点,但是在学习和解题过程中,学生们经常会犯一些错误。
本文将从三角函数解题错误的成因进行分析,并提出相应的解决方法,希望能够帮助学生们更好地理解和掌握三角函数知识。
一、错误成因分析1. 知识理解不够深刻很多学生在学习三角函数时,只是停留在记忆公式和计算值的层面上,对三角函数的本质和特性理解不够深刻。
导致在解题时容易混淆使用不同公式,甚至无法正确运用三角函数的性质进行分析和计算。
2. 概念理解不清晰三角函数中的概念十分重要,如正弦、余弦、正切等概念的理解对于解题至关重要。
但是很多学生对于这些概念的理解不够清晰,容易混淆或者搞混各个概念的具体含义和作用,导致在解题时产生错误。
3. 缺乏实际问题解题能力三角函数在解决实际问题时经常会用到,但是很多学生缺乏实际问题解决的能力,对于实际问题中的三角函数的运用和转化不够熟练,容易在解题时产生错误。
二、解决方法1. 深入理解三角函数的本质和特性在学习三角函数时,不仅仅是记忆三角函数的公式和数值,更重要的是要深入理解三角函数的本质和特性。
要理解正弦、余弦、正切等函数代表的是什么,它们有什么特性和作用,这样才能在解题过程中深入思考,正确运用。
2. 多做概念梳理和归纳要加强对于三角函数概念的理解和应用,在学习过程中要多做概念梳理和归纳,把不同的概念联系起来,归纳出它们的共性和区别,这样才能在解题过程中避免混淆或搞混。
3. 多做实际问题的练习三、例题分析1. 例题一已知∠A是锐角,sinA=cosA,求∠A的度数。
解析:根据已知条件sinA=cosA,可知tanA=1,所以∠A=45°。
错误分析:很多学生在这种题目中容易混淆sinA和cosA的关系,导致无法正确运用三角函数的性质求解。
解决方法:要深入理解sinA、cosA的含义和性质,掌握它们的关系和转化方法,这样在解题时才能正确应用三角函数的性质。
高考数学中的二次函数与相关题型分析

高考数学中的二次函数与相关题型分析高考数学是考生们最为担心的科目之一,而其中涉及到的二次函数和相关题型更是让人头疼。
二次函数是高中数学的重点和难点,因此在备战高考时务必要重视和复习。
本文将着重分析高考数学中的二次函数和相关题型,并介绍备考中的一些技巧和方法。
一、二次函数的基本概念二次函数是形如 y = ax^2 + bx + c 的一类函数,其中 a、b、c都是实数,且a ≠ 0。
二次函数的图像为一个开口向上或向下的抛物线。
二次函数的一些基本概念包括:1. 零点:指函数图象与 x 轴的交点,也就是方程 ax^2 + bx + c= 0 的解。
2. 判别式:指二次方程 ax^2 + bx + c = 0 的 b^2-4ac 部分,用于判断此方程的解的数量和类型。
3. 对称轴:指函数图象中抛物线的对称轴,其方程为x = -b/2a。
4. 单调性和极值:指函数图象的凹凸性和最值点。
二、高考中的二次函数题型在高考数学中,二次函数的考察主要分为以下几个方面:1. 二次函数的图像及性质该题型主要考查二次函数的开口方向、顶点坐标、对称轴等性质,需要通过化式子、配方法、求导等方法计算。
例如:已知二次函数 f(x) = 2x^2 - 4x + 1,求出它的零点、对称轴和顶点坐标。
2. 二次函数的解析式以及单调性和极值该题型主要考查对二次函数解析式的把握和对单调性和极值的理解,需要通过求导、解方程等方法计算。
例如:已知二次函数 f(x) = x^2 - 2x + 3,求出它的解析式和单调性和极值。
3. 二次函数与其他函数的关系该题型主要考查二次函数与指数函数、对数函数、三角函数等其他函数的关系,需要掌握函数的基本性质和变换。
例如:已知二次函数 y = x^2 + 2x + 1 和指数函数 y = e^x,求出它们的交点坐标。
4. 实际问题中的二次函数该题型主要考查将二次函数应用于实际问题中的能力,需要理解问题背景和建立模型。
高中数学函数参数方程解析

高中数学函数参数方程解析一、引言在高中数学学习中,函数参数方程是一个重要的知识点。
本文将从基础概念出发,通过具体题目的举例,分析解题思路和考点,并给出一些解题技巧,帮助读者更好地理解和应用函数参数方程。
二、函数参数方程的基本概念函数参数方程是指用参数表示的函数方程。
一般形式为:y = f(x, a),其中a为参数。
参数可以是任意实数,通过改变参数的取值,可以得到不同的函数图像。
三、函数参数方程的应用举例1. 例题一:求参数方程y = a^2 - x^2的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令y = f(x, a) = a^2 - x^2,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 1时,函数图像为一个单位圆;当a = 2时,函数图像为一个半径为2的圆。
可以通过改变参数a的取值,观察图像的变化规律。
2. 例题二:求参数方程x = a + t,y = a - t的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令x = f(t, a) = a + t,y = g(t, a) = a - t,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 0时,函数图像为直线y = -x;当a = 1时,函数图像为直线y = 1 - x。
可以通过改变参数a的取值,观察图像的变化规律。
四、函数参数方程的考点分析1. 参数的取值范围:在解题过程中,需要注意参数的取值范围,以保证函数有意义。
例如,在例题一中,参数a不能取负值,否则函数图像将不存在。
2. 函数图像的特点:通过观察函数图像的特点,可以发现一些规律。
例如,在例题一中,当参数a取不同的值时,函数图像的形状和大小都会发生变化。
这表明参数a对函数图像具有一定的控制作用。
3. 函数图像的对称性:在解题过程中,可以通过观察函数图像的对称性来简化问题。
例如,在例题一中,函数图像y = a^2 - x^2关于y轴对称,这可以帮助我们更好地理解和绘制函数图像。
高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。
对考查学生的创新精神、实践能力和运用数学的能力,有着十分重要的作用。
化抽象为具体,联想类比思维都有助于问题的思考和解决。
一、数形结合使抽象函数具体一般地讲,抽象函数的图象为示意图居多,有的示意图可能只能根据题意作出n 个孤立的点,但通过示意图却使抽象变形象化,有利于观察、对比、减少推理、减小计算量等好处。
例1、设奇函数()f x 的定义域为[5,5]-,若当x (]5,0∈时,()f x 是增函数且f(2)=o 求不等式x ()0f x <的解。
分析:f(x)的图像如图所示x>0时2<x 5≤x<0时-2<x 0≤例2、已知函数f (x )对一切实数x 都有f (2+x )=f (2-x ),如果方程f (x )=0恰好有4个不同的实根,求这些实根之和。
分析:由f (2+x )=f (2-x )知直线x=2是函数图象的对称轴,又f (x )=0有四根,现从大到小依次设为x 1、x 2、x 3、x 4,则x 1与x 4,x 2与x 3均关于x=2对称,∴x 1+x 4=x 2+x 3=2×2=4,∴x 1+x 2+x 3+x 4=8。
评注:一般地,若函数f (x )满足f (a+x )=f (a-x ),则直线x=a 是函数图象的对称轴,利用对称性,数形结合,可使抽象函数问题迎刃而解。
二、利用单调性定义使问题具体加上函数符号f 即为“穿”,去掉函数符号f 即为“脱”。
对于有些抽象函数,可根据函数的单调性,实现对函数符号的“穿脱”,以达到简化的目的。
例3已知f(x)是定义在(0,)上的增函数,且f(y x )=f(x)-f(y),若f(6)=1,解不等式。
f(x+5)-f(x1)<2分析:由f(6)=1,f(yx )=f(x)-f(y)得:f(636)=f(36)-f(6),所以f(36)=2。
高中数学中三角函数解题错误的成因分析及解决方法
高中数学中三角函数解题错误的成因分析及解决方法高中数学中的三角函数是学习数学时的一个重要内容,对于学生来说可能会遇到一些解题错误的情况。
本文将对高中数学中三角函数解题错误的成因进行分析,并提出解决方法,希望能帮助学生提高解题能力。
一、成因分析1. 概念理解不清三角函数的概念对于学生来说可能有一定的难度。
学生可能会忽略或者混淆三角函数的定义和性质,导致在解题中出现错误。
学生可能会混淆正弦函数与余弦函数的定义及性质,导致在计算中出现错误。
2. 公式运用不当在解题过程中,学生可能会对三角函数的相关公式理解不够深刻,容易在运用上出现偏差。
在使用三角函数的相关公式进行化简或者计算时,可能会出现数学符号运用错误,导致计算结果不准确。
3. 解题思路不清晰解题思路不清晰是导致解题错误的另一个重要因素。
学生可能在解题过程中跳跃性思维、计算错误、逻辑混乱等,导致最终的解题结果出现错误。
二、解决方法1. 加强基础知识的学习学生在学习三角函数之前,应该先夯实数学基础知识。
对于三角函数的定义、性质、相关公式等内容,需要有一个全面深入的理解。
只有夯实了基础知识,才能在解题中避免出现一些低级错误。
2. 多做练习在学习三角函数的过程中,学生需要多做一些相关的练习题。
通过不断的练习,可以更好地巩固所学内容,提高解题能力。
在解题过程中遇到错误,也要及时总结反思,找出解题错误的原因,避免下次再犯同样的错误。
3. 注意解题过程细节在解题过程中,需要注意细节处理。
对于三角函数的运用和计算,需要谨慎对待,不可粗心大意。
在解题过程中,可以逐步化简、代入计算、反复检查,尽量避免出现解题错误。
4. 多与他人讨论在学习三角函数时,可以多与同学或者老师进行讨论,互相交流解题经验。
通过他人的解题思路和方法,可以帮助自己更好地理解和掌握三角函数的相关知识。
在讨论过程中,也可以及时发现自己解题中的错误,及时进行纠正。
在解题过程中,要善于梳理解题思路。
首先要明确解题目标和要求,然后逐步展开解题步骤,将解题过程梳理清楚。
高中数学三角函数知识点解题技巧总结
高中数学三角函数知识点解题技巧总结高中数学三角函数知识点总结高中数学三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα;0(或0(或|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.六、见“正弦值或角的平方差”形式,启用“平方差”公式:1.sin(α+β)sin(α-β)=sin2α-sin2β;2.cos(α+β)cos(α-β)=cos2α-sin2β.七、见“sinα±cosα与sinαcosα”问题,起用平方法则:(sinα±cosα)2=1±2sinαcosα=1±sin2α,故1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且横向于y轴的直线分别成直线型;2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;3.同样,利用图象也可以得到向量y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。
高考数学《函数零点的个数问题》知识点讲解与分析
高考数学《函数零点的个数问题》知识点讲解与分析一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
高中数学求函数解析式解题方法大全与配套练习
高中数学求函数解析式解题方法大全及配套练习一、定义法:根据函数的定义求解析式用定义法。
【例1】【例2】【例3】【例4】二、待定系数法:(主要用于二次函数)已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式。
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
【例1】【解析】【例2】已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f(x)的解析式.解:设二次函数f(x)= ax2+bx+c,则f(0)= c= 0 ①f(x+1)(x+1)= ax2+(2a+b)x+a+b②由f(x+1)= f(x)+2x+8 与①、②得解得故f(x)= x2+7x.【例3】三、换元(或代换)法:道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
如:已知复合函数f [g(x)]的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法。
实施换元后,应注意新变量的取值围,即为函数的定义域.【例1】【解析】【例2】【例3】【例4】(1)在(1(2)1(3)【例5】(1(2)由【例6】四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.【例1】解则解得,上,(五)配凑法【例1】:2x当然,上例也可直接使用换元法即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。
【例2】:分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。
实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的函数来表示出来,在通过整体换元。
和换元法一样,最后结果要注明定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 143 -
好家长 /
中学教育研究
高中数学函数解题思路的多元化分析
福建省漳州市南靖第四中学/刘文章
【摘要】在数学这门科目中函数所占的比利是很大的,而且
所包含的知识点也很多很复杂。不管是初中学的简单的函
数,还是到高中阶段学的复杂的函数类型,这些都是需要我
们认真的去学习的。由于高中数学中函数的概念都是比较抽
象的,所以很多学生在学习到这一点内容的时候会出现很多
问题。本文就主要针对高中数学函数的解题思路进行多元化
的分析。
【关键词】高中数学 函数 解题思路 多元化分析
在我们高中阶段的数学学习中,函数是很重要的知识
点,它对于我们大学时候学习高等数学会起到铺垫的作用,
因此我们必须要打好基础,这样才可以在以后的学习中起到
事半功倍的效果。但是当前学生们在函数学习中面临着许多
问题,而无法寻找合适的解题思路就是其中的一个问题。所
以一定是要对高中函数的解题思路进行分析,希望可以给函
数学习中遇到困惑的学生们起到一点积极的作用。
一、当前高中数学函数解题思路的现状
1.对于高中数学函数学习存在误区。相比较于初中基本
函数的学习,高中数学中的函数则是它的延伸和拓展,它不
再只是单纯的两个变量X和Y之间的关系,而是变成了一种更
为复杂的关系,这种关系是在一定的变换法则作用之下,两
个集合之间的对应关系。如果想要正确的认识和把握函数,
甚至可以熟练的运用函数来解决我们实际生活中的问题,那
么我们就必须要正确的认识函数的概念,把握好两个变量之
间的关系。但是在实际的学习过程中,还是有很多的学生无
法做到独立的认识和掌握函数的概念,比如在解决函数实际
应用问题的时候,学生的解题思路就很容易忽略掉两个集合
的限制性条件,从而导致了最后解出来的答案是不正确的。
2.对于高中数学函数认识不全面。在我们学习高中数学
的时候,其实概念是我们认识和应用一个知识点的最基础的
条件,但是在这些概念的后边往往还会有公式来把这些文字
概念简单的表达出来。同样的函数的学习也是这样,但是很
多的学生往往只注重公式的记忆,而不能深入的理解概念。
二、高中数学函数解题思路多元化的重要性
1.有利于培养学生的数学思维。我们学习高中函数并不只
是为了解出正确的答案,而是需要让学生们在学习函数的过程
中,逐渐的形成一种好的数学的解题思维,并且形成对于数学
问题思考的一种更加创新的思维方式。我们需要让学生在学习
函数的时候,把所学的知识点吃透,掌握必要的解题方法至关
重要,要做到灵活运用,最好是可以起到举一反三的作用。通
过对一种函数问题的学习和知识点的熟悉掌握,可以解决掉同
种类型的函数问题。就拿我们的解题来说,解题的价值其实并
不是答案的本身,而是我们是怎样想到了这个方法?为什么会
想到这样的解题方法?这样的方法是不是最简单的?
2.有利于增强数学的应用能力。其实不管是学习什么样
的知识,最好的效果就是学以致用,同样的学习数学的价值
也就是用它来解决我们实际生活中的问题的。而在高中数学
函数的学习中,好的解题思路就是提高数学应用能力的保
证,因此在我们学习的过程中,需要注重函数思想的转换。
比如方程f(x)=x
2
-1的意义就是y=f(x)在运动中所呈现出来的点
的集合。
三、高中数学函数解题思路多元化的具体表现
1.函数解题需要发散性思维。所谓的数学问题,其实就
是数量问题。我们需要去观察题目的结构还有关系,并且根
据所观察到的内容去选择合适的解决问题的方法。一般来
说,学生经常仅仅会选择一种解题的方法,这样的话学生的
思维就会显得比较被动和茫然,并且缺乏足够的信息处理。
思考空间也是比较封闭。但是在我们的高中数学课本上由于
客观的原因往往只有一个单一的解决方法,这样的话就让学
生的思维在一定程度上受到了限制,并且不利于学生发展性
思维的培养,更加不利于函数知识网络体系的构建,导致所
学习的知识联系不到一起来。
为了弥补这方面存在的缺陷,我们需要在平时进行一
题多解方面的训练,这样不仅使得学生可以拓展解题的思维
空间,探索不同的解决方案,还能够形成不同的思维发散方
向,对数学的学习有很大的作用。
2.函数解题需要逆向思维。每个人的思维方式其实都是千差
万别的,我们把思维过程的方向划分为正向思维和逆向思维。
这就和哲学中所说的矛盾的两个方面是一样的,它们没有孰重
孰轻,都是同等重要的两个方面。但是在我们的高中数学课本
上内容是很少涉及到逆向思维的发展,这就在一定程度上限制
了学生们逆向思维的发展。对于一些特殊的问题,用正向思维
可能会比较麻烦,所以这个时候就需要我们用到逆向思维了。
3.函数解题需要创新思维。不管是在那个方面,我们都
无法忽视掉创新的重要作用。在函数的解题思维中,我们需
要做到一题多解,这样可以改变一个问题或者结论,同样的
也能改变我们解决这个问题的形式和方法,提高学生们解决
问题的能力和思维方式。我们可以在课堂上适当的为学生设
计一个一题多解的问题,这样就能够激活学生们的思维,进
而促使他们在解题思维中寻找一种新的方法,这就体现到了
创新的重要作用。
结束语:我们的日常生活和数学息息相关,数学作为
一门实用性比较强的科目,需要我们好好的学习再加以更好
的应用。而高中数学作为整个数学体系中的一环,起到了承
上启下的作用。它的重要作用不用多说就能够明白。但是目
前,在高中数学的函数学习中,很多学生在解题思维方面出
现了或多或少的问题,需要一种更加多元化的解题思维来解
决当前的问题。只有我们掌握了更好的解题思维和思路,才
能在数学函数的学习中达到事半功倍的效果。
参考文献:
[1]许诺.关于高中数学函数解题思路多元化的方法举例探索
[J].科学大众(科学教育),2016,02:25.
[2]杨志明.高中数学中函数的解题思路分析[J].中学课程辅导
(教师通讯),2014,04:60-61.