河北省石家庄市2019年中考数学总复习第二章方程组与不等式组第四节一次不等式(组)同步训练

合集下载

2023年中考数学总复习第二章第四节 一元一次不等式(组)及其应用

2023年中考数学总复习第二章第四节 一元一次不等式(组)及其应用

2023年中考数学总复习第二章第四节一元一次不等式(组)及其应用一、选择题1.[2020·遵化三模]下面列出的不等式中,正确的是()A.“m 不是正数”表示为m<0B.“m 不大于3”表示为m<3C.“n 与4的差是负数”表示为n-4<0D.“n 不等于6”表示为n>62.[2020·株洲]下列哪个数是不等式2(x-1)+3<0的一个解?()A.-3B.C.D.23.[易错][2020·石家庄一模]如果a>b,c<1,那么下列不等式一定成立的是()A.ac>bc B.a+c>b C.ac<bc D.a-c>b-c4.[2020·保定模拟]不等式2x-1<4(x+1)的解集表示在如图所示的数轴上,则阴影部分盖住的数是()A.-1B.-2C.-1.5D.-2.5(第4题图)5.[2020·河北模拟]下列各数中,是不等式组的解的是()A.-1B.2C.4D.86.[难点][2020·天水]若关于x 的不等式3x+a ≤2只有2个正整数解,则a 的取值范围为()A.-7<a<-4B.-7≤a≤-4C.-7≤a<-4D.-7<a≤-47.[2020·重庆]小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔 2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2二、填空题8.[2020·毕节]不等式x-3<6-2x 的解集是______.9.[2020·河南]已知关于x 的不等式组其中a,b 在数轴上的对应点如图所示,则这个不等式组的解集为______.(第9题图)10.[2020·石家庄一模]不等式的最大整数解是______.11.[创新][2020·保定清苑区一模]现规定一种新的运算:=ad-bc,≤18,则x 的取值范围_____.三、解答题12.[2020·石家庄长安区模拟]解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为___________.(第12题图)13.[2020·苏州]如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为a (m),宽为b(m).(1)当a=20时,求b 的值;(2)受场地条件的限制,a 的取值范围为18≤a≤26,求b 的取值范围(第13题图)x>a,x>b,2x-3>0,x-4<0。

河北省2019年中考数学第2章第1节一次方程组及应用精讲试题

河北省2019年中考数学第2章第1节一次方程组及应用精讲试题

第二章方程(组)与不等式(组) 第一节一次方程(组)及应用及应用在河北五年中考真题及模拟)一次方程(组)的应用1.(2019河北中考)利用加减消元法解方程组⎩⎪⎨⎪⎧2x+5y=-10,①5x-3y=6,②下列做法正确的是( D ) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.(2019张家口中考模拟)小明在解关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=△,2x-3y=5时,解得⎩⎪⎨⎪⎧x=4y=则△和代表的数分别是( B )A.△=1,=5 B.△=5,=1C.△=-1,=3 D.△=3,=-13.(2019石家庄二模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是( A )A.2(x-1)+x=49 B.2(x+1)+x=49C.x-1+2x=49 D.x+1+2x=494.(2019原创)已知⎩⎪⎨⎪⎧x=3,y=-2是关于⎩⎪⎨⎪⎧ax+by=3,bx+ay=-7的解,则(a+b)(a-b)的值为__-8__.5.(2019河北中考)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.解:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°.解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=11 2.∵n为整数,∴θ不能取630°;(2)依题意,得(n-2)×180°+360°=(n+x-2)×180°.解得x=2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解.3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x=a,y=b的形式.列方程(组)解应用题的一般步骤6.(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)(2019成都中考)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.(2019济南中考)如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A.⎩⎪⎨⎪⎧a =1,b =2B.⎩⎪⎨⎪⎧a =0,b =2C.⎩⎪⎨⎪⎧a =2,b =1D.⎩⎪⎨⎪⎧a =1,b =1 4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③ 由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】(2019资阳中考)电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】(2019金华中考)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y.由题意,得3x =2y ,则x =2y 3.那么4x +3y3x +2y =4×23y +3y 2y +2y=17∶12.【答案】C6.(2019新疆中考)某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】(2019徐州中考)某景点的门票价格如下表:班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80. 答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a)棵. 则a≥3(100-a),∴a≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a)]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小.即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.752.已知,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<63.由6个大小相同的正方体搭成的几何体如图所示,若小正方体的棱长为a,关于它的视图和表面积,下列说法正确的是( )A.它的主视图面积最大,最大面积为4a2B.它的左视图面积最大,最大面积为4a2C.它的俯视图面积最大,最大面积为5a2D.它的表面积为22a24.如图,延长正方形ABCD的AB边至点E,使BE=AC,则∠BED=( )A.20°B.30°C.22.5°D.32.5°5.以下所给的数值中,为不等式﹣2x+3<0的解集的是()A.x<﹣2B.x>﹣1C.x<﹣32D.x>326.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.7.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)与(0,3)之间(包含端点),下列结论:①当x>3时,y<0;②﹣1≤a≤﹣23;③3≤n≤4;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确的有()A.1个B.2个C.3个D.4个8.有这样一道题:如图,在正方形ABCD中,有一个小正方形EFGH,其中E,F,G分别在4B,BC,FD 上,连接DH,如果BC=12,BF=3.求tan HDG∠的值.以下是排乱的证明步骤:①求出EF、DF的长;②求出tan HDG∠的值;③证明BFE=CDF∠∠④求出HG、DG;⑤证明ΔBEF~ΔCFD.证明步骤正确的顺序是( )A.③⑤④①②B.①④⑤③②C.③⑤①④②D.⑤①④③②9.某天的同一时刻,甲同学测得1m的测竿在地面上的影长为0.6m,乙同学测得国旗旗杆在地面上的影长为9.6m。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
第四节 一元一次不等式(组) 及其应用
1.(2021·常德).-5a<-5b
ab C.c>c
D.a+c>b+c
( C)
2.(2021·湖州)不等式 3x-1>5 的解集是
A.x>2
B.x<2
4 C.x>3
4 D.x<3
( A)
2x+1>0, 3.(2021·永州)在一元一次不等式组x-5≤0 的解集中,整数解的个
数是
( C)
A.4
B.5
C.6
D.7
x+3≥2,
4.(2021·济宁)不等式组x-2 1-x>-2的解集在数轴上表示正确的是 ( B)
4+x x+2
3
>
2

5.若关于 x 的不等式组x+2 a<0
的解集是 x<2,则 a 的取值范围是
( D)
A.a≥2
B.a<-2
C.a≥-2
D.a≤-2
6.(2021·青海)已知点 A(2m-5,6-2m)在第四象限,则 m 的取值范围 是 m>m>33. 7.(2021·苏州)若 2x+y=1,且 0<y<1,则 x 的取值范围为
-2x+3≤1,①
11.(2021·无锡)解不等式组:x-1<x3+1.② 解:解不等式①,得 x≥1, 解不等式②,得 x<3, ∴不等式组的解集为 1≤x<3.
3(x-1)>x①,
12.(2021·湘西州)解不等式组:1-2x≥x-2 3②,并在数轴上表示它的 解集.
解:解不等式①,得 x>32, 解不等式②,得 x≤1, 在数轴上表示不等式的解集为:
买 40 张门票反而更合算.
x+4≥3,① 10.(2021·天津)解不等式组6x≤5x+3.②请结合题意填空,完成本题 的解答. (1)解不等式①,得__xx≥≥--1_1_; (2)解不等式②,得__xx≤≤33__; (3)把不等式①和②的解集在数轴上表示出来:

河北省中考数学总复习 第一编 教材知识梳理篇 第2章 方程(组)与不等式(组)第2节 一元二次方程及

河北省中考数学总复习 第一编 教材知识梳理篇 第2章 方程(组)与不等式(组)第2节 一元二次方程及

第二节一元二次方程及应用年份题号考查点考查内容分值总分201719 一元二次方程的解法综合题,在新定义的背景下用直接开平方法解一元二次方程37 26(2)一元二次方程及根的判别式利用题中已知条件列出方程,并用判别式判断根的情况4201614一元二次方程根的判别式利用已知条件判断含字母系数的一元二次方程的根的情况2 2201512一元二次方程根的判别式考一元二次方程无实数根求参数的取值X围2 2201421 解一元二次方程(1)从推导一元二次方程的求根公式的步骤中找错误,并写出正确的求根公式;(2)用配方法解一元二次方程10 102013年未考查命题规律纵观某某近五年中考,2014、2015、2016、2017年考查了一元二次方程,分值2~10分,涉及的题型有选择、填空、解答,题目难度一般,其中一元二次方程的配方法在选择和解答题中各考查了1次,一元二次方程的应用在选择、填空中各考过1次,一元二次方程根的判别式考查了3次,属基础题.某某五年中考真题及模拟一元二次方程的解法1.(2014某某中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a≠0,方程ax 2+bx +c =0变形为: x 2+b a x =-c a,第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 4a (b 2-4ac >0),第四步 x =-b +b 2-4ac 2a.第五步(1)嘉淇的解法从第__四__步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a≠0)的求根公式为__x =-b ±b 2-4ac2a__.(2)用配方法解方程:x 2-2x -24=0. 解:x 1=6,x 2=-4.2.(2017某某中考模拟)在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是(A )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误3.(2016某某二十八中一模)现定义运算“★”,对于任意实数a ,b ,都有a★b=a 2-3a +b ,如3★5=32-3×3+5,若x★2=6,则实数x 的值是(B )A .-4或-1B .4或-1C .4或-2D .-4或2一元二次方程根的判别式及根与系数的关系4.(2015某某中考)若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值X 围是(B )A .a<1B .a>1C .a ≤1D .a ≥15.(2016某某中考)a ,b ,c 为常数,且(a -c)2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为06.(2016某某十三中三模)已知关于x 的方程2x 2-mx -6=0的一个根是2,则m =__1__,另一个根为__-32__.7.(2017某某二模)对于实数a ,b ,定义新运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b),ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.(1)求(-5)*(-3)的值;(2)若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,求x 1*x 2的值. 解:(1)∵-5<-3,∴(-5)*(-3)=(-5)×(-3)-(-3)2=6; (2)方程x 2-5x +6=0的两根为2或3; ①2*3=2×3-9=-3;②3*2=32-2×3=3.一元二次方程的应用8.(2016某某25中模拟)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为(D )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=489.(2016某某十八县重点中学一模)为落实“两免一补”政策,某市2014年投入教育经费2 500万元,预计2016年要投入教育经费3 600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为__3__000__万元.10.(2017某某中考)某厂按用户的月需求量x(件)完成一种产品的生产,,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x 与月份n(n 为整数,1≤n ≤12)符合关系式x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据.月份n(月) 1 2 成本y(万元/件) 11 12 需求量x(件/月)120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差最大,求m. 解:(1)由题意,设y =a +bx ,由表中数据得⎩⎪⎨⎪⎧11=a +b120,12=a +b100,解得⎩⎪⎨⎪⎧a =6,b =600,∴y =6+600x,由题意,若12=18-⎝ ⎛⎭⎪⎫6+600x ,则600x =0,∵x >0, ∴600x>0, ∴不可能;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13, ∴x =2n 2-26n +144,将n =2,x =100代入x =2n 2-26n +144也符合, ∴k =13;由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵Δ=(-13)2-4×1×47<0,∴方程无实数根, ∴不存在;(3)设第m 个月的利润为W ,W =x(18-y)=18x -x ⎝⎛⎭⎪⎫6+600x=12(x -50) =24(m 2-13m +47),∴第(m +1)个月的利润为W′=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35), 若W≥W′,W -W′=48(6-m),m 取最小值1时,W -W′取得最大值240;若W <W′,W ′-W =48(m -6),由m +1≤12知m 取最大值11时,W ′-W 取得最大值240; ∴m =1或11.,中考考点清单一元二次方程的概念1.只含有__1__个未知数,未知数的最高次数是__2__,像这样的__整式__方程叫一元二次方程.其一般形式是__ax 2+bx +c =0(a≠0)__.【易错警示】判断一个方程是一元二次方程的条件:①是整式方程;②二次项系数不为零;③未知数的最高次数是2,且只含有一个未知数.一元二次方程的解法2.直接开 平方法 这种方法适合于左边是一个完全平方式,而右边是一个非负数的一元二次方程,即形如(x +m)2=n(n≥0)的方程. 配方法配方法一般适用于解二次项系数为1,一次项系数为偶数的这类一元二次方程,配方的关键是把方程左边化为含有未知数的__完全平方__式,右边是一个非负常数.公式法求根公式为__x =-b ±b 2-4ac 2a(b 2-4ac≥0)__,适用于所有的一元二次方程.因式分 解法因式分解法的步骤:(1)将方程右边化为__0__;(2)将方程左边分解为一次因式的乘积;(3)令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是一元二次方程的解.【温馨提示】关于x 的一元二次方程ax 2+bx +c =0(a≠0)的解法: (1)当b =0,c ≠0时,x 2=-c a ,考虑用直接开平方法解;(2)当c =0,b ≠0时,用因式分解法解; (3)当a =1,b 为偶数时,用配方法解简便.一元二次方程根的判别式3.根的判别式:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可由__b 2-4ac__来判定,我们将__b 2-4ac__称为根的判别式.4.判别式与根的关系:(1)b 2-4ac>0⇔方程有__两个不相等__的实数根; (2)b 2-4ac<0⇔方程没有实数根;(3)b 2-4ac =0⇔方程有__两个相等__的实数根.【易错警示】(1)一元二次方程有实数根的前提是b 2-4ac≥0;(2)当a ,c 异号时,Δ>0.一元二次方程的应用5.列一元二次方程解应用题的步骤:(1)审题;(2)设未知数;(3)列方程;(4)解方程;(5)检验;(6)做结论. 6.一元二次方程应用问题常见的等量关系: (1)增长率中的等量关系:增长率=增量÷基础量;(2)利率中的等量关系:本息和=本金+利息,利息=本金×利率×时间;(3)利润中的等量关系:毛利润=售出价-进货价,纯利润=售出价-进货价-其他费用, 利润率=利润÷进货价.,中考重难点突破一元二次方程的解法【例1】(2016某某十七中二月调研)解下列方程:(1)(x -2)2=12;(2)x 2-4x +1=0;(3)x 2-3x +1=0;(4)x 2=2x.【解析】(1)可以用直接开平方法解;(2)因为b =-4是偶数,可以用配方法解;(3)因为b =-3是奇数,配方法解较复杂,可用公式法;(4)直接因式分解.【答案】解:(1)直接开平方,得x -2=±22,即x 1=2+22,x 2=2-22; (2)配方,得(x -2)2=3,直接开平方,得x -2=±3,即x 1=2+3,x 2=2-3; (3)∵a=1,b =-3,c =1,∴Δ=b 2-4ac =(-3)2-4×1×1=5>0,∴x =-(-3)±52×1,即x 1=3+52,x 2=3-52; (4)分解因式,1=2,x 2=0.1.方程(x -3)(x +1)=0的解是(C )A .x =3B .x =-1C .x 1=3,x 2=-1D .x 1=-3,x 2=12.(2016某某路北一模)用配方法解一元二次方程x 2+4x -5=0,此方程可变形为(A )A .(x +2)2=9B .(x -2)2=9C .(x +2)2=1D .(x -2)2=13.用公式法解方程: (1)(某某中考)x 2-3x +2=0; 解:x 1=1,x 2=2;(2)(某某中考)x 2-1=2(x +1).解:x 1=-1,x 2=3.一元二次方程根的判别式及根与系数的关系【例2】(2017某某中考)若关于x 的不等式x -a 2<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是(A )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定【解析】解不等式x -a 2<1得x <1+a 2,而不等式x -a 2<1的解集为x <1,所以1+a2=1,解得a =0,又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.故选C .【答案】C4.(2016某某丰润二模)方程x 2-x +3=0根的情况是(D )A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根5.(2016某某博野模拟)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值X 围是(C )A .a>2B .a<2C .a<2且a≠1D .a<-26.(2017某某中考)已知a ,b ,c 为常数,点P(a ,c)在第二象限,则关于x 的方程ax 2+bx +c =0的根的情况是(B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断一元二次方程的应用【例3】(2017达州中考)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为________万元;,求可变成本平均每年增长的百分率.【解析】(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x)万元,则第三年的可变成本为2.6(1+x)2万元;(2)根据养殖成本=固定成本+可变成本建立方程即可.【答案】(1)2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146.解得x1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.【例4】有一人患了流感,经过两轮传染后共有256人患了流感,则每轮传染中平均一个人传染(A)A.17人B.16人C.15人D.10人【解析】设每轮传染中平均一个人传染了x个人,则第一轮传染了x个人;患流感的人把病毒传染给别人,自己也包括在总数中,第二轮作为传染源的是(x+1)人,每人传染x个人,则传染x(x+1)人.两轮后得流感的总人数为:一开始的1人+第一轮传染的x个人+第二轮传染的x(x+1)人,列方程:1+x+x(1+x)=256,解得x1=15,x2,所以x=-17不合题意,应舍去;取x=15,故选C.【答案】C【例5】商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,正常销售情况下,每件商品降价多少元时,商场日盈利可达到2 100元?【解析】设降价x元,则每件盈利(50-x)元,数量增多2x件,再由单件利润×数量=2 100即可.【答案】解:设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50-x)元.由题意,得(50-x)(30+2x)=2 100.整理,得x2-35x+300=0.解得x1=15,x2=20.∵要尽快减少库存,∴x=15不合题意,舍去,只取x=20.答:每件商品降价20元时,商场日盈利可达到2 100元.【例6】(2017某某中考)如图,为美化校园环境,某校计划在一块长为60 m,宽为40 m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的甬道,设甬道宽为a m.(1)用含a的式子表示花圃的面积;(2)如果甬道所占面积是整个长方形空地面积的38,求出此时甬道的宽.【解析】(1)用含a 的式子先表示出花圃的长和宽,再利用矩形面积公式列出式子即可;(2)甬道所占面积等于大长方形空地面积减去中间小花圃的面积,再根据甬道所占面积是整个长方形空地面积的38,列出方程进行计算即可.【答案】解:(1)(60-2a)(40-2a); (2)由题意,得60×40-(60-2a)(40-2a)=38×60×40,解得a 1=5,a 2=45(舍去). 答:此时甬道的宽为5 m .7.,2016年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为(A )A (1+x)2=4B .(2.5+x%)2=4C (1+x)(1+2x)=4D (1+x%)2=48.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1 m ,另一边减少了2 m ,剩余空地的面积为18 m 2,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为(C )A .(x +1)(x +2)=18B .x 2-3x +16=0C .(x -1)(x -2)=18D .x 2+3x +16=09.(2017原创)有一人患了流感,经过两轮传染后共有64人患了流感,问每轮传染中平均一个人传染__7__word个人.如果不及时控制,第三轮又将有__448__人被传染.10.为了绿化校园环境,学校向某园林公司购买了一批树苗.园林公司规定;如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8 800元,那么该校共购买了多少棵树苗?解:设该校共买了x棵树苗.120×60=7 200(元).∵7 200<8 800,∴购买树苗超过60棵;x[120-0.5(x-60)]=8 800,x1=220,x2=80,当x=220时,120-0.5×(220-60)=40<100,∴x=220舍去.∴x=80.答:该校共购买了80棵树苗.11 / 11。

河北省2019年中考数学总复习第二单元方程组与不等式组第05课时一次方程组及其应用课件201901021124

河北省2019年中考数学总复习第二单元方程组与不等式组第05课时一次方程组及其应用课件201901021124
例 4[2018· 贵港] 某中学组织一批学生开展社会实践活动,原计划 租用 45 座客车若干辆,但有 15 人没有座位;若租用同样数量的 60 座客车,则多出一辆车,且其余客车恰好坐满.已知 45 座客车租金为 每辆 220 元,60 座客车租金为每辆 300 元. (2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?
3.二元一次方程组的解法:
课前双基巩固
考点五 一次方程(组)的实际应用
1.一般步骤 (1)审:审清题意,分清题中的已知量、未知量; (2)设:设关键未知数; (3)列:根据等量关系,列方程(组); (4)解:解方程(组); (5)验:检验所解答案是否正确,是否符合题意; (6)答:规范作答,注意单位名称.
第 5 课时
一次方程(组 )及其应用
课前双基巩固
考点聚焦
考点一 等式的基本性质
等式的基 本性质 性质 1 内容 等式的两边加上(或减去)同一个数或同一个整 式,结果仍是等式 等式的两边乘(或除以)同一个数(除数不等于 0),结果仍是等式 字母表示
若 a=b,则 a± c① =
a c
b± c
性质 2
������ ������ ������ ������
C.如果 a=b,那么 =
������
������
������ ������
D.如果 a=3,那么 a2=3a2
高频考向探究
明考向
[2018· 河北 7 题] 有三种不同质量的物体“ ”“ ”“ ”,其中,同 一种物体的质量都相等.现左右手中同样的盘子上都放着不 同个数的物体,只有一组左右质量不相等,则该组是 ( )
高频考向探究
(2)用指定方法解方程组: 方法一(代入法): ������-2������ = -4, 3������ + 4������ = 18.

中考数学总复习:方程(组)与不等式(组)的实际应用ppt专题课件

中考数学总复习:方程(组)与不等式(组)的实际应用ppt专题课件

第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
3. 利率问题中的等量关系: ( 1) 本息和= 本金+ ( 2) 利息= 本金× 利率×
第 七 讲
第 八 讲
第 九 讲
( 3) 利息税= 利息× 利息税率 4. 利润问题中的等量关系: ( 1) 毛利润= 售价( 2) 纯利润= 售价- 其他费用
第 七 讲
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 七 讲
一、方程( 组) 与不等式( 组) 的实际应用 1. 行程问题中的基本数量关系: 路程= 速度× 2. 工程问题中的基本数量关系: 工作效率= ➡特别提醒: 工程问题中通常把工作总量看作整体“1”.
第 八 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
方程(组)与不等式(组)的实际应用
课标要求 理解:列方程(组)、不等式(组)解决实际问题的意义. 掌握:列方程(组)、不等式(组)解应用题的步骤与方法. 会:列方程( 组) 、不等式(组) 解决实际问题. 高频考点 1.列方程(组)解决实际问题. 2.列不等式(组)解决实际问题.
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
【思路点拨】 利用时间作为等量关系, 即骑车行驶 2. 1 千米所用的时间= 步行 2. 1 千米所用的时间-20 分钟, 在列方程时要注意单位的统一.
第 七 讲
第 八 讲
【自主解答】 ( 1) 设李明步行速度为 x米/ 分, 则骑自行车的速度为 3x米/ 分.

【中考数学】河北最新数学复习第2章方程组与不等式组第6讲不等式组课件

第二章 方程(组)与不等式(组) 第6讲 不等式(组)
考点梳理过关
考点1 不等式的相关概念及性质 1.不等式
2.一元一次不等式
概念
只含有⑤ 一个 未知数,并且未知数的次数是⑥ 1 的不等式叫做一元一次不等式
不等式的解 一个含有未知数的不等式的所有的解,组成这个不
集 等式的解集
解不等式 求不等式⑦ 解集 的过程,叫做解不等式
当 m>-1 时,不等式解集为 x<2;
行求解,再利用数轴表示出
当 m<-1 时,不等式的解集为 x>2.
每一个不等式解的取值范围,
进而求得不等式组的解集.
类型3 一元一次不等式(组)的应用 【例3】 [2017·绵阳中考]江南农场收割小麦,已知1台大型 收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收 割机和5台小型收割机1小时可以收割小麦2.5公顷. (1)每台大型收割机和每台小型收割机1小时收割小麦各多少公 顷? (2)大型收割机每小时费用为300元,小型收割机每小时费用为 200元,两种型号的收割机一共有10台,要求2小时完成8公顷小 麦的收割任务,且总费用不超过5400元,有几种方案?请指出费 用最低的一种方案,并求出相应的费用.
(1)当m=1时,求该不等式的解集;
22
(2)求当m取何值时,该不等式有解,并求出解集.
思路分析:(1)把m=1代入不等式,求出不等式的解集即可;
(2)不等式去分母,移项合并整理后,根据有解确定出m的范
围,进而求出解集即可.
技法点拨►1.解不等式的关键
(1)当 m=1 时,不等式为2-x>x-1. 22
2
3.[2013·河北,21,9分]定义新运算:对于任意实数a,b,都 有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算, 比如:

河北省2019年中考数学总复习第2章第1节一次方程组及应用精练试题

第二章 方程(组)与不等式(组) 第一节 一次方程(组)及应用1.(2019临沂中考)方程2x -1=3的解是( D ) A .x =-1B .x =-2C .x =1D .x =22.(2019原创)如果方程(m -1)x +3=0是关于x 的一元一次方程,那么m 的取值范围( B )A .m≠0B .m≠1C .m =-1D .m >13.下列解方程不正确的是( D ) A .4x +6x =7-1,x =35B .-25x +75x =10,x =10C .3x -7x =7+13,x =-5D .x -2+x -1-x +x +1-x +2=20,x =-204.(2019廊坊二模)已知⎩⎪⎨⎪⎧x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D )A .1B .2C .3D .45.(2019重庆中考)甲厂库存钢材100 t ,每月用去15 t ;乙厂库存钢材82 t ,每月用去9 t ,经过x 个月后,两厂剩下的钢材相等,则x 等于( B )A .2B .3C .4D .56.(聊城中考)在如图的2019年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( D )A.27B .51C .69D .727.(2019温州中考)小李在解方程5a -x =13(x 为未知数)时,误将-x 看作+x ,得方程的解为x =-2,则原方程的解为( C )A .x =-3B .x =0C .x =2D .x =18.(2019义乌中考)已知∠A,∠B 互余,∠A 比∠B 大30°.设∠A,∠B 的度数分别为x°,y°,下列方程组中符合题意的是( C )A.⎩⎪⎨⎪⎧x +y =180,x =y -30B.⎩⎪⎨⎪⎧x +y =180,x =y +30C.⎩⎪⎨⎪⎧x +y =90,x =y +30D.⎩⎪⎨⎪⎧x +y =90,x =y -30 9.(2019临沂中考)某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( C )A.⎩⎪⎨⎪⎧7x +4=y ,8x -3=yB.⎩⎪⎨⎪⎧7y =x +4,8y +3=xC.⎩⎪⎨⎪⎧7y =x -4,8y =x +3D.⎩⎪⎨⎪⎧7y =x +4,8y =x +310.(深圳中考)某商品的标价为200元,八折销售仍赚40元,则商品进价为________元( B ) A .140 B .120C .160D .10011.(2019宁波中考)以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y)在平面直角坐标系中的位置是( A )A .第一象限B .第二象限C .第三象限D .第四象限12.(2019台湾中考)小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出方程为( A )A.x 30=x 40+10B.x 40=x30+10 C.x 40=x +1030D.x +1040=x3013.(1)(永州中考)方程组⎩⎪⎨⎪⎧x +2y =2,2x +y =4的解是__⎩⎪⎨⎪⎧x =2,y =0__错误!(2)(温州中考)方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是__⎩⎪⎨⎪⎧x =3,y =1__ ,.) 14.(2019原创)若|3a +4b -c|+14(c -2b)2=0,则a∶b∶c=__-2∶3∶6__.15.(2019石家庄四十二中一模改编)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,求k 的值.解:解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k ,代入2x +3y =6中,得k =34.16.(福州中考)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,那么甲、乙两种票各买了多少张?解:设甲种票买了x 张,则乙种票买了(35-x)张.由题意,得24x +18(35-x)=750, 解得x =20,∴35-x =15.答:甲种票买了20张,乙种票买了15张.17.按如图的运算程序,能使输出结果为3的x ,y 的值是( D )A .x =5,y =-2B .x =3,y =-3C .x =-4,y =2D .x =-3,y =-918.小亮解二元一次方程组⎩⎪⎨⎪⎧2x +y =●,3x -2y =19的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则●+★=__6__.19.(盐城中考)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55 m in ;加工4个甲种零件和9个乙种零件共需85 min ,则李师傅加工2个甲种零件和4个乙种零件共需__40__min.20.(2019石家庄四十一中模拟)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用x 的代数式分别表示裁剪出的侧面和底面个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解:(1)裁剪出的侧面个数为6x +4(19-x)=(2x +76)个,裁剪出的底面个数为5(19-x)=(-5x +95)个;(2)由题意,得2x +763=-5x +952,解得x =7.当x =7时,2x +763=30. 答:能做30个盒子.21.(2019宁夏中考)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m ,下坡路每分钟走80 m ,上坡路每分钟走40 m ,则他从家里到学校需10 min ,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?解:设小华家到学校平路x m ,下坡y m. 由题意,得⎩⎪⎨⎪⎧x 60+y80=10,x 60+y 40=15,解得⎩⎪⎨⎪⎧x =300,y =400.答:小华家到学校的平路有300 m ,下坡路有400 m.22.(连云港中考)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?解:(1)设该店客房有x 间,房客有y 人,根据题意,得⎩⎪⎨⎪⎧7x +7=y ,9(x -1)=y ,解得⎩⎪⎨⎪⎧x =8,y =63.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性订客房18间,则需付费20×18×0.8=288钱<320钱.答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.2019-2020学年数学中考模拟试卷一、选择题1.已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A.k>﹣74B.k>﹣74且k≠0C.k≥﹣74D.k≥﹣74且k≠02.如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为α,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A.35tanαB.35sinαC.35sinαD.35tanα3.如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是BC上一点,若tan∠DAB=15,则AD的长为()A. C. D.84.如图,正方形ABCD.AB=4,点E为BC边上点,连接AE延长至点F连接BF,若tan∠FAB=tan∠EBF=13,则AF的长度是()A B C D5.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分6.函数kyx=与y=﹣kx2﹣k(k≠0)在同一直角坐标系中的大致图象可能是()A .B .C .D .7.sin45°的值是( )A .12B .2C .2D 8.如图,这是健健同学的小测试卷,他应该得到的分数是( )A .40B .60C .80D .1009.如图1,菱形ABCD 中,∠B =60°,动点P 以每秒1个单位的速度自点A 出发沿线段AB 运动到点B ,同时动点Q 以每秒2个单位的速度自点B 出发沿折线B ﹣C ﹣D 运动到点D .图2是点P 、Q 运动时,△BPQ 的面积S 随时间t 变化关系图象,则a 的值是( )A .2B .2.5C .3D .10.如图,在△ABC 中,点D 在AB 边上,点E 在AC 边上DE ∥BC ,点B 、C 、F 在一条直线上,若∠ACF =140°,∠ADE =105°,则∠A 的大小为( )A .75°B .50°C .35°D .30°11.一次函数y kx k =-与反比例函数(0)ky k x=≠在同一个坐标系中的图象可能是( ) A. B. C. D.12.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A.(a+2b )(a ﹣b )=a 2+ab ﹣2b 2B.a 2﹣b 2=(a+b )(a ﹣b )C.(a+b )2=a 2+2ab+b 2D.(a ﹣b )2=a 2﹣2ab+b 2 二、填空题13.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,根据如图所反映的规律,猜想第n 个图形中火柴棒的根数是_____(n 是正整数且n≥1).14.如图,在□ABCD 中,AE ⊥BD 于点E ,∠EAC =30°,AC =12,则AE 的长为_____.15.如图,P (12,a )在反比例函数图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.16.如图,双曲线kyx=经过,A C两点,//BC x轴,射线OA经过点B,2,8OBCAB OA S==,则k的值为__________.17.在三角形纸片ABC中,∠A=90°,∠C=30°,AC=10cm,将该纸片沿过点B的直线折叠,使点A 落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm.18.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题19.把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.20.甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1,2,3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1,2,3,4,5,6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜.①请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来;②这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平.,点E从A出发沿线段AC运动至点C停止,ED⊥21.如图,△ABC中,∠C=90°,AC=6,BC=2AB,EF⊥AC,将△ADE沿直线EF翻折得到△A′D′E,设DE=x,△A′D′E与△ABC重合部分的面积为y.(1)当x=时,D′恰好落在BC上?(2)求y关于x的函数关系式,并写出x的取值范围.22.如图所示,以BC为直径的⊙O中,点A、E为圆周上两点,过点A作AD⊥BC,垂足为D,作AF⊥CE 的延长线于点F,垂足为F,连接AC、AO,已知BD=EF,BC=4.(1)求证:∠ACB=∠ACF;(2)当∠AEF=°时,四边形AOCE是菱形;(3)当AC=时,四边形AOCE是正方形.23.为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:八年级25名学生双休日课外阅读时间统计表(1)请求出阅读时间为4小时的人数所占百分比;(2)试确定这个样本的众数和平均数.24.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.25.在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.(1)如图①,在△ABC中,∠A=2∠B,且∠A=60°.求证:a2=b(b+c)(2)如图②,在△ABC中,最大角∠A是最小角∠C的2倍,且c=7,b=8,求a的长.(3)若一个三角形的一个内角等于另一个内角的2倍,我们则称这样的三角形为“倍角三角形”.问题(1)中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图③,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.【参考答案】***一、选择题二、填空题13.3n+114.15.16.217.40或3.18.12三、解答题19.见解析,49.【解析】【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.①见解析;②这个游戏不公平,见解析,要使游戏公平,改规则如下:若两人的数字之和小于6,则甲获胜;否则,乙获胜.【解析】【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两人的数字之和小于7与大于等于7的概率是否相等,求出概率比较,即可得出结论.【详解】解:①两人所得的数字之和的所有结果如图:②这个游戏不公平.由图可知,所得结果小于7的情况有6种,即甲获胜的概率为23,乙获胜的概率为13,很明显不公平;要使游戏公平,改规则如下:若两人的数字之和小于6,则甲获胜;否则,乙获胜.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(1)95;(2)222(01)9-1225925xy<⎪=+-≤⎨⎪⎪-+≤⎪⎩(<x)(<x)….【解析】【分析】(1)先根据勾股定理求出AB的值,然后根据同角的正弦函数值相等表示出AE为3x,当点D′恰好落在BC上时,再根据等角的三角函数值相等表示出EC为13x,然后求出x的值即可;(2)由(1)可得AE和AD,当点A'与点C重合时,求出x的值,然后根据三角形的面积公式分三种情况讨论,求出y关于x的函数关系式即可.【详解】解:(1)在Rt△ABC中,AB2 =,∴sinA=13 DE BCAE AB==,∵DE=x,∴AE=3x,当D′恰好落在BC上时,如图所示:ED′=ED=x,∠DEA=∠D′EC,∴∠ED′C=∠A,∴EC=13x,∵3x+13x=6,∴x=95,故答案为:95; (2)由(1)可得,AE=3x ,∴AD =,当点A'与点C 重合时,AE=EC=12AC=3, ∴3x =3∴x =1.①当0<x≤1时,如图1,y=12212222AD DE x x x ==; ②当1<x≤95时,如图2, ∵AE =A'E =3x ,∴AA'=6x .∴CA'=6x ﹣6.∵tan A'='4CH BC CA AC ==,∴1)6)42x CH x -=-=,∴y=221132(1)1)22(66)22222x x x x x x ----=-=-222x +-; ③当925x <<时,如图3, ∵∠EIC+∠IEC =∠IEC+∠A',∴∠EIC =∠A'.∴tan 4CE EIC CI == , ∵CE =(6﹣3x ),∴3)CI x =- ∴11(63)22(63)22y CE CI x x ==--=2-+综上所述,222(01)9-1225925x y <⎪=+-≤⎨⎪⎪-+≤⎪⎩(<x )<x )….【点睛】本题主要考查了勾股定理、利用三角函数值解直角三角形、一元二次函数及三角形的面积公式等知识点,根据题意作出辅助线,分类讨论是解题的关键.22.(1)见解析;(2)60;(3)12x x . 【解析】【分析】(1)证明△ABD ≌△AEF ,可得AB =AE ,则结论得证;(2)根据菱形的判定方法,当OC =CE =AE =OA 时,四边形OAEC 为菱形,则可判断△OCE 为等边三角形,所以∠OCE =60°,可得∠AEF =60°;(3)利用正方形的判定方法,当∠AOC =90°时,四边形AOCE 为正方形,则根据正方形的性质计算出此时AC 的长.【详解】解:(1)证明:∵∠ABC+∠AEC =∠AEC+∠AEF =180°,∴∠ABC =∠AEF ,在△ABD 和△AEF 中,ABC AEF BD EF ADB AFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△AEF (ASA )∴AB =AE ,∴∠ACB =∠ACF ;(2)60,如图所示,连接OE ,∵四边形AOCE 是菱形,∴OA =OC =CE =AE ,∵OC =CE =OE ,∴△ECO 是等边三角形,∴∠OCE =60°,∴AE ∥BC ,∴∠AEF =∠OCE =60°.故答案为:60;(3)∵BC =4,∴OC =()2a b a b 2b ⊕=++=2,∵四边形AOCE 是正方形,∴∠AOC =90°,∴cos 45OC AC ︒== 故答案为:12x x .【点睛】本题考查圆综合题、全等三角形的判定和性质、正方形的性质和判定、等边三角形的判定和性质、菱形的判定和性质等知识,解题的关键是灵活应用所学知识解决问题.23.(1)28%;(2)众数4小时;平均数3.36小时【解析】【分析】(1)先求得阅读时间为4小时的人数,然后除以被调查的人数即可求得其所占的百分比;(2)利用众数及加权平均数的定义确定答案即可.【详解】(1)阅读量为4小时的有25﹣3﹣4﹣6﹣3﹣2=7,所以阅读时间为4小时的人数所占百分比为7100%=28%;25(2)阅读量为4小时的人数最多,所以众数为4小时,平均数为(1×3+2×4+3×6+4×7+5×3+6×2)÷25=3.36(小时).【点睛】本题考查了确定一组数据的加权平均数和众数的能力,比较简单.24.(1)20,10;(2)α=2β;(3)见解析.【解析】【分析】(1)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(2)利用等腰三角形的性质和三角形的内角和即可得出结论;(3)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【详解】(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E 在CA 的延长线上,点D 在线段BC 上,如图1设∠ABC=x ,∠ADE=y ,∴∠ACB=x ,∠ACE=y ,在△ABD 中,x+α=β﹣y ,在△DEC 中,x+y+β=180°,∴α=2β﹣180°,②当点E 在CA 的延长线上,点D 在CB 的延长线上,如图2,同①的方法可得α=180°﹣2β.【点睛】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.25.(1)见解析;(2)a (3)关系式a 2=b (b+c )仍然成立,见解析.【解析】【分析】(1)先证△ACB 为直角三角形,知a ,b =12c ,据此可得a 2)2=234c ,b (b+c )=12c (12c+c )=234c ,从而得出答案;(2)延长CA 至点D ,使AD =AB ,连接BD ,证△CBD ∽△DAB 得BD CD AB BD=,据此可得BD∠C =∠D 知a =BC =BD (3)延长BA 至D ,使AD =AC =b ,连结CD ,证△ADC ∽△CDB 得AD CD CD DB =,据此可得答案. 【详解】解:(1)证明:∵∠A =2∠B =60°,∴∠B =30°,则∠C =180°﹣∠A ﹣∠B =90°,∴△ACB 为直角三角形,在Rt △ACB 中a ,b =12c ,所以a 2)2=234c ,b (b+c )=12c (12c+c )=234c , 所以a 2=b (b+c );(2)如图1,延长CA 至点D ,使AD =AB ,连接BD ,则∠D =∠ABD =12∠CAB =∠C , ∴△CBD ∽△DAB , ∴BD CD AB BD=, ∴BD 2=AB•CD=7×(8+7)=105,∴BD又∠C =∠D ,∴a =BC =BD =(3)对于任意的倍角△ABC ,∠A =2∠B ,关系式a 2=b (b+c )仍然成立,如图2,延长BA 至D ,使AD =AC =b ,连结CD ,则∠CAB=2∠D,∴∠B=∠D,BC=CD=a,∴△ADC∽△CDB∴AD CD CD DB=,即b aa b c =+.所以a2=b(b+c).【点睛】本题是三角形的综合问题,解题的关键是掌握直角三角形的概念、勾股定理、相似三角形的判定与性质、等腰三角形的性质等知识点.2019-2020学年数学中考模拟试卷一、选择题1.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数和众数分别是( )A.9.7,9.5B.9.7,9.9C.9.6,9.5D.9.6,9.62.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A.①②③④B.④③①②C.②④③①D.④③②①3.如图,要使□ABCD 成为矩形,需添加的条件是()A .AB=BCB .∠ABC=90°C .AC ⊥BD D .∠1=∠24.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A .B .C .D .5.如图,一次函数y 1=k 1x+b 1与反比例函数22ky x 的图象交于点A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <3C .0<x <3D .x >3或0<x <16.下列算式运算结果正确的是( )A .(2x 5)2=2x 10B .(﹣3)﹣2=19C .(a+1)2=a 2+1D .a ﹣(a ﹣b )=﹣b 7.若二次函数y =ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0②x =x 0是方程ax 2+bx+c =y 0的解③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0其中正确的是( )A .①③④B .①②④C .①②③D .②③8.在平面直角坐标系中,点P(-3,4)到x 轴的距离为( )A.3B.-3C.4D.-49.如图,在△ABC 中,BC =4,BC 边上的中线AD =2,AB+AC =,则S △ABC 等于( )A B .2 C .D .210.如图,在Rt ABC ∆中,90,6,8ACB AC BC ∠=︒==,则Rt ABC ∆的中线CD 的长为( )A.5B.6C.8D.1011.若抛物线y =ax 2+bx+c (a≠0)与x 轴两个交点间的距离为6,称此抛物线为定弦抛物线.已知某定弦抛物线开口向上,对称轴为直线x =2,且通过(1,y 1),(3,y 2),(﹣1,y 3),(﹣3,y 4)四点,则y 1,y 2,y 3,y 4中为正数的是( )A .y 1B .y 2C .y 3D .y 412.如图,在矩形ABCD 中,AB =3,AD =6,将AD 边绕点A 顺时针旋转,使点D 恰好落在BC 边上的点D′处,则阴影部分的扇形面积为( )A.9 B.3πC.9πD.18二、填空题13.分解因式:269mx mx m-+=_____.14.十九大报告指出:十八大以来,我国就业状况持续改善,城镇新增就业年均一千三百万人以上,一千三百万人用科学计数法表示为__________人.15.计算)22的结果是________.16.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为9,则a的值为______.17.我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为.18.不等式﹣13x+1≤﹣5的解集是____.三、解答题19.如图,某大楼的顶部竖有一块宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为63°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1,AB=10米,CD=2米.(1)求点B距地面的高度;(2)求大楼DE的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据tan63°≈2,20.如图1,点E为正方形ABCD内部一点,AF⊥BE于点F,G为线段AF上一点,且AG=BF.(1)求证:BG=CF;(2)如图2,在图1的基础上,延长BG交AE于点M,交AD于点H,连接EH,移动E点的位置使得∠ABH=∠GAM①若∠EAH=40°,求∠EBH的度数;②求证:HE∥AF.21.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ= ,求QD的长(结果保留 );(3)若△APO的外心在扇形COD的内部,求OC的取值范围.22.如图,一个圆形转盘被平均分成8个小扇形.请在这8个小扇形中分别写上数字1、2、3,任意转动转盘,使得转盘停止转动后,“指针落在数字1的区域”的可能性最大,且“指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同.23.如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE,点F是BE上一点,连接CF.(1)如图1,若∠ECD=30°,BC=4,DC=2,求tan∠CBE的值;(2)如图2,若BC=EC,过点E作EM⊥CF,交CF延长线于点M,延长ME、CD相交于点G,连接BG交CM于点N且CM=MG,①在射线GM上是否存在一点P,使得△BCP≌△ECG?若存在,请指出点P的位置并证明这对全等三角形;若没有,请说明理由.②求证:EG =2MN .24.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为 人,请补全条形统计图;(2)统计的捐款金额的中位数是 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?25.如图,在平面直角坐标系中,抛物线y =﹣3x 2+3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 是抛物线的顶点.(1)如图1,P为直线BC上方抛物线上一动点,过点P作PQ∥y轴交BC于点Q.在抛物线的对称轴上有一动点M,在x轴上有一动点N,当6PQ﹣CQ的值最大时,求NB的最小值;(2)如图2,将△ABC绕点B逆时针旋转90°后得到△A′BC',再将△A′BC′向右平移1个单位得到△A“B′C“,那么在抛物线的对称轴DM上,是否存在点T,使得△A′B′T为等腰三角形?若存在,求出点T到x轴的距离;若不存在,请说明理由.【参考答案】***一、选择题二、填空题13.m(x-3)214.3×10715.-116.-217.2﹣或53或﹣1.18.x≥18三、解答题19.(1)5(2)大楼DE的高度约为23.3米【解析】【分析】(1)过B作AE的垂线交于点G,在Rt△ABG,通过解直角三角形求出BG即可;(2)由(1)可求AG的值,作BF⊥DE交DE于点F,设DE=x米,在Rt△ADE中,表示出AE,然后再根据等腰直角三角形的性质求解x,即可得到大楼DE的高度.【详解】解:(1)作BG⊥AE于点G,由山坡AB的坡度i=1,设BG=x,则,∵AB=10,∴x2+)2=102,解得x=5,即BG=5,∴点B距地面的高度为:5米;(2)由(1)可得AG BG=BF⊥DE交DE于点F,设DE=x米,在Rt△ADE中,∵tan∠DAE=DE AE,∴AE=tan DEDAE∠≈12x,∴EF=BG=5,BF=AG+AE=12 x,∵∠CBF=45°,∴CF=BF,∴CD+DE﹣EF=BF,∴2+x﹣5=12 x,解得:x=≈23.3(米)答:大楼DE的高度约为23.3米.【点睛】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化为解直角三角形的问题是解答此类题的关键.20.(1)见解析;(2)①∠EBH=40°;②见解析.【解析】【分析】(1)由正方形的性质得出AB=BC,∠ABC=∠BAD=90°,证出∠BAG=∠CBF,由SAS证明△ABG≌△CBF,即可得出BG=CF;(2)①求出∠BAM=90°-40°=50°,由三角形的外角性质得出∠BGF=∠BAM=50°,在Rt△BGF中,由直角三角形的性质即可得出结果;②先证明A、B、E、H四点共圆,由圆内接四边形的性质得出∠BEH+∠BAD=180°,得出∠BEH=90°,HE⊥BE,即可得出结论.【详解】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BAD=90°,∴∠ABF+∠CBF=90°,∵AF⊥BE,∴∠AFB=90°,∴∠ABF+∠BAG=90°,∴∠BAG=∠CBF,在△ABG和△BCF中,AB BCBAG CBF AG BF=⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△CBF(SAS),∴BG=CF;(2)①解:∵∠EAH=40°,∴∠BAM=90°﹣40°=50°,∵∠ABH=∠GAM,∴∠BGF=∠BAG+∠ABG=∠BAG+∠GAM=∠BAM=50°,在Rt△BGF中,∠EBH=90°﹣∠BGF=40°;②证明:∵∠EAH=∠EBH=40°,∴A、B、E、H四点共圆,∴∠BEH+∠BAD=180°,∴∠BEH=90°,∴HE⊥BE,∵AF⊥BE,∴HE∥AF.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、平行线的判定、四点共圆、圆内接四边形的性质、三角形的外角性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.21.(1)详见解析;(2)143π;(3)4<OC<8.【解析】【分析】(1)连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB =⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=QB OB == ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=8,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <8.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.22.如图所示见解析.【解析】【分析】根据题意指针落在数字2的区域”的可能性与“指针落在数字3的区域”的可能性相同,可知2和3的数字数量相等,且1是数量最多的,即可解答【详解】答案不唯一,写出1个即可,如图所示.【点睛】此题考查可能性的大小,难度不大23.(1(2)①详见解析;②详见解析.【解析】【分析】(1)由平行四边形的性质和已知条件得出∠BCE=∠CED=90°,由直角三角形的性质得出DE=12CD=1,CE(2)①由等腰直角三角形的性质得出∠MCG=∠MGC=45°,由线段垂直平分线的性质得出CP=CG,得出∠CPM=∠CGM=45°,求出∠PCG=90°,得出∠BCP=∠ECG,由SAS证明△BCP≌△ECG即可;②由全等三角形的性质得出BP=EG,∠BPC=∠EGC=45°,得出∠BPG=90°,证出BP∥MN,得出BN=GN,MN是△PBG的中位线,由三角形中位线定理得出BP=2MN,即可得出结论.【详解】(1)解:∵四边形ABCD是平行四边形,∴AD∥BC,∵CE⊥BC,∴CE⊥AD,∴∠BCE =∠CED =90°,∵∠ECD =30°,DC =2,∴DE =12CD =1, ∴CE∴tan ∠CBE=CE BC = (2)①解:在射线GM 上存在一点P ,MP =MG 时,△BCP ≌△ECG ;理由如下: 如图2所示:∵CM =MG ,∴△CMG 是等腰直角三角形,∴∠MCG =∠MGC =45°,∵MP =MG ,EM ⊥CF ,∴CP =CG ,∴∠CPM =∠CGM =45°,∴∠PCG =90°,∴CP ⊥CG ,∵∠BCE =∠PCG =90°,∴∠BCP =∠ECG ,在△BCP 和△ECG 中,BC EC BCP ECG CP CG =⎧⎪∠=∠⎨⎪=⎩,∴△BCP ≌△ECG (SAS );②证明:由①得:△BCP ≌△ECG ,∴BP =EG ,∠BPC =∠EGC =45°,∴∠BPG =90°,∴BP ∥MN ,∵PM=GM,∴BN=GN,∴MN是△PBG的中位线,∴BP=2MN,∴EG=2MN【点睛】本题是四边形综合题目,考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、线段垂直平分线的性质、三角函数等知识;本题综合性强,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.24.(1)50,见解析;(2)150;(3)72°;(4)84000(元).【解析】【分析】(1)根据题意即可得到结论;求得捐款200元的人数即可补全条形统计图;(2)根据中位数的定义即可得到结论;(3)用周角乘以100元所占的百分比即可求得圆心角;(4)根据题意即可得到结论.【详解】(1)12÷24%=50(人),捐款200元的人数为:50-4-10-12-6=18(人),补全条形统计图,(2)第25,26名捐款均为150元,故中位数为:150元;(3)1050×360°=72°.(4)150(50×4+100×10+150×12+200×18+300×6)×500=84000(元).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
精品
第四节 一次不等式(组)

姓名:________ 班级:________ 限时:______分钟

1.(xx·广西)若m>n,则下列不等式正确的是( )
A.m-2n4
C.6m<6n D.-8m>-8n
2.(xx·广东省卷)不等式3x-1≥x+3的解集是( )
A.x≤4 B.x≥4 C.x≤2 D.x≥2
3.(xx·长春)不等式3x-6≥0的解集在数轴上表示正确的是( )

4.(xx·唐山滦南县一模)如果式子2x+6有意义,那么x的取值范围在数轴上表示出来,正确的是( )
5.(xx·石家庄二十八中质检)不等式组x+1>23x-4≤2的解集表示在数轴上正确
的是( )

6.(xx·孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )
.

精品
A.x-1<3x+1<3 B.x-1<3x+1>3

C.x-1>3x+1>3 D.x-1>3x+1<3
7.(xx·娄底)不等式组2-x≥x-23x-1>-4的最小整数解是( )
A.-1 B.0 C.1 D.2
8.(xx·株洲)下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为83<x<5( )
A. x+5<0 B. 2x>10
C. 3x-15<0 D. -x-5>0
9.(xx·安徽)不等式x-82>1的解集是________.

10.(xx·扬州)不等式组3x+1≥5xx-12>-2的解集为________.
11.(xx·山西)xx年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之
和不超过115 cm,某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高
的比为8∶11,则符合此规定的行李箱的高的最大值为________cm.

12.(xx·江西)解不等式:x-1≥x-22+3.

13.(xx·北京)解不等式组:3(x+1)>x-1x+92>2x.
.

精品
14.(xx·秦皇岛海港区一模)解不等式组3(x-2)≥x-42x+13>x-1,并把解集在数轴上表示出来.

1.(xx·德阳)如果关于x 的不等式组2x-a≥03x-b≤0的整数解仅有x=2、x=3,那么适合这个不等式组的整
数a、b组成的有序数对(a,b)共有( )
A.3个 B.4个 C.5个 D.6个

2.(xx·唐山路北区一模)若关于x的一元一次不等式组2x-1>3(x-2)x<m的解集是x<5,则m的取值范
围是( )
A.m≥5 B.m>5 C.m≤5 D.m<5
3.(xx·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程
序操作仅进行了一次就停止,则x的取值范围是________.

4.(xx·保定一模)下面是售货员与小明的对话:

根据对话内容解答下列问题:
(1)A、B两种文具的单价各是多少元?
(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260
.
精品
元,共有几种购买方案?
.

精品
5.(xx·咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某
中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,
还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,
它们的载客量和租金如下表所示:

学校计划此次研学旅行活动的租车总费用不超过3 100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为________
辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.

参考答案
【基础训练】
1.B 2.D 3.B 4.A 5.C 6.B 7.B 8.C
9.x>10 10.-3<x≤12 11.55
12.解:去分母得:2(x-1)≥x-2+6,
去括号得:2x-2≥x-2+6,
移项得:2x-x≥2-2+6,
合并得:x≥6.
.
精品
13.解:3(x+1)>x-1①x+92>2x ②,
∵解不等式①得:x>-2,
解不等式②得:x<3,
∴不等式组的解集为-2<x<3.
14.解:解不等式3(x-2)≥x-4得x≥1,
解不等式2x+13>x-1得x<4,
∴不等式组的解集为1≤x<4.
解集在数轴上表示为

【拔高训练】
1.D
2.A 3.x<8
4.解:(1)设A种文具的单价为x元,则B种文具的单价为(25-x)元,根据题意得80x=12025-x,
解得x=10,
经检验,x=10是原分式方程的解.
25-x=15,
∴A、B两种文具的单价分别为10元和15元.
(2)设购买A种文具m件,则购买B种文具(20-m)件,
∵A种文具的数量少于B种文具的数量,
∴m<20-m,即m<10,
∵购买的总费用不超过260元,∴10m+15(20-m)≤260,解得m≥8,
∴8≤m<10.
∵m为整数,∴m为8,9,∴共有两种购买方案.
5.解:(1)设老师有x人,学生有y人,依题意得

17x=y-1218x=y+4,解得




x=16
y=284
.

答:此次参加研学旅行活动的老师有16人,学生有284人.
(2)∵30030=10,30042<8,∴至少需要8辆车;又∵162=8,
.
精品
∴最多8辆车,故答案为8.
.

精品
(3)设乙种客车租x辆,则甲种客车租(8-x)辆.

∵租车总费用不超过3 100元,
∴400x+300(8-x)≤3 100,解得x≤7.
为使300名师生都有车坐,
∴42x+30(8-x)≥300,解得x≥5.
∴5≤x≤7(x为整数)
∴共有3种租车方案:
方案一:租用甲种客车3辆,乙种客车5辆,租车费用2 900元;方案二:租用甲种客车2辆,乙种客车
6辆,租车费用3 000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用3 100元;
∴最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.
如有侵权请联系告知删除,感谢你们的配合!

相关文档
最新文档