气动机械手控制系统设计图示及仿真实现
实训 气动机械手控制

控制要求
•
•
• • • •
1、初始状态:机械手在皮带的末端,机械手上 升到位,气动手爪呈释放状态。 2、按下“启动”,机械手下降;下降到位后, 气功手爪夹紧;机械手上升;上升到位后,机 械手旋转;旋转到位后,机械手下降;下降到 位后,气动手爪释放,完成后,旋转气缸返回。 3、在启动状态下,按下“停止”,机械手停止 在当前状态;再按下“启动”继停止状态继续 运行。 4、要有剩余次数显示,并在触摸屏中用数码管 显示。 5、机械手有点动功能,手/自动能实现切换
PLC的COM2、COM1接GND(0V) 气动阀的公共端接24V
ቤተ መጻሕፍቲ ባይዱ
电源负端
接线图
端口分配及接线图
序号
PLC地址(PLC端 子)
X2 X3 X4 X0(M0) X1(M1) X10(M10) Y2 Y3 Y4
电气符号(面板端 子)
2B1 3B1 4B1 SB5(按钮挂箱) SB6(按钮挂箱) SB4(按钮挂箱) 2Y1 3Y1 4Y1
功能说明 机械手旋转到位传感器 机械手下限位传感器 气动手爪夹紧限位 启动 停止 复位 旋转气缸电磁阀 升降气缸电磁阀 气动手爪电磁阀
四自由度多用途气动机器人结构设计及控制实现资料

目录目录 (1)文摘 (3)Abstract (3)第一章绪论1.1机械手概述 (4)1.2机械手的组成和分类 (4)1.2.1机械手的组成.1.2.2机械手的分类1.3国内外发展状况.. (7)1.4课题的提出及主要任务 (8)1.4.1课题的提出1.4.2课题的主要任务第二章机械手的设计方案2.1机械手的座标型式与自由度 (10)2.2机械手的手部结构方案设计 (11)2.3机械手的手腕结构方案设计 (12)2.4机械手的手臂结构方案设计 (12)2.5机械手的驱动方案设计 (12)2.6机械手的控制方案设计 (12)2.7机械手的主要参数 (12)2.8机械手的技术参数列表 (12)第三章手部结构设计3.1夹持式手部结构 (14)3.1.1手指的形状和分类3.1.2设计时考虑的几个问题3.1.3手部夹紧气缸的设计第四章手腕结构设计4.1手腕的自由度 (18)4.2手腕的驱动力矩的计算 (19)4.2.1手腕转动时所需的驱动力矩4.2.2回转气缸的驱动力矩计算4.2.3回转气缸的驱动力矩计算校核第五章手臂伸缩,升降,回转气缸的设计与校核5.1手臂伸缩部分尺寸设计与校核 (24)5.1.1尺寸设计5.1.2尺寸校核5 .1 .3导向装置5 .1 .4平衡装置5.2手臂升降部分尺寸设计与校核 (26)5.2.1尺寸设计5.2.2尺寸校核5.3手臂回转部分尺寸设计与校核 (27)5.3.1尺寸设计5.3.2尺寸校核第六章气动系统设计6.1气压传动系统工作原理图 (29)6.2气压传动系统工作原理图的参数化绘制 (30)第七章机械手的PLC控制设计7.1可编程序控制器的选择及工作过程 (31)7.1.1可编程序控制器的选择7.1.2可编程序控制器的工作过程7.2可编程序控制器的使用步骤 (31)7.3机械手可编程序控制器控制方案 (32)第八章结论 (36)致谢 (37)参考文献四自由度多用途气动机器人结构设计及控制实现中文摘要:本文简要介绍了工业机器人的概念,机械手的组成和分类,机械手的自由度和坐标形式,气动技术的特点,PLC控制的特点及国内外的发展状况。
PLC实验——机械手控制

1. 机械手控制
搬运纸箱的机械手结构示意图如图1所示, 它的气动系统原理图如图2所示。
机械手的主要运动机构是升降气缸和回转气缸。
升降挡铁初始时处于行程开关SQ1处, 吸盘在A处正上方。
系统启动后, 如果光电开关TD检测出A处有纸箱, 则升降气缸使机械手的升降杆下降, 当升降挡铁碰到行程开关SQ2时, 吸盘恰好接触到纸箱上表面, 继续让升降杆下降, 以挤出吸盘和纸箱表面围成的空腔内的空气, 形成负压。
持续几秒钟, 升降杆停止下降, 升降气缸使升降杆上升, 吸盘带着纸箱上升, 当升降挡铁碰到SQ1时, 停止上升。
回转气缸使回转臂顺时针转180°, 吸盘运动至B处正上方, 回转挡铁碰到行程开关SQ4时停止回转, 吸盘下降, 当升降挡铁碰到SQ2时, 停止下降, 并且停止几秒钟, 这时, 电磁阀HF3开启, 吸盘放松纸箱。
之后, 吸盘上升, 当升降挡铁碰到SQ1时, 吸盘逆时针转180°回到A处正上方, 回转挡铁碰到行程开关SQ3时停止回转, 如果TD未检测出A处有纸箱, 则机械手停止等待;若TD检测出A处有纸箱, 则机械手重复上述工作过程。
机械手的I/O连接图、流程图、梯形图分别如图2、图3、图4所示。
图1 机械手
图2 I/O连接图图3 流程图
图4 梯形图。
(完整word版)PLC机械手臂课程设计原稿

气动机械手控制系统1 课程设计的任务与要求1。
1 课程设计的任务1。
熟悉三菱FX2N PLC的机构及使用。
2.掌握相关的PLC的编程操作并实现所要求的功能。
3。
具备PLC的硬件设计。
4.熟悉PLC仿真软件的操作和仿真。
通过本次论文,进一步加强自己对机械手和PLC的认识,以及它们在生活中广泛应用.1.2 课程设计的要求气动机械手动作示意图如下图所示,气动机械手的功能是将工件从A点搬运到B点,控制要求为:(1)气动机械手的升降和左右移动分别由不同的双线圈电磁阀实现,电磁阀线圈失电时能保持原来的状态,必须驱动反向的线圈才能反向运动;(2)上升、下降的电磁阀线圈分别为MB2、MB1;右行、左行的电磁阀线圈为MB3、MB4;(3)机械手的夹钳由单线圈电磁阀MB5来实现,线圈通电夹紧,断电松开;(4)机械手的夹钳的松开,夹紧通过延时2s实现;(5)机械手下降、上升、右行、左行的限位由行程开关BG1、BG2、BG3、BG4来实现。
图1 气动机械手动作示意图2气动机械手控制系统设计方案制定本设计采用三菱系列PLC设计下图为一个将工件由A处传送到B处的机械手,上升/下降和左移/右移的执行用双线圈二位电磁阀推动气缸完成.当某个电磁阀线圈通电,就一直保持现有的机械动作,例如一旦下降的电磁阀线圈通电,机械手下降,即使线圈再断电,仍保持现有的下降动作状态,直到相反方向的线圈通电为止.另外,夹紧/放松由单线圈二位电磁阀推动气缸完成,线圈通电执行夹紧动作,线圈断电时执行放松动作。
设备装有上、下限位开关和左、右限位开关,它的工作过程如图所示,有八个动作,即为:原位下降夹紧上升右移左移上升放松下降图2 机械手的动作周期3气动机械手控制系统设计方案实施3.1气动机械手控制系统电路元器件选择为实现设计目的,本设计需用到两台三相电机,4个接触器,4个继电器.其中M1三相电机控制机械手臂的上下移动(KM1闭合M1电动机正转,机械手臂下降;KM2闭合M1电动机反转,机械手臂上升);M2三相电机控制机械手臂的左右移动(KM3闭合M2电动机正转,机械手臂右移;KM4闭合M2电动机反转,机械手臂左移)。
气动机械手操作控制装置

气动机械手操作控制装置(总14页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March气动机械手操作控制装置题目及要求:一、气动机械手的控制要求气动机械手的动作示意图如图1所示,气动机械手的功能是将工件从A处移送到B处。
控制要求为:1、气动机械手的升降和左右移行分别由不同的双线圈电磁阀来实现,电磁阀线圈失电时能保持原来的状态,必须驱动反向的线圈才能反向运动;2、上升、下降的电磁阀线圈分别为YV2、YV1;右行、左行的电磁阀线圈为YV3、YV4;3、机械手的夹钳由单线圈电磁阀YV5来实现,线圈通电时夹紧工件,线圈断电时松开工件;4、机械手的夹钳的松开、夹紧通过延时实现;5、机械手的下降、上升、右行、左行的限位由行程开关SQ1、SQ2、SQ3、SQ4来实现;二、机械手的的操作功能机械手的操作面板如图2所示。
机械手能实现手动、回原位、单步、单周期和连续等五种工作方式。
1、手动工作方式时,用各按钮的点动实现相应的动作;2、回原位工作方式时,按下“回原位”按钮,则机械手自动返回原位;3、单步工作方式时,每按下一次启动安钮,机械手向前执行一步;4、单周期工作方式时,每按下一次启动安钮,机械手只运行一个周期;5、连续工作方式时,机械手在原位,只要按下启动安钮,机械手就会连续循环工作,直到按下停止安钮;6、传送工件时,机械手必须升到最高点才能左右移动,以防止机械手在较低位置运行时碰到其他工件;7、出现紧急情况,按下紧急停车按钮时,机械手停止所有的操作。
三、大作业要求1.列表说明I/O分配,并选择PLC。
2.画出顺序功能图。
3.画出PLC端子接线图。
4.设计PLC控制梯形图。
一、输入输出分配表二、PLC选型三、顺序功能图SM00X002X021四、 PLC 接线图五、PLC梯形图公用程序见下图用于处理各种工作方式都要执行的任务,以及处理不同工作方式之间的转换。
助力机械手气动控制系统设计

目录原文 (1)译文 (6)原文机械手是近几十年发展起来的一种高科技自动化生产设备。
它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手的概念我国国家标准(GB/T12643–90)对机械手的定义:“具有和人手臂相似的动作功能,可在空间抓放物体,或进行其它操作的机械装置。
”机械手可分为专用机械手和通用机械手两大类。
专用机械手:它作为整机的附属部分,动作简单,工作对象单一,具有固定(有时可调)程序,使用大批量的自动生产。
如自动生产线上的上料机械手,自动换刀机械手,装配焊接机械手等装置。
通用机械手:它是一种具有独立的控制系统、程序可变、动作灵活多样的机械手。
它适用于可变换生产品种的中小批量自动化生产。
它的工作范围大,定位精度高,通用性强,广泛应用于柔性自动线。
机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。
机械手扩大了人的手足和大脑功能,它可替代人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。
目前主要应用于制造业中,特别是电器制造、汽车制造、塑料加工、通用机械制造及金属加工等工业。
机械手与数控加工中心,自动搬运小车与自动检测系统可组成柔性制造系统(FMS )和计算机集成制造系统(CIMS ),实现生产自动化。
随着生产的发展,功能和性能的不断改善和提高,机械手的应用领域日益扩大。
气动机械手的简介气动技术—这个被誉为工业自动化之“肌肉”的传动与控制技术,在加工制造业领域越来越受到人们的重视,并获得了广泛应用。
目前,伴随着微电子技术、通信技术和自动化控制技术的迅猛发展,气动技术也不断创新,以工程实际应用为目标,得到了前所未有的发展。
气动技术(Pneumatics)是以压缩空气为介质来传动和控制机械的一门专业技术。
气动机械手控制系统设计分析
气动机械手控制系统设计分析气动机械手是一种用气压作为动力源的机械手臂,主要应用于工业自动化制造中的装配、夹取等工作。
气动机械手控制系统是机械手操作的重要组成部分,本文将从气动机械手控制系统设计分析的角度,对气动机械手控制系统相关问题进行分析。
一、气动机械手控制原理气动机械手的控制原理是通过空气压力驱动气缸活塞,改变气缸活塞的位置从而实现机械手臂的运动。
气动机械手控制系统一般由执行机构、感应元件、控制器、传感器等组成,其中最重要的部分就是控制器。
在气动机械手控制系统中,控制器是独立的微型计算机,其主要功能是根据操作者的设定来计算控制信号并形成控制指令,同时控制器还负责接收传感器的信号,控制气缸的开闭以及控制气压的大小等。
控制器一般使用PLC(可编程逻辑控制器)或PC(个人计算机)等。
二、气动机械手控制系统设计1、控制器选型气动机械手控制系统设计的一个重要因素是选择控制器类型。
可编程逻辑控制器(PLC)是主要的控制器类型之一,它是一种基于电子技术的智能控制器,具有可编程性和可扩展性特点。
PLC的应用是非常广泛的,它可以用于机器人、制造业、自动化系统等领域。
另外,个人计算机(PC)也可以作为气动机械手控制器。
相比PLC,PC的可编程性更强,其控制功能也更加灵活。
不过,PC在可靠性和实时性方面相对较弱,其控制系统需要通过编写控制软件或使用现有的控制程序来实现。
因此,在实际应用中需要根据具体的控制要求和性能要求来选择控制器类型。
2、传感器选型在气动机械手控制系统中,传感器是非常重要的部分,它能够实现机械手运动的持续监测和位置检测。
传感器的选型应该根据需求进行,有以下几种常用传感器:(1)接触式传感器:可以感知物体的接触情况,通常用于检测机械手夹持物体的情况。
(2)光电传感器:可以感知物体的存在和位置,通常用于检测工件的位置和方向。
(3)压力传感器:可以感知气压变化,通常用于检测气缸的工作状态。
(4)编码器:可以检测机械手的位置和方向,通常用于机械手的导航。
气动机械手的设计
气压传动与控制三级项目题目:气动机械手的设计小组成员:康彩波李露莎张杰张毅荣晓瑜钟亚军指导教师:吴晓明教授日期:2012/10/27一、设计机械手的背景及其意义在工业生产和其他领域内,由于工作的需要,人们经常受到高温、腐蚀及有毒气体等因素的危害,增加了工人的劳动强度,甚至于危机生命。
由于以上的问题,需要一种东西代替人在恶劣的环境中作业的要求呼之欲出,同时随着社会的进步,工业自动化产品的性能日益加强,而价格也因电子技术的高速发展而不断下降,机械手就在这样诞生了,机械手可以代替人在各种恶劣的环境中作业。
二、气动机械手设计A、夹紧缸B、长臂伸缩缸C、立柱升降缸D、回转缸工作行程:夹紧缸40mm,伸缩缸200mm,升降缸200mm。
夹紧缸夹紧力500N,伸缩缸伸缩力小于200N,升降缸提升力800N动作顺序如下:机械手动作顺序:立柱下降——机械臂伸出——机械手加紧——立柱上升——立柱旋转——机械手放松——机械臂缩回——立柱旋转。
缸伸出为1,缩回为0。
则动作顺序为C0—(c0)—B1—(b1)—A0—(a0)—C1—(c1)—D1—(d1)—A1—(a1)—B0—(b0)—D0—(d0)—C0。
由此得到X-D图与逻辑图:逻辑图由以上两图,继而得到气动系统控制图:气动控制回路电气控制回路三、伸缩手臂的设计与计算根据本机械手的设计技术参数,伸缩手臂的行程为200mm,气爪抓重约为51Kg,加上末端执行器(气爪)和连接板的重量,总质量约为53Kg,由此,伸缩手臂的最大横向负载F=mg=53×9.8=520N。
根据表3-2的数据,初步选定为缸径为20mm型号为MGPL25—200的气缸作为机械手的伸缩手臂。
伸缩手臂作水平直线运动时,主要克服的是摩擦阻力和惯性力,因此,气缸所需要的驱动力应由摩擦阻力和惯性力来确定。
F F F惯摩驱+= 式中 F 摩—摩擦阻力,应包括手臂与伸缩导轨间的摩擦阻力,活塞与密封装置处的摩擦阻力;F 惯—手臂在启动过程的惯性力。
毕业设计(论文)-PLC气动机械手设计
摘要为工业机械手研制一个技术性能优良的控制系统,对于提高工业机械手的整体技术性能来说具有十分重要的意义。
本论文正是针对这一课题,选择了可编程控制器(PLC)作为工业机械手的控制系统,这对提升工业机械手的整体技术性能起到了良好的作用。
本论文的控制对象是由三个搬运机械手组成的机械手群,每个机械手完成八个根本动作,三个机械手互相配合动作。
机械手由气缸驱动,气缸受电磁阀控制。
限位开关检测机械手是否到达固定位置。
可编程控制器(PLC)控制每个机械手的动作,实现机械手群的自动运行。
本论文可编程控制器(PLC)选用西门子〔SIEMENS〕公司S7–200系列的CPU224,并扩展了EM221数字量输入模块和EM222继电器输出模块。
机械手的开关量信号直接输入PLC,PLC通过中间继电器对电磁阀加以控制。
在软件上,设计了主程序和子程序。
主程序控制机械手群动作,子程序控制每个机械手动作。
本论文的重点放在PLC各硬件局部的设计和介绍、PLC梯形图的编写上。
在整体设计过程中按照“提出问题,分析问题,解决问题〞的主导思想,对整个系统的设计工作做出了细致的阐述。
关键词:可编程控制器(PLC);气动机械手;梯形图;CPU224;AbstractDevelops a technical performance fine control system for the industry manipulator, regarding enhances the industry manipulator's overall technical performance to have the extremely vital significance. The present paper is precisely in view of this topic, chose programmable logical controller (PLC) to take the industry manipulator's control system, this to promoted the industry manipulator's overall technical performance toplay the good role.The present paper controlled member is by three the manipulator group which transports the manipulator to be posed, each manipulator pletes eight elementary actions, three manipulators coordinate the movement mutually. The manipulator actuates by the air cylinder, air cylinder solenoid valve control. The limit switch examines the manipulator whether arrives the stationary position.The programmable logical controller (PLC) controls each manipulator's movement, realizes the manipulator group automatic movement. Present paper programmable logical controller (PLC) selects SIEMENS Corporation S7–200 series CPU224, and expanded the EM221 numeral quantity load module and the EM222 relay output module. Manipulator's switch quantity signal direct input PLC, PLC controls through the intermediate relay to the solenoid valve. On the software, has designed the master routine and the subroutine. The master routine controls the manipulator group movement, the subroutine controls each manipulator to act.The present paper key point places the PLC various hardware part the design and the introduction, in the PLC trapezoidal chart pilation. Defers to in the overall design process “asks the question, the analysis question, solves the problem〞 the guiding ideology, has made the careful elaboration to the overall system design workKey words:Programmable Logical Controller (PLC) ;Air Ooperated Mmanipulator;Trapezoidal Cchart;CPU224;目录第1章绪论11.1 机械手的概念11.2 气动机械手的简介11.2.1 气动技术11.2.2 气动机械手21.2.3 气动机械手的开展趋势3第2章方案论证42.1 机械手的设计42.1.1 气动搬运机械手的结构42.1.2 气动搬运机械手的工作原理42.2 气动搬运机械手群52.2.1 气动搬运机械手群结构52.2.2 气动搬运机械手群工作原理62.3 本论文的主要内容与达到的目标62.4 本系统的控制方案6第3章系统硬件电路的设计73.1 PLC的简介773.1.2 PLC的应用领域83.1.3 PLC的系统组成83.1.4 PLC的工作原理103.2 输入/输出信号123.3 PLC的选型143.4 I/O地址分配163.5 PLC外部接线183.6 电气控制原理21第4章软件设计224.1 机械手1控制程序224.2 机械手2控制程序254.3 机械手3控制程序284.4 机械手群主程序31第5章结论34参考文献35致谢35附录Ⅰ37附录Ⅱ53附录Ⅲ58第1章绪论机械手是近几十年开展起来的一种高科技自动化生产设备。
基于触摸屏的气动机械手控制系统设计
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气动机械手控制系统设计图示及仿真实现
从驱动方式来看,机械手有气压传动、液压传动、电气传动和机械传动几种方式。
其中,被广泛应用的气压传动以压缩空气为介质,其平稳、可靠、迅速,且使用寿命长,因此常被作为首选。
一、软件设计
1、气动机械手手动流程图
依次执行的动作线路为摆动缸向左摆→水平气缸伸出→垂直气缸伸出→吸持工件→垂直气缸退回→水平气缸退回→摆动缸右摆→水平气缸伸出→垂直气缸伸出→放松工件→垂直气缸退回→水平气缸退回→原位的循环过程。
2、气动机械手总结构图
气动机械手的总结构图如下所示:
3、气动机械手程序结构图
梯形图的设计的总体思路为方式选择开关X10=1 时,执行手动操作方式,X10=1 时,执行自动操作程序,可利用程序控制指令CJ 来实现。
4、手动梯形图程序
用按钮单独操作实现位置的移动这个就是手动梯形图程序,调整安装机械手的时候需要手动进行。
5、自动梯形图程序
自动程序部分是由控制单周期、连续、和单步的程序组成的。
单周期、连续、单步这三种工作方式主要是用连续标志和转换允许标志来区分。
单步与非单步的区分:系统工作在连续或者单周期工作方式时,X11、X12 触点实现,允许步与步之间的转换。
结合控制要求,我们绘制气动机械手自动控制的顺序功能图。
如下。
①②
③④
二、仿真软件基本操作
本例中仿真实现采用Gx-Developer8 软件,Gx-Developer8 是一种较完整、用户界面较为友好的产品。
Gx-Developer8为用户提供了程序录入、编辑和监视手段,是一款功能较强的基于电脑的PLC编程软件。
软件对电脑的配置要求比较低,只要在该软件支持的操作系统Windows 2000或Windows XP等均能安装。
1、创建新文件
初始界面上点击“新文件”按钮,或点下拉菜单“文件”选“新文件”命令。
之后选择PLC类型,然后点击确认。
●PLC类型选择
●进入编程工作界面
2、打开文件
点“打开”按钮或点一下菜单“工程”选“打开工程”命令,桌面上就会弹出“打开工程”子窗口。
3、转换操作
点下拉菜单上的“变换”,在菜单中选“变换”即可,注意转换前后窗口中颜色的变化。
转换操作的目的是把梯形图转换成指令语句。
4、保存文件
对新文件保存可在界面中点“工程”下拉菜单,选“保存工程”。
若存在对原打开文件修改后进行存盘,可在“工程”菜单下拉“另存工程为”后根据弹出对话框进行存盘即可。
三、仿真实现
1、手动操作程序仿真
●输出线圈录入
●梯形图程序录入
●手动梯形图程序语法检查
●手动梯形图程序参数检查●参数设置
●程序进入仿真
●手动程序输入条件表
●手动程序调试
2、自动操作程序仿真
自动程序仿真分为如下几个部分:●程序录入
●程序检查与参数检查
●程序仿真操作
●I/O系统设置
●梯形图程序录入
●仿真操作
在“File”下拉菜单打开填写的表格,并执行在“File”下拉菜单“Execute I/O system settings”进界面,双击条件输入,其会在灰色与黄色相互变化,使输出状态根据输入条件变化,调试程序的合理性。