uboot启动流程
uboot代码完全解析

目录
u-boot-1.1.6 之 cpu/arm920t........................................................................2 u-boot 中.lds 连接脚本文件的分析 ...................................................................................................12 分享一篇我总结的 uboot 学习笔记(转) .....................................................................................15 U-BOOT 内存布局及启动过程浅析 ...................................................................................................22 u-boot 中的命令实现 ..........................................................................................................................25 U-BOOT 环境变量实现 ........................................................................................................................28
UBOOT基础知识ppt

移植
Q:什么叫bootloader移植? Q:为什么需要移植?
移植
每种不同的CPU体系结构都有不同的BootLoader。 除了依赖于CPU的体系结构外,BootLoader 还依 赖于具体的嵌入式板级设备的配置,比如板卡的 硬件地址分配,外设芯片的类型等。这也就是说, 对于两块不同的开发板而言,即使它们是基于同 一种CPU而构建的,但如果他们的硬件资源或配置 不一致的话,要想在一块开发板上运行的 BootLoader程序也能在另一块板子上运行,还是 需要作修改。
目录树
| lib_arm | lib_generic | lib_i386 | lib_m68k | lib_microblaze | lib_mips | lib_nios | lib_nios2 | lib_ppc | net | post | rtc ` tools
定义
简单地说,BootLoader就是在操作系统 运行之前运行的一段小程序。通过这段 小程序,可以初始化硬件设备,从而将 系统的软硬件环境带到一个合适的状态, 以便为最终调用操作系统做好准备。
功能
BootLoader 的主要任务是初始化硬件 (如:串口,内存),然后将内核映 象从 Flash 中读到 RAM 中,然后跳 转到内核的入口点去运行,也就是启 动操作系统。
流程
BootLoader 的 stage1 通常包括以下步骤:
·硬件设备初始化 ·为加载 BootLoader 的 stage2 准备 RAM 空间 ·拷贝 BootLoader 的 stage2 到 RAM 空间 中 ·设置好堆栈(why??) ·跳转到 stage2 的 C 入口点
流程
S32G RDB2 Linux板级开发包 Uboot 定制说明书

CAS training Rev.4, 9/2021 S32G RDB2 Linux板级开发包Uboot 定制by John Li (nxa08200)本文说明S32G RDB2板Linux板级开发包BSP30 的Uboot细节,以帮助客户了解S32G 的Uboot是如何运行的,以及如何修改到客户的新板上。
阅读本文之前请先阅读文档Automotive SW – S32G2 reference Software\Linux\《S32G_LinuxBSP30.0.0_User_Manual.pdf》,预先熟悉一下S32G的编译环境,本文部分内容与之重复。
《S32G_LinuxBSP30.0.0_Release_Notes.pdf》,为release notes。
本文推荐必读有第1,2章,第三章的第3.6节,为平台相关必须了解的信息。
第三章其余部分为Linux背景知识介绍,可以选择阅读。
注意本文是使用默认的no-security uboot 直接启动的方式为说明的,security ATF boot 的方式另文说明,注意使用ATF后部分需要定制的部分在ATF中,uboot会简单很多。
请注意本文为培训和辅助文档,本文不是目录1S32G Linux文档说明 (2)2创建S32G RDB2 Linux板级开发包编译环境 (2)2.1创建yocto编译环境: (2)2.2独立编译 (8)3FSL Uboot 定制 (11)3.1FDT支持 (12)3.2DM(driver model)支持 (17)3.3Uboot目录结构 (29)3.4Uboot编译 (31)3.5Uboot初始化流程 (32)3.6Uboot 定制 (38)3.7Uboot debug信息 (84)S32G Uboot21S32G Linux 文档说明根据文档搭建Yocto 编译环境和standalone 编译环境。
参考Release Noes 的What’s New 一章了解最新的BSP 相对于前一版本的更新。
uboot dm-gpio使用方法以及工作流程

uboot dm-gpio使用方法以及工作流程1. 引言1.1 介绍【引言】uboot dm-gpio是uboot中的一个驱动模块,用于控制板上的GPIO(General Purpose Input/Output)引脚。
GPIO引脚在嵌入式系统中起着非常重要的作用,可以用于控制外设、传输数据、进行通信等功能。
uboot dm-gpio模块可以帮助开发人员在bootloader阶段对GPIO进行操作,这在嵌入式系统的启动过程中是非常关键的。
本篇文章将介绍uboot dm-gpio的概述、使用方法、工作流程以及示例和注意事项。
读者可以通过学习本文了解如何在uboot中使用dm-gpio模块来控制GPIO,并且掌握一些使用上的注意事项,从而更好地应用于自己的嵌入式系统开发中。
1.2 背景在嵌入式系统开发中,GPIO(General Purpose Input/Output)是一种非常常用的接口,用于控制外部设备和传感器。
在嵌入式系统中,引导加载程序(Bootloader)的选择至关重要,因为它负责初始化硬件设备和加载操作系统。
U-Boot是一种常用的开源引导加载程序,它支持多种处理器架构和嵌入式设备。
随着U-Boot的不断发展,新的GPIO框架被引入,称为`dm-gpio`,它提供了更强大和灵活的GPIO控制接口。
`dm-gpio`通过设备模型(Device Model)的方式管理GPIO设备,使得开发者可以更方便地管理和控制GPIO。
在使用`dm-gpio`之前,开发者需要了解其概念、使用方法和工作流程,以确保正确地配置和操作GPIO接口。
本文将介绍`dm-gpio`的概念、使用方法和工作流程,同时给出一个示例来演示如何在U-Boot中使用`dm-gpio`来控制GPIO。
我们还会提供一些注意事项,帮助开发者避免常见的问题和错误。
2. 正文2.1 uboot dm-gpio概述在U-Boot中,dm-gpio是一个设备模型中的GPIO控制器,用于控制通用输入输出端口。
嵌入式实验心得体会

嵌入式实验心得体会学期开始,我们开始学习《嵌入式系统及应用》,由于初次接触嵌入式系统,感觉蛮难的,所以收获不是很大,很多的概念都比较模糊,等到学期完毕开始做嵌入式课程设计时,真是茫然无从下手,自从拿到设计主题后,我就像热锅上的蚂蚁,一个字“急”。
最后实在没有方法,逼着自己去学习,查资料,总算对嵌入式有了浅层理解。
嵌入式系统本身是一个相对模糊的定义,一个手持的MP3和一个PC104的微型工业控制计算机都可以认为是嵌入式系统。
总体来说,嵌入式系统是“用于控制,监视或者辅助操作机器和设备的装备”。
一个典型的桌面Linux系统包括3个主要的软件层---linux内核、C库和应用程序代码。
内核是唯一可以完全控制硬件的层,内核驱动程序代表应用程序与硬件之间进展会话。
内核之上是C库,负责把POSIX API转换为内核可以识别的形式,然后调用内核,从应用程序向内核传递参数。
应用程序依靠驱动内核来完成特定的任务。
在了解了根底知识之后,我开始进展上机操作,当然,其中遇到很多的难题,很多东西都是第一次接触,又没有别人在旁边指导操作,完全凭借自己去摸索练习。
其中的困难可想而知。
然而坚持就是胜利,牙一咬眼一闭坚持做下去,而通过本次实验,我感觉收获还是蛮多的。
可能我对于嵌入式的知识学习的还是不太多,但是这之外的东西收获颇丰。
它让我学会了如何通过自己的努力去认知一个新事物,更重要的是端正自己的学习态度,只有真正下功夫去学习,才能有收获,正所谓“一份耕耘,一份收获。
”没有付出,何谈回报呢?再者,通过本次实验,我也学会了如何去分析问题,如何找出自己设计中的缺乏,继而去排除解决问题,这就是一个自我学习的过程。
当我们通过实验去学习理论知识时,自己动手得出的结论,不仅能加深我们对嵌入式的理解,更能加深我们对此的记忆。
当然,在这其中,我也发现自己的许多缺乏之处,由于学期伊始我没有好好学习,才落到如此地步,这也可以说是一个教训吧!我相信在以后的学习工作中,我一定会端正自己的学习态度,一丝不苟的去对待每一件事。
uboot命令使用教程(uboot参数设置)

uboot命令使⽤教程(uboot参数设置)1. Printenv 打印环境变量。
uboot> printenvbaudrate=115200ipaddr=192.168.0.111ethaddr=32:34:46:78:9A:DCserverip=192.168.0.100Environment size: 80/8188 bytes2. Setenv 设置新的变量如:uboot> setenv myboard AT91RM9200DKuboot> saveenvuboot> printenvbaudrate=115200ipaddr=192.168.0.111ethaddr=32:34:46:78:9A:DCserverip=192.168.0.100myboard=AT91RM9200DKEnvironment size: 102/8188 bytes⼜如想重置启动参数bootargs:uboot> setenv bootargs 'noinitrd root=/dev/mtdblock2 init=/linuxrc console=ttySAC0'uboot> saveenv3. saveenv 保存变量命令将当前定义的所有的变量及其值存⼊ flash 中。
⽤来存储变量及其值的空间只有 8k 字节,应不要超过。
(如上例,每次与setenv配合使⽤)4. loadb 通过串⼝ Kermit 协议下载⼆进制数据。
5. tftp 通过⽹络下载程序,需要先设置好⽹络配置简单配置:uboot> setenv ethaddr 32:34:46:78:9A:DCuboot> setenv ipaddr 192.168.0.111uboot> setenv serverip 192.168.0.100//下载 bin ⽂件到地址 0x20000000 处。
嵌入式面试笔试题目——附部分答案
嵌⼊式⾯试笔试题⽬——附部分答案1 、如何⾃动创建设备⽂件?class_create device_create2、led驱动编写有⼏种⽅式?输⼊⼦系统字符设备驱动总线platform led⼦系统3、如何实现http服务器?tcp服务器:socket4、如何编写守护进程,简述syslog的作⽤?第⼀步:创建进程、杀死⽗进程第⼆步:创建新的会话第三步:改变⼯作路径路径第四步:修改⽂件掩码权限第五步:关闭⽂件描述符5、bootloader和uboot的区别?bootloader是启动装载。
这是⼀段很⼩的程序,⽤于在系统上电启动初期运⾏,初始化关键接⼝,如内存,串⼝,关闭中断,关闭看门狗,引导系统进⼊内核的⼀段初始化的程序。
它主要任务就是将内核映像从硬盘读到RAM中,然后跳转到内核的⼊⼝点去运⾏内核,从⽽建⽴系统运⾏的必要环境。
uboot:是bootloader的⼀种6、如何移植uboot?1、下载源码2、解压uboot源码并进⼊⽬录3、指定交叉编译⼯具链4、指定产品BOARD 底板5、编译u-boot7、传感器驱动如何编写?8、BL0,BL1,BL2,BL3的作⽤?BL0 ⽂件是存放在 CPU 内部 IROM 中的⼀段固化代码,CPU 上点之后,⾸先去运⾏soc中的BL0,运⾏时会将 BL1 拷贝到 CPU 的 IRAM 中,然后执⾏BL1;BL1⽂件执⾏起来之后会先进⾏内存的初始化,之后将 BL2 ⽂件拷贝到外部内存中,BL2会初始化BL3的运⾏环境,将BL3搬移到DRAM中,BL3会有⼀个⾃搬移的过程,从⽽启动内核⼊⼝。
BL0:CPU内部的固化代码BL1:三星提供的加密⽂件BL2:截取uboot.bin 前14kBL3:剩下的uboot 执⾏命令以及加载引导内核9、exynos4412 时钟 APLL,MPLL,VPLL的区别?------倍频锁相环APLL:⽤于 CPU_BLK (可产⽣⾼达1.4GHz的频率);作为 MPLL 的补充,它也可以给DMC_BLK 、LEFTBUS_BLK 、RIGHTBUS_BLK 和 CMU_TOP 提供时钟。
uboot pcie驱动原理
uboot pcie驱动原理摘要:1.介绍uboot pcie 驱动2.详述uboot pcie 驱动的原理3.总结uboot pcie 驱动的重要性正文:1.介绍uboot pcie 驱动Uboot 是一种通用的bootloader,广泛应用于各种嵌入式系统中。
它可以从NAND flash、NOR flash 或硬盘启动系统,并支持多种文件系统。
在嵌入式系统中,PCIe(Peripheral Component Interconnect Express)是一种常见的高速串行计算机扩展总线标准,用于连接主板上的中央处理器(CPU)和各种外部设备,如显卡、声卡、硬盘等。
Uboot pcie 驱动就是用于支持PCIe 设备的驱动程序。
2.详述uboot pcie 驱动的原理Uboot pcie 驱动的原理主要基于PCIe 协议。
PCIe 协议是一种点对点(peer-to-peer)的串行通信协议,通过数据传输和数据校验来实现设备之间的通信。
Uboot pcie 驱动的工作流程如下:(1)初始化:首先,Uboot 将PCIe 设备添加到系统中,并初始化相关硬件资源。
(2)配置:Uboot 根据PCIe 设备的类型和配置空间,生成相应的配置空间表。
配置空间表包含了设备的基本信息,如设备类型、设备地址、设备配置空间等。
(3)数据传输:Uboot 通过PCIe 协议,实现与PCIe 设备的数据传输。
数据传输过程中,Uboot 将设备所需的启动代码、设备驱动等文件传输到PCIe 设备中。
(4)设备启动:Uboot 将PCIe 设备的控制权交给操作系统,由操作系统完成后续的设备驱动加载和设备启动。
3.总结uboot pcie 驱动的重要性Uboot pcie 驱动在嵌入式系统中具有重要作用,主要表现在以下几点:(1)支持PCIe 设备的启动:Uboot pcie 驱动支持各种PCIe 设备的启动,使得嵌入式系统能够兼容更多的外部设备。
uuboot 移植流程
uuboot 移植流程U-Boot 移植流程介绍U-Boot是一个开源的引导加载程序,常用于嵌入式系统中。
移植U-Boot可以将其适配到不同的硬件平台上,以满足特定需求。
本文将详细说明U-Boot移植的流程。
准备工作1.硬件选型:根据项目需求,选择适合的硬件平台。
2.获取源代码:从U-Boot官方网站或仓库下载最新版本的源代码。
3.安装交叉编译工具链:根据目标硬件平台的指令集架构,选择合适的交叉编译工具链,并进行安装。
4.了解目标硬件平台:熟悉目标硬件平台的架构、引导方式、存储器布局等相关信息。
移植流程1.配置编译环境:设置交叉编译工具链的环境变量,以确保正确编译U-Boot源代码。
2.配置U-Boot:修改U-Boot源代码中的配置文件,根据目标硬件平台的特性和需求进行相应配置。
–配置目标硬件平台的处理器类型、存储器布局等基本信息。
–配置启动方式,如通过网络(TFTP)或存储介质(SD卡、NAND Flash)等进行启动。
–配置启动流程,如引导加载程序的加载顺序、启动脚本等。
3.添加适配代码:根据目标硬件平台的需求,编写适配代码,包括引导加载程序和设备驱动等。
–引导加载程序:为目标硬件平台选择合适的程序入口点,配置启动参数,加载适配的设备驱动等。
–设备驱动:根据目标硬件平台的外设,编写相应的设备驱动代码,以支持外设的初始化和操作。
4.编译U-Boot:使用交叉编译工具链,编译修改后的U-Boot源代码。
–执行make clean清除之前的编译结果。
–执行make命令编译U-Boot源代码。
5.烧录和运行:将编译生成的U-Boot镜像烧录到目标硬件平台,并进行测试。
–根据目标硬件平台的烧录方式(串口、JTAG等),将U-Boot镜像烧录到目标设备。
–启动目标设备,观察U-Boot的启动信息是否正常输出,检查设备驱动是否正常加载。
6.调试和优化:根据实际情况,进行U-Boot的调试和性能优化。
–使用调试工具进行调试,如调试器、串口打印信息等。
uboot的常用命令及用法
uboot的常⽤命令及⽤法uboot是bootloader的⼀种,主要是⽤于引导内核启动.uboot除此功能外, 还带有很多其它功能. 功能是通过命令来调⽤.uboot的命令:help //列出当前uboot所有⽀持的命令help 命令 //查看指定命令的帮助reset //重启ubootbootm //⽤于启动内核⽤法: bootm 0x42000000 //从内存地址0x42000000启动内核, 启动前需把内核镜像uImage存放到指定的内存地址printenv //打印所有环境变量的值printenv 环境变量名 //查看指定的环境变量值常⽤环境变量:bootdelay // uboot启动后, 倒计时多少秒后⾃动执⾏环境变量bootcmd的语句bootcmd // 倒计时到0后,⾃动执⾏⾥⾯的语句bootargs // 是⽤于提供给内核的启动参数语句setenv //设置/修改/删除环境变量的值⽤法:setenv 环境变量名 //删除指定的环境变量setenv myargs "hello" //设置环境变量myargs=hello, 如果环境变量没有会创建出来,如果已存则会修改它的值saveenv //保存环境变量,环境变量修改过后必须执⾏此命令才可以保存起来,否则重启后环境变量就恢复了.loady //⽤于从uart线下载⽂件到板上内存⾥(loadb, loads, loadx基本⼀样) ⽤法:loady 0x40008000 //把下载的⽂件从内存地址0x40008000开始存放执⾏"loady 0x40008000"后, uboot就会进⼊等待状态,等着接收数据minicom具有通过uart传输⽂件的功能.按"ctrl+a", 松⼿后再按"s", 选择"ymodem", 在弹出的界⾯⾥按空格键选中要传的⽂件.md 内存地址 //⽤于查看内存地址上的值⽤法:md.b 0x40008000 100 //从内存地址0x40008000开始,查看0x100个字节并输出值md.w 0x40008000 100 //从内存地址0x40008000开始,查看0x100个16位值并输出值md.l 0x40008000 100 //从内存地址0x40008000开始,查看0x100个32位值并输出值mw //⽤于修改内存地址上的值⽤法:mw.b 0x40008000 0xab 100 //从内存地址0x40008000开始的0x100字节空间,设值为0xabmw.w 0x40008000 0xabcd 100 //从内存地址0x40008000开始的0x200字节空间,每16位值设为0xabcdmw.l 0x40008000 0xabcdef88 100 //从内存地址0x40008000开始的0x400字节空间,每32位值设为0xabcdef88 go //执⾏指定内存地址上的指令⽤法:go 0x40008000mmc // sd/mmc接⼝设备(sd卡, emmc)操作命令, 按扇区操作(每扇区512字节)⽤法:mmc read addr blk cnt //从mmc设备上的第blk个扇区开始,共读出cnt个扇区到内存地址addr上mmc write addr blk cnt //把内存地址addr上的数据写⼊mmc设备的第blk个扇区,共cnt个扇区⼤⼩mmc dev //⽤于当看当前的mmc设备是第⼏个mmc erase blk cnt //把mmc设备的第blk个扇区开始清零,共清除cnt个扇区⼤⼩ mmc part //列出当前mmc设备的分区信息mmc list //列出所有的mmc设备信息ext4ls //查看存储设备的ext2/3/4分区⾥的内容⽤法:ext4ls mmc 0:2 //查看第0个存储设备的第⼆个分区ext4load //从ext2/3/4分区⾥读出⽂件到指定的内存地址⽤法:ext4load mmc 0:2 0x40008000 /uImage //从第0个存储设备的第2个分区的根⽬录读出uImage⽂件到内存地址0x40008000 fatls //查看存储设备的fat分区⾥的内容⽤法:fatls mmc 0:1 //查看第0个存储设备的第1个分区(fat分区)fatload //从fat分区⾥读出⽂件到指定的内存地址⽤法:fatload mmc 0:1 0x40008000 /uImage //从第0个存储设备的第1个分区的根⽬录读出uImage⽂件到内存地址0x40008000fatwrite //把内存上的数据存储到fat分区的⼀个⽂件⾥⽤法:fatwrite mmc 0:1 0x40008000 /my.txt 0x35 //把内存地址0x40008000开始的0x35个字节数据写⼊到第0个设备的第1个分区⾥,⽂件名为my.txtrun //执⾏指定的环境变量⾥的语句⽤法:run bootcmd //执⾏环境变量bootcmd⾥的语句//如uboot上已驱动好⽹络设备并环境变设好IP及PC端IP,还可以使⽤以下命令:tftpboot 0x40008000 ⽂件名 // 通过⽹络下载⽂件到内存地址0x40008000, PC端需配置好tftp服务器nfs 0x40008000 pc端IP:/带路径的⽂件名 //pc端需配置好nfs服务器ping ip //检测⽹络是否通指令: bootmbootm ⽤于将内核镜像加载到内存的指定地址处例:bootm 0x82000000查看和修改环境变量指令常⽤环境变量列表bootdelay 执⾏⾃动启动(bootcmd中的命令)的等候秒数baudrate 串⼝控制台的波特率bootfile 默认的下载⽂件名bootargs 传递给Linux内核的启动参数bootcmd ⾃动启动时执⾏命令stdin 标准输⼊设备,⼀般是串⼝stdout 标准输出,⼀般是串⼝,也可是LCD(VGA)stderr 标准出错,⼀般是串⼝,也可是LCD(VGA)serverip TFTP服务器端的IP地址ipaddr 本地的IP地址ethaddr 以太⽹的MAC地址netmask 以太⽹的⽹络掩码gatewayip 以太⽹的⽹关指令: setenvname value第1个参数是环境变量的名称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。
依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。
1、Stage1 start.S 代码结构 u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:
(1)定义入口。
由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。
(2)设置异常向量(Exception Vector)。
(3)设置CPU的速度、时钟频率及终端控制寄存器。
(4)初始化内存控制器。
(5)将ROM中的程序复制到RAM中。
(6)初始化堆栈。
(7)转到RAM中执行,该工作可使用指令ldr pc来完成。
2、Stage2 C语言代码部分 lib_arm/board.c中的start arm boot是C 语言开始的函数也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数只要完成如下操作:
(1)调用一系列的初始化函数。
(2)初始化Flash设备。
(3)初始化系统内存分配函数。
(4)如果目标系统拥有NAND设备,则初始化NAND设备。
(5)如果目标系统有显示设备,则初始化该类设备。
(6)初始化相关网络设备,填写IP、MAC地址等。
(7)进去命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。