运放恒流恒压原理

运放恒流恒压原理

LM358恒流恒压原理

图是由LM358放大器与精密电压调整器TL431构成的恒压、恒流控制电路。

变压器绕组N2感应电压经VD2整流,C2、L1、C3组成的π滤波电路,在C3上得到直流输出电压。

设置N1绕组的目的是当输出短路时IC1也能正常工作,以保证电路的安全。

恒压电路工作原理:U2、ICIB、R6、R7、VD4、R10、U1组成电压控制环路。U2(TL431)是精密电压调整器,阴极K与控制极R直接短路构成精密的2.5V基准电压。R4是U2的限流电阻。2.5V基准电压由电阻R5送到ICIB反相输入端(6脚);而同相输入端(5脚)则由R6、R7的分压比来设定。若输出电压上升,则UR7电压也上升,该电压与反相端2.5V 基准电压比较,7脚输出误差信号,再通过VD4和RIO变成电流信号,流入光耦中的LED,进而通过反馈控制网络控制一次侧PWM输出占空比,使输出电压工作在恒

压状态。

恒流电路工作原理:U2、IC1A、R1、R2、VD3、R10、U1组成电流控制环路。R1是输出电流取样电阻,

输出电流在R1上产生R1/IOUT的电压

降。该电压直接送到ICA的同相输入端(3脚),而2.5V基准电压则由R2、R3组成的分压电路,再

将分压电压送到反相输入端(2脚),输出电

流在R1上的电压降与2.5V基准电压分压电压进行比较,1脚输出误差信号,再通过VD3和RIO变成电流信号,改变光耦LED中的电流,进而通过反馈控制网络控制一次侧PWM 输出占空比,使输出特性呈显

恒流特图性。R8、C4、R9、C5分别是IC1A、ICIB的相位补偿元件。

采用由放大器组成的恒压、恒流控制电路,可实现很高的恒压与恒流精度。因图电路采用放大器形式,

因此R1的电阻值可选为mΩ级,对电路转换效率基本无影响。

STM32实现4-20mA压控恒流源电路

STM32实现4-20mA压控恒流源电路 为工业场合开发的设备通常情况下都会具有4-20mA输出接口,在以往没有DAC模块的单片机系统,需要外加一主片DAC实现模拟量的控制,或者采用PWM来摸拟DA,但也带来温漂和长期稳定性问题。在以STM32为中心的设备中,使用它自带的DAC即可非常方便的实现4-20mA的输出接口,具有精度高、稳定性好、漂移小以及编程方便等特点。 在STM32单片机系统中,100脚以下没有外接出VREF引脚,但这样使得DAC的参考端和VCC共用,带来较大误码差,为解决这一问题,可以使用廉价的TL431来解决供电问题,TL431典型温漂为30ppm,所以在一般应用中已非常足够。选用两只低温漂电阻,调整输出使TL431的输出电压在3V-3.6V之间,它的并联稳压电流可达到30mA,正好能满足一般STM32核心的功耗需求。 利用TL431解决了供电问题,余下的就是4-20mA的转换电路,如下图: 上图即为非常精确的转换电路,OPA333是一颗非常优异的单电源轨至轨运算放大器,其工作电压为2.7-5.5V,其失调电压仅为10uV,实测最低输出为30uV,最高输出可达VCC-30uV。电路组成压控恒流源,其关键在于OPA333这颗芯片的优异性能,使得以上电路获得了极高的精度和稳定性。DACOUT来自于STM32的DAC1或者DAC2输出,由C25进行数字噪场滤波之后进入运算,进行1:1缓冲,后经过Q2进行电流放大,在R7上形成检测电压,C17进行去抖动处理。4-20mA信号由AN_OUT+/AN_OUT-之间输出。 上图中,负载中的电流在R7上形成压降,经运放反馈后得到Vdacout=Vr7=I*R7,所以:I=Vdacout/R7,当Vdacout在400mV到2000mV之

CL1112 12W恒压-恒流LED电源驱动器

12W High Precision CC/CV Primary-Side PWM Driver FEATURES ◆ 5% Constant Voltage Regulation, 5%Constant Current Regulation at Universal AC input ◆ Primary-side Sensing and Regulation Without TL431 and Opto-coupler ◆ Low Start-up Current: 5μA (Typical) ◆ Low Operating Current: 2mA (Typical) ◆ Programmable CV and CC Regulation ◆ Adjustable Constant Current and Output Power Setting ◆ Built-in Secondary Constant Current Control with Primary Side Feedback ◆ Peak-Current-Mode Control ◆ Compensates for transformer inductance tolerances ◆ Compensates for cable voltage drop ◆ Fixed PWM Frequency at 60kHz with Frequency Hopping to Solve EMI Problems ◆ Power on Soft-start ◆ Built-in Leading Edge Blanking (LEB) ◆ Cycle-by-Cycle Current Limiting ◆ VDD Under-Voltage lockout (UVLO) ◆ VDD Over-Voltage Protection(OVP) APPLICATIONS below 12W AC/DC offline SMPS for ◆ Cell Phone Charger ◆ Digital Cameras Charger ◆ Small Power Adapter ◆ Auxiliary Power for PC, TV etc. ◆ Linear Regulator/RCC Replacement CL1112 is offered in SOP-8 and DIP-8 package. TYPICAL APPLICATIONS Pin Configuration The pin map is shown as below for SOP8/DIP8 CL1112

输出电流采样负反馈压控恒流源(VCCS)的分析

输出电流采样负反馈压控恒流源(VCCS)的分析 一、结果 电路中1个运放和4个电阻组成的就是模电教科书上的“单位减法器”(如果把图中的V REF 换成地,它的输出-输入关系就是:V OUT= ΔV IN= V IN+- V IN-),只不过有两个“正输入端”V IN+和V REF,所以 V OUT = V IN+ + V REF - V IN- = ΔV IN + V REF 于是,这种恒流源可以分为3部分:一个单位减法器,一个电流采样电阻R S和一个反馈跟随器。(这种恒流源其实是“电压-电流变换器”或者“压控恒流源”,当输入电压ΔV IN 为常量时,便成了恒流源。) 其中,“单位减法器”在这里的作用就是维持“输出电压为输入电压和参考电压之和”,即维持V OUT = ΔV IN + V REF,或者 V OUT - V REF = ΔV IN . 由电路结构可见,V OUT - V REF正是采样电阻R S上的电压,于是便可以维持“采样电阻R S上的电压为常量ΔV IN”,根据欧姆定律,控制了电压,当然也就控制了电流: I OUT = ΔV IN / R S 二、过程 上面的说法似乎有些“抽象”,因为它直接说了最终结果,而没有说实现结果的过程。维持这个结果的过程就是“深负反馈”。因为有个运放,“深反馈”是毫无疑问的,关键就是是否“负”。 我们假设I OUT↑,那么I OUT R S↑,当V OUT还来不及变化的时候,就会有V REF = V OUT - I OUT R S↓,既然V REF是“正输入端”之一,当然会导致V OUT↓,而V OUT↓显然会减小输出电流。 由I OUT↑出发得到I OUT↓的结果,因此电路对于I OUT是负反馈,趋向于使它保持稳定。

大电流恒流源放电回路及其分析

大电流恒流源放电回路及其分析李冬梅(茂名学院计算机与电子信息学院) 摘要:在经济飞速发展的今天,各种大容量可高倍率放电的电池的需求量越来越多,在使用前,都需要放电测试,而通常的测试设备电流值太小,如何实现大电流恒流放电,同时又经济、安全、可靠,大电流和小电流放电对电路的要求差别很大,放电回路需要重点考虑。本文针对大电流恒流放电回路进行设计,并对其实际问题进行分析。 关键词:恒流源放电 0引言 随着电池使用的迅速增长,对电池产业化生产及产品质量提出了更高的要求。在电子信息时代,对移动电源的需求快速增长,对高容量、大电流工作的电池的需求越来越大。特殊的大容量可高倍率放电的电池的使用也越来越多。因此电池厂也就需要大电流的电池检测设备。本文根据电池的特点,设计了放电电流可达50A的放电电路。此电路经济、实用,简单、安全、可靠。 1恒流放电机理 此电路需要实现的功能是可以稳定的恒流,放电电流范围:1A~50A分200mA级可设置。要实现这两个功能,其组成部分应该有控制回路和放电回路两部分构成。 1.1控制回路放电的方式为恒流放电,根据需要设置电流,根据需要送来的控制数据,对电池放电进行实时控制。电流值从1A到50A可调。要实现50A这么大的电流,考虑管子的选取以及散热的需求,一路放电回路很难实现,因此采用两路并联的放电回路实现,要控制这两路并联的回路,根据显示要求电流并不需要连续可调,可以采用数字电位器9312提供可控的电位给放电回路。 此电路实现的功能是可以稳定的恒流,放电电流范围:1A~50A 分200mA级可设置。要实现这两个功能,其组成部分应该有控制回路和放电回路两部分构成。 如图所示,根据实际需要的设定,控制数字电位器9312向运放TL062提供需要的电位。实现放电电流分级设置,每级为200mA。 1.2恒流放电回路如果恒流放电时的电流不够稳定,对电池的测试有影响,因此恒流源电路采用负反馈恒流源电路,如图所示,由运算放大器、基准电压源和大电流MOS管负载组成,它的电流由基准电压决定,运放电路工作在负反馈放大状态[1]。MOS管工作在放大区。根据需要对电流值进行预制,采用合适的处理器输出相应的数字信号,通过数字电位器的基准电压,压控恒流源输出相应的电流,压控恒流源时闭环负反馈系统,实现恒流,电流需要采样后经A/D转换反馈到处理器,处理器根据反馈信号调整控制信号[2]。使用此种负反馈,实际测试时,放电电流测量准确度可达:±(0.5FS+0.3RD)%,实际电流表读数与显示测量小数点后一位有效数字相同。 此压控恒流源电路采用双运放和两个独立控制的MOS管组成,电流大小由运放的同相输入端决定,因电流较大故采用两组独立工作的电路。在多个电池同时放电时,采用循环采样的方式,采样电池两端的工作电压和两路放电电阻上的电压;电流采用计算的方法获得,采样放电电阻的电压,电流由电压和电阻计算得到,由于电阻的值不一定很一致,可以采用软件校准。采样完成后将数据送回主控制板后对电流进行实时控制。经实验验证,此电路稳定性很好,在50A电流放电时每路的电流都很稳定。 MOS管采用IRF3710,IRF3710参数:R DS(ON)=0.025I D=57A,V GS:±20V[3]。只要采取足够的散热措施,IRF3710完全可以满足需要。要在短时间将电池能量释放出来,对散热设备的设计需要充分考虑。MOS管与散热器之间可以采用导热绝缘的钢片,因为此电路是大电流放电,会在短时间内将电池能量以热能的形式释放,因此在使用时还需要考虑采用风扇散热。 在进行采样设计时,要考虑到两路电路很难做到完全对称,电流采样采用两路分别采样,在10A以下,单路导通,10A以上,两路同时导通。由于电流很大,不能直接采样,需要接采样电阻R13和R28,放电回路的R1和R30的阻值很小,在62mΩ左右,采用鏮铜丝做成,由于此部分不能做到完全一致,因此计算的电流不准,这方面需要通过软件校准。通过软件校准后,工作情况良好,达到实际需要和精度要求。 2结语 此回路采用两个数字电位器实现对放电电流的控制,采用压控恒流源负反馈电路实现大电流放电功能。使用并联回路,如果需要更大电流时,可以再并联恒流源回路。在控制过程中采用需要的处理器,合理设计接口电路和解决散热问题,就可以使用在各种大电流放电的电池检测设备中。 参考文献: [1]崔玉文,艾学忠,杨潇.实用恒流源电路设计[J].电子测量技术.2002年第五期:25-26. [2]李婷婷,李洪波.数控大功率精密恒流源设计[J].通信电源技术.2006年9月.第23卷第5期:35-37. [3]https://www.360docs.net/doc/e33438693.html,. 至少6头,多至60头以上,随着灌装头数的增加,灌装能力也不断提高,虽然灌装机的头数有多有少,但其基本工作原理是一样的。灌装阀是储液箱、气室(充气室、排气室、真空室等)和灌装容器三者之间的流体通路开关,根据灌装工艺要求,能依次对有关通路进行切换。 2.4真空系统是由真空泵、空气过虑装置和电气控制系统组成。该系统直接影响灌装速度和精度。本机选用了进口真空泵(水环式真空泵),确保了真空系统的可靠性。 真空泵由变频器控制,同时,真空表可随时反映灌装时的真空度,并可通过阀门控制量的大小,待真空泵的负压值达到所需值后,一般真空度保持在0.01~0.06Mpa之间,按下变频器面板上的按钮,灌装机开始转动。 参考文献: [1]刘姗姗,宋秋红.屋顶包饮品纸盒灌装机气动理盖机构的设计研究[J].食品工业.2007.05. [1]Liu Shanshan,Song Qiuhong.Resarch&Development For Spout Applicator of Gable Top Beverage Filler[J].The Food Industry,2007,05. [2]丁毅,贾向丽,李国志.基于ADAMS的润滑脂灌装机的设计[J].包装与食品机械.2007.06. [2]DING Yi,JIA Xiang-li,LI Guo-zhi.The Design of Lubricate Grease Fill Machine Based on ADAMS[J].Packaging and Food Machinery, 2007,06. 图1恒流源放电电路 (上接第255页) 实用科技 256

恒压电源与恒流电源的定义与区别

恒压电源与恒流电源的定义与区别 大家可能偶尔会听到,我的电源是恒压的,我的电源是恒流的,电源适配器不都一样吗,这两个到底是什么区别?为什么会有这样的区分?联运达为大家介绍一下。 一、恒压电源是指在允许负载的情况下,输出电压是恒定的,不会随着负载的变化而变化。比较常见的是为小功率LED光条就是用的恒压电源,也是大家常说的稳压电源。蓄电池、干电池都可以看做是恒压电源,只不过因为转化的原因,稳压性能比较差一些。 举个例子说明一下:如果一个恒压电源的空载输出为12V,电阻为12Ω,将电阻接到电源正负极,根据欧姆定律计算,电流为1A。这个时候我们将电路中的电阻增加一个,电阻变成了24Ω,如果不是电源不是恒压的,那么正常情况电路中的电流应该是0.5A,那么是恒压电源呢,根据电阻的增加,电压一直保持不变,始终是12V,电流会相应增加,这个时候电流变为了2A。 大家平时的家庭用电也是差不多的一个情况,恒压电源相当于家里的市电220V。家用电器的使用情况来说明,比如看着电视、开着灯、用着电暖炉,它们的电流可能不一样,但是外接的电压都是220V。大家每增加一个用电器就相当于增加了电流,电压不变,功率也会相应增高,用电度数自然不会少,所以大家在家用电的时候可以尽量少开一些电器,节约电力资源。 二、恒流电源是指在允许负载的情况下,输出电流是恒定的,不会随着负载变化而变化。相对来说恒流电源应用没有恒压那么广,咱们平时广场或者酒店采用的那种大功率LED泛光灯就是恒流电源驱动的。恒流电源主要用于保护电子产品不会因为电压变化而损坏。 举个例子:一个恒定电流1A,最高输出达到12V的一个恒流电源,电路中的电阻可以从0~12Ω变化,但是它的电流始终会保持不变,为1A。当电阻超过12Ω时,进入限压保护,恒流电源会认为是非工作保护区而拒绝工作。 大家平时可能恒流电源情况比较少不好理解,联运达给大家做个简单的比喻,方便大家理解。台式电脑大家都见过,恒流的情况就是在大家使用台式电脑的时候用USB连接手机、MP3等电子产品的时候,电脑主机的电流和大家电子产品的电流是一样大小的。如果台式电脑的电流是1A,那么此时和台式电脑连接的电子产品的电流也是1A。会出现一些情况,比如大家玩游戏、听音乐同时进行的时候,电流会稍微大一些,平时不要把电子产品和电脑连接充电,而用配套的电源适配器会对电子产品好很多。 平时大家在选购的时候可以通过观察电源适配器的参数知道它是恒压的还是恒流的。电源适配器的输出电压都会写在参数里面,拿LED电源做参考,如果这个标称电压是恒定值,比如12V,那么可以知道它是恒压电源,如果这个标称

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较 恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs 类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V)

类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V 类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差

若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管 图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe 的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET 接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

数控直流电流源(线性恒流源)

数控直流电流源 摘要:本文设计了一种数控直流电流源的方案,给出了硬件组成和软件流程及源程序。以STC89C52单片机为核心控制电路,利用12位D/A模块产生稳定的控制电压,12位A/D模块完成电流测量。输出电流范围为20~2000mA,具有“+”“-”步进调整功能,步进为1mA,纹波电流小,LCD同时显示预置电流值和实测电流值,便于操作和进行误差分析。 关键词:STC89C52数控电流源 Numerical Control DCCurrent Source Abstract:This paper introduces a design scheme of numerical control DC current source ,and gives the hardware composition and software flow as well as the source program. UseSTC89C52MCU as the core control circuit. 12 D/A module generates A steady the control voltage and 12 A/D module completes current measurements.The current-output ranges 20 to 2000mA,with "+" and "-" steppingfor 1mA adjustment function and small ripple current. LCD could show presets current value and the measured resultat the same time,for easy operation and error analysis. Keywords:STC89C52 Numerical controlCurrent source 1设计方案的选择 1.1电路综合设计流程

基于51单片机恒压恒流源的设计

恒压、恒流源的设计 学校: 专业:电气工程及其自动化 带队教师: 参赛队员: 第一章前言 (3) 第二章方案论证 (4) 第三章整体设计思路 (5) 1)、整体主电路框图 2)、整体框图 3)、电源主体 4)、控制电路

第四章单元电路 (7) 1)、充电电流取样检测电路 2)、充电电压取样检测电路 3)、检查及保护电路 4)、时钟芯片DS1302辅助电路 5)、1602液晶显示模块 第五章软件设计 (13) 第七章结论 (14) 附页 前言 铅酸蓄电池是目前世界上广泛使用的一种化学电源,该产品具有良好的可逆性,电压特性平稳,使用寿命长,适用范围广,原材料丰富(且可再生使用)及造价低廉等优点而得到了广泛的使用。是社会生产经营活动中不可缺少的产品。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。研究发现:电池充电过程

对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。而且,传统充电器的充电策略比较单一,只能进行简单的恒压或者恒流充电,以致充电时间很长,充电效率降低。另外,充电即将结束时,电池发热量很大,从而造成电池极化,影响电池寿命。针对上述问题,设计了一种智能充电器,尽量延长铅酸蓄电池的使用寿命。 第二章方案论证 一、方案论证与比较 控制器的选择 方案1:采用AT89S52单片机,该单片机做为经典单片机,方便使用,价格便宜,较长使用;但其功能单一,使用中需要外加多个其他电路,增加外围电路的设计及成本; 方案2:选择STC12C5A60S2单片机,此款作为本控制器自身带有AD转换、捕捉、PWM等功能,可减少外围设计且价格适中,开发周期短,编程及调试环境简单,容易实现;

压控恒流源2

数控恒流源设计 摘要:设计利用集成运放、场效应管对电流放大与单片机的自动控制来实现数控直流电流源。系统有控制模块与恒流源模块组成。控制模块使用AT89S52结合按键与四位数码管显示,实现对恒流源的数控和预设值的显示。恒流源模块采用OP07与IRF640组成的反馈放大电路实现对电流的放大。控制到恒流源的信号转换采用DAC0832来实现;实测显示模块有ADC0809组成的显示电路来显示。并使用自制电源进行供电。 关键词:AT89S51,恒流源,ADC0809,DAC0832,OP07 1硬件电路设计与分析 1.1 恒流源模块: 恒流源分为流控式与压控式,由于压控式易于实现,电路实现相对简单;因此本模块使用了压控式恒流源。压控式恒流源可以有集成运放芯片与晶体复合管或场效应管来实现;但由于晶体复合管实现起来比较复杂,发热量相对MOS管相

对较大,性能参数相对MOS管较差;因此本模块采用高精度集成运放芯片OP07与大功率场效应管IRF640相结合构成的恒流源。 压控恒流源是系统的重要组成部分,它的功能用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。 恒流源是采用了电流反馈的方式来稳定电流的,下图是个典型的正向电流源,利用运放虚短的概念,使R2上的电压保持与V一致,来获得一个I=V/R2的恒流源。该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R3、负载电阻R4 等组成。电路原理图如图所示: 恒流源电路图 调整管采用大功率场效应管IRF640N更易于实现电压线性控制电流, 满足最大电流和电压线性电流化。因为当场效应管工作于饱和区时,漏电流Id近似

运放中恒流源电路分析方法

运放电路中的恒流源电路分析方法 普通镜像恒流源、多集电极恒流源、高精度镜像恒流源、高内阻恒流源和镜像微恒流源电路,以及恒流源电路输出电阻的计算等。 分析恒流源电路的方法是: (1)确定恒流源电路中的基准晶体管或场效应管; (2)计算或确定基准电流; &nbbsp; (4)绘制恒流部分的交流通路,确定恒流源的内阻。 由于恒流源的内阻较大,计算恒流源内阻时不能忽略三极管集电极与发射极之间,或场效应管漏极与源极之间的动态电阻。 1、基本镜像恒流源分析 已知基本镜像恒流源电路如图1所示,试计算输出电流的大小和恒流源内阻。 图1

晶体管是基准管,且,工作在放大状态。 当与特性参数完全一致时,由可推得 由基准输入回路得, 所以, 当时,。 恒流输出管的交流通路如图1(b)所示,将晶体管用微变等效模型替代后的电路模型如图1(c),显然,恒流源的内阻。 必须注意,应用管的恒流特性时,必须满足,保证始终工作在放大状态。 基本镜像恒流源电路的扩展电路有两种,如图2所示。 图2 图2(b)的管采用多集电极晶体管(图2(a)已将其分散画),以基准管的集电极面积为基准,可得到一组与集电极

面积成正比的多个恒流源。 图2(c)中增加管可以进一步减少恒流输出与基准电流之间的近似程度,此时, 所以, 当时,基本镜像恒流值,增加管后,更接近。 2.高内阻(Wilson)恒流源 图3是Wilson恒流源电路,试计算恒流输出值。 图3 管是基准管,,工作在放大状态。 当、、均工作在放大状态时,各电流之间关系为:

整理后可得: 按二极管形式连接的管是管发射极的等效电阻,Wilson恒流源的内阻要大于。 3.微恒流源(Widlar)电路 图4是Widlar微恒流源电路,试计算输出恒流值。 图4 晶体管是基准管,且,工作在放大状态,。 管发射极电流与发射极电压之间的关系为: 所以, (1) 同理,当工作在放大状态时, (2) 由基极回路方程得:

数控恒压恒流电源设计

直流稳压电源是任何电子电路试验中不可缺少的基础仪器设备,基本在所有的跟电有关的实验室都可以见到。对于一个电子爱好者来说,直流稳压电源也是必不可少的。要得到一个电源,一般有两种方法:一是购买一台成品电源,这样最为省事:二是自己制作一台电源(因为你是电子爱好者),当然相比于第一种方法会麻烦很多。很显然这篇文章不是教你如何去选购一台直流稳压电源…… 基本的恒压恒流电源结构框图如图1所示。由电压基准源、调整管、误差放大、电压取样以及电流取样组成。电压基准源的作用是为误差放大器提供一个参考电压,要求电压准确且长时间稳定并且受温度影响要小。取样电路、误差放大和调整管三者组成了闭环回路以稳定输出电压。这样的结构中电压基准源是固定的,电压和电流的取样电路也是固定的,所以输出电压和最高的输出电流就是固定的。而一般的可变恒压恒流电源是采用改变取样电路的分压比例来实现输出电压以及最高限制电流的调节。 图1 基本恒压恒流电源框图 图2 基本稳压电源简图

图2中所示的是一个基本输出电压可变的稳压电源简图,可以很明显地看出这个电路就是一个由运算放大器构成的同相放大器,输出端加上了一个由三极管组成的射极跟随器以提高输出能力,因为射极跟随器的放大倍数趋近于1,所以计算放大倍数时不予考虑。输入电压V+通过R1和稳压二极管VD产生基准电压Vref,然后将Vref放大1+R3/R2倍,即在负载RL上的得到的电压为Vref(1+R3/R2),因为R3可调范围是0~R3max,所以输出电压范围为Vref~Vref(1+R3max/R2)。这不就和我们常用的LM317之类的可调稳压芯片一样了,只是像LM317之类的芯片内部还集成了过热保护等功能,功能更加完善,但是也有它的弊端,主要因为它是将电压基准、调整管、误差放大电路都集成在了一个芯片上,因此在负载变化较大时芯片的温度也会有很大的变化,而影响半导体特性的主要因素之一就是温度,所以使用这种集成的稳压芯片不太容易得到稳定的电压输出,这也正是高性能的电压基准都是采用恒温措施的原因,比如LM399、LTZ1000等。 图3 一只正在FLUKE 8808A 五位半数字万用表中“服役”的LM399H 图3是我从FLUKE 8808A五位半数字万用表中拍的恒温电压基准LM399H。扯远了,言归正传(欲了解更多关于电压基准源的知识,请参看以前《无线电》杂志2008年第7期中张利民老师有关电压基准的文章)。这种以改变取样电阻阻值来改变输出电压的稳压电源应用是比较普遍的,图4照片中是我们实验室中大量使用的稳压电源,就是使用调节取样电阻阻值来调节输出电压的,电压电流的显示是使用一片专用的电压测量芯片ICL7107实现的,这种电源价格低廉易于普及,但也有显而易见的缺点,因为进行电压调节的可变电阻经过长时间使用会出现接触不良的情况,这导致的后果是相当严重的,假设你正在将电压从5V慢慢地向6V调整,因为某个点电位器接触不良,相当于电位器开路,从图2可以看出,R3开路的话,输出电压就是能输出的最高电压,那么你心爱的电路板就可能会回到文明以前了。

恒流源总结

恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。 恒流源分为流出(Current Source)和流入(Current Sink)两种形式。 最简单的恒流源,就是用一只恒流二极管。实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。 最常用的简易恒流源如图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准, 电流数值为:I = Vbe/R1。 这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。同时不同的工作电流下,这个电压也会有一定的波动。因此不适合精密的恒流需求。 为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。 电流计算公式为: I = Vin/R1

这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。只不过其中的Vin还需要用户额外提供。 从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。 最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。如图(3)所示: 电流计算公式为:I = (Vd-Vbe)/R1 TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。TL431组成流出源的电路,暂时我还没想到:) TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》

关于LED驱动电源恒压与恒流区别的解析

关于LED驱动电源恒压与恒流区别的解析 1.恒流电源是电源电压发生变化,而流过负载的电流不变。 恒压电源是流过负载的电流变化时,电源电压不发生变化 不要简单的用欧姆定律来理解,电源不是直接接负载,中间都有个电路。 2.所谓恒流/恒压就是在一定范围内输出电流/电压保持恒定。“恒定”的前提是在一定范围内。对于“恒流”就是输出电压要在一定范围内,对于“恒压”就是输出电流要在一定范围内。超出这个范围“恒定”就无法保持。因此恒压源会设定输出电流档(最大可输出)的参数。其实电子世界里根本没有“恒定”这个东西,所有电源都有负载调整率(load regulation)这个指标。以恒压(电压)源为例:随着你负载的加大,输出电压一定是下降的。 3.恒压源和恒流源在定义上的区别: 1)恒压源在允许的负载情况下,输出的电压是恒定的,不会随负载的变化而变化。通常应用于小功率LED模块,小功率LED灯条用的比较多。恒压源就是我们常说的稳压电源,能保证负载(输出电流)变化的情况下,保持电压不变。2)恒流源在允许的负载情况下,输出的电流是恒定的,不会随着负载的变化而变化,通常应用在大功率LED和高档小功率产品上。 *如果从寿命上考良的话,恒流源LED驱动比较好一点。 恒流源是在负载变化的情况下,能相应的调整自己的输出电压,使输出电流保持不变。 我们见到的开关电源基本上都是恒压源,而所谓的“恒流型开关电源”则是在恒压源的基础之上,在输出上加一个小阻值的采样电阻,通过反馈到前级去控制来进行恒流控制。 4.如何从电源参数上识别是恒压源还是恒流源呢? 可以从电源的label上看:如果他标识的输出电压是一个恒定的值(如Vo=48V),就是恒压源;如果标识的是一个电压范围(如Vo为45~90V),可以确定这是个恒流源了。 5.恒压源与恒流源的优缺点:恒压源能够为负载提供恒定的电压,理想的恒压源内阻为零,不能短路:恒流源可以为负载提供恒定的电流,理想的恒流源内阻为无穷大,不能开路。 6.LED作为恒流工作的电子元器件(工作电压比较固定,其稍加偏移,就会使电流有很大的变化),只有采用恒流方式,才能真正保证亮度的一致和长寿命。恒压式驱动电源在工作时,需要在灯具上加恒流模块或限流电阻,而恒流式驱动电源只是把恒压源的的恒流模块内置了。

关于可调恒压恒流电源的原理、特性及使用

关于可调恒压恒流电源的原理、特性及使用: 恒压恒流的原理: 根据U=IR,R=U/I: 如果R>(U/I),则电源正常工作。 如果R<(U/I),I是恒定不变的,则电源恒流部分保护,输出电压下降,直到满足条件R=(U/I)。 特性: 所谓的恒压,即电压可以恒定到一个值上,可调恒压,即这个恒定的电压值是可调的。 所谓的恒流,即电流可以恒定到一个值上,可调恒流,即这个恒定的电流值是可调的。 使用: 可调恒压恒流电源在使用前需要先设置恒流保护值,再设置输出电压,然后开始工作。 首先将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流到你需要的值,撤消短路,调整电压到需要值,接上实验设备开始工作。 例如:一个电路的工作电压是12V所需电流约0.3A,操作如下。

将电源输出电压调到5V左右,短路输出,调整电流输出旋钮设置保护电流0.5A(要比工作电流略大),撤消短路,调整电压到12V,接上电路开始实验。 如果试验过程中电路板放到金属上部分电路短路了,使电流剧增,当电流上升到0.5A时,电源恒流保护部分工作随即使输出电压下降以保护试验设备。 常识了解: 交流电压经过全波整流电容滤波后直流电压约是交流电压的1.414倍。 例如10V的交流电压经过全波整流电容滤波后直流电压约等于14V。 继电器切换点的选择: 交流输入电压减去5V等于切换电压。 例如变压器抽头0-15V-25V-35 那么第一级的切换电压是15V-5V=10V,即在10V 时切换到25V的抽头上。 第二级的切换电压是25V-5V=20V,即在20V时切换到35V的抽头上。 关于继电器切换与否可以测R17两端的电压来判断,R17电压(直流)除以1.414约等于当前的抽头电压(交流)。

数控恒流源

摘要:本方案采用AT89S52单片机作为系统控制核心,实现数控恒流源方案。设计采用大功率双极型三极管2SC3997以及仪表放大器等构成闭环恒流源控制电路,配以8位A/D,D/A 芯片完成单片机对输出电流的实时检测与实时控制,实现了0mA~1500mA 范围内步进20mA 恒定电流输出的功能,保证了纹波电流小于1mA,达到了较高的稳定度。人机接口采用4*4键盘以及LCD1602液晶显示器,控制界面直观简洁,具有良好的人机交互性。 一 作品完成功能 1.输出电流范围:0mA ~1500mA ; 2.可设置并显示输出电流给定值,输出电流与给定值偏差的绝对值≤给定值1%+10 mA ; 3.具有“+”、“-”步进调整功能,步进≤20mA ; 4.纹波电流≤2mA ; 5.自制电源 二 系统方案论证 1.系统总设计模块 2.方案论证 本系统设计关键在于恒流源模块方案,关于恒流源模块方案 电压控制的电流源模块,可采用的方案有以下三种: ① 功率集成运放,如OPA501、OPA541、PA05等; ② 运放+晶体三极管放大; ③ 可调集成稳压模块,如LM317。 方案一:直接使用功率集成运放。特点:使用容易、性能稳定可靠。常用 的功率集成运放一般能够输出±40V ,10~15A 的功率,性能指标也较高,完全能够满足本题要求。功率集成运放还可以双极性输出,但本题只需单极性输出,却需要为功率集 DA 转换模块

成运放配置正负双电源。 方案二:利用三端可调直流稳压集成芯片,通过调整其输出电压来实现负载的恒流特性。特点:直接利用稳压片提供所需功率,只需要添加相应控制电路即可实现本题的大部分要求,但是,其电流调整率指标只能达到0.5%~0.15%,不满足题目要求, 方案三:采用“运放+功率三极管”的结构构成恒流源。特点:性能满足本题要求,同时可以通过选用功率三极管的不同容量来满足不同的应用要求。 鉴于上述原因,我们选用方案三。 另外,本方案中涉及AD,DA芯片。AD,DA芯片的选择直接关系到系统的精度以及方案的成本。综合考虑精度与成本,我们选择了常用的8位DA芯片DAC0832与8位AD芯片ADC0832. 三硬件结构设计及实现 1.压控恒流源电路及电路分析 电压控制的电流源电路如图所示。压控电流源模块主要由给定与比较放大单元、功率放大单元和电流反馈单元组成。给定与比较放大单元由U1(OP07)及其外围阻容器件组成,起着计算给定电流与实际输出电流偏差并进行放大的作用。与R2并联的电容器C9起加速反馈的作用,与运放反馈电阻并联的电容器C10起滤波作用,二极管D1起电压钳位作用,用以保护运算放大器;功率放大单元由Q1、Q2和Q3及其配套阻容器件组成,为满足最大输出容量(10V,2000mA)的要求,选取最严重工况(负载端短路且输出2000mA)计算Q3的功率损耗:(10+5)V×2A=30W式中,5V是考虑电流源输出10V 电压,输出2A电流时,为Q3留出的ce极间电压。为可靠起见,留有足够的功率裕量和安全系数,选择Q3的型号为2SC3997.其主要技术参数如下:800V,20A,允许管耗250W。 C14起纹波抑制作用,二极管D3用以保护功率三极管Q3,防止其承受反压而损坏;电流反馈单元由仪用放大器AD620和低噪声运放OP07构成,前者对串联在负载回路的康铜丝两端电压进行取样,康铜丝是一种温度特性佳的阻性元件,其两端电压正比于流过的电流,因此该电压的反馈就是负载电流的反馈。仪用放大器具有极强的抗共模干扰的能力,特别适合对小信号进行放大。OP07作为二级放大且其输入端设置一个反馈系数调节用的精密电位器,起着输出电流校正之功用。

最新压控恒流源电路设计资料

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127 进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图8.15 所示。其中,运算放大器U3 是一个反相加法器,一路输入为控制信号V1,另一路输入为运放U1 的输出反馈,R8 是U3 的反馈电阻。用达林顿管TIP122 和TIP127 组成推挽式电路,两管轮流导通。U2 是电压跟随器,输入阻抗高,基本没有分流,因此流经R2 的电流全部流入负载RL。U1 是反相放大器,取R14=R11 时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图8.15 恒流源部分电路 若U3 的输入电压为Vin,根据叠加原理,有

由U2 的电压跟随特性和U1 的反相特性,有 代入得到 即流经R7 的电流完全由输入控制电压Vin 决定 由于U2 的输入端不取电流,流经负载RL 的电流完全由输入控制电压Vin 决定,实现了压控直流电流源的功能。由于R7 中流过的电流就是恒流源的输出电流,按照题目要求,输出的直流电流需要达到2A,这里采用康锰铜电阻丝作为电阻R7。 2压控恒流源电路设计 压控恒流源是系统的重要组成部分,它的功能是用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。采用如下电路:电路原理图如图8.5 所示。该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R2、负载电阻RL 等组成。

压控恒流源电路设计

压控恒流源电路设计 Last updated on the afternoon of January 3, 2021

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图所示。其中,运算放大器U3是一个反相加法器,一路输入为控制信号 V1,另一路输入为运放U1的输出反馈,R8是U3的反馈电阻。用达林顿管TIP122和TIP127组成推挽式电路,两管轮流导通。U2是电压跟随器,输入阻抗高,基本没有分流,因此流经R2的电流全部流入负载RL。U1是反相放大器,取R14=R11时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图恒流源部分电路 若U3的输入电压为Vin,根据叠加原理,有

LED恒流、恒压供电的利与弊

LED恒流、恒压供电的利与弊 现在有关这个问题有很多各种不同似是而非的说法,有人说:在LED的伏安特性上,电压定了,电流也就定了。所以采用恒压和恒流效果是一样的。有人说LED并联时就应该采用恒压电源供电,而LED串联时就应该采用恒流电源供电;有人说,因为LED是恒流器件,所以要用恒流源供电;有人说,采用市电供电时就应该采用恒压电源供电,采用蓄电池供电时,就应该采用恒流电源供电。至于为什么这样要求,似乎谁也说不明白。 那么,到底是应该采用恒压电源,还是恒流电源供电呢? 首先来看一下LED到底是什么样的器件。因为LED的亮度是和它的正向电流成正比,而且一些LED的结构决定了它的散热也就是功耗。所以大多数LED会给出额定电流,例如Φ5为20mA,1W的为350mA…等,但这并不等于LED只能工作于这些额定电流,更不意味着LED就是一个恒流器件。例如Cree的1瓦LED和3瓦LED是同一型号,电流从350mA加大到700mA,功率就从1W加大成3W,所以这个LED可以工作在350-700mA之间的任意值。 要深入了解这个问题首先要知道LED的伏安特性。 1. LED的伏安特性 LED的中文名字就是发光二极管,所以它本身就是一个二极管。它的伏安特性和一般的二极管伏安特性非常相似。只不过通常曲线很陡。例如一个20mA的草帽LED的伏安特性如图1所示。 图1. 小功率LED的伏安特性 假如用干电池或蓄电池供电,那么因为LED伏安特性的非线性,很小的电压变化就会引起很大的电流变化,上图中电源电压在3.3V时正向电流为20mA的LED,如果用3节干电池供电,新的电池电压超过1.5V,3节就是4.5V,LED的

相关文档
最新文档