数学物理方程第二版习题解答 第二章汇编

数学物理方程第二章 傅里叶级数

(20141008)第二章 傅里叶级数 1. n a 和n b 的推导 如果以2π为周期的函数()f x 可以展开成三角级数,即 01 ()(cos sin )2n n n a f x a nx b nx ∞==++∑ (1) 成立。在等式两边同时对x 积分有 0001()d d (cos sin )d 2022n n n a a f x x x a nx b nx x a ππππππππ∞-- -==++=+=∑???g 因此 01()d a f x x πππ- =? 将等式(1)左右两边同时乘以*cos ()kx k N ∈然后对x 积分有 01 ()cos d cos d (cos sin )cos d 2n n n a f x kx x kx x a nx b nx kx x ππππππ∞---==++∑??? 利用三角函数的正交性,等式右边的第二项积分而言,当n k ≠时,积分为0,而当n k =时,积分为k a π,所以 ()cos d 0k k f x kx x a a ππππ-=+=? 因此 *1()cos d , k a f x kx x k N πππ- =∈? 将等式(1)左右两边同时乘以*sin ()kx k N ∈然后对x 积分后同理可得 *1()sin d , k b f x kx x k N πππ-= ∈? 合并上述结果,可以得到

1 ()cos d , (=0,1,2,3,)n a f x nx x n πππ -=?L 1()sin d , (1,2,3,)n b f x nx x n π ππ-==?L n a 和n b 即为()f x 的傅里叶系数,等式(1)的右边即为()f x 的傅里叶级数。记为: 01 ()~(cos sin )2n n n a f x a nx b nx ∞=++∑ 此处之所以没有使用“=”,是由于尚不清楚()f x 的傅里叶级数是否以()f x 为和函数,且其是否收敛也未可知。 对于()f x 的傅里叶级数而言,如果()f x 是奇函数,显然有 02 0, ()sin d n n a b f x nx x π π==? 由于此时()f x 的傅里叶级数仅剩下正弦项,因此也成为正弦级数; 如果()f x 是偶函数,同理有 02()cos d , 0n n a f x nx x b π π==? 且由于此时()f x 的傅里叶级数仅剩下余弦项,因此也成为余弦级数。 2. 关于傅里叶级数的一些重要结论 以2π为周期,定义于[,]ππ-上的函数()f x x =的傅里叶展开式为 2 141cos(21), (,)2(21)n n x x n π π∞ =--∈-∞+∞-∑ 证明(应该不会考)如下:

数理方程练习题(1)

一、填空题 1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。 2.在实际中广泛应用的三个典型的数学物理方程: 第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0 x x y y u u +=, (,)xx yy u u x y ρ+=-),属于(椭圆)型; 二、选择题 1.下列泛定方程中,属于非线性方程的是[ B ] (A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ( )22 0y xx xxy u x y u u +++=; (D) 340t x xx u u u ++=; 2. 下列泛定方程中,肯定属于椭圆型的是[ D ] (A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=; (C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题 ()()( )()()()2,0,00,,0 ,0,,0tt xx x x t u a u t x l u t u l t u x x u x x ?φ?=><

数学物理方程第三版第一章答案(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ????

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数学物理方程第二版答案

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??- 23 222)( 22 52222 3 2222 2 ) (3) (t y x t y x t t u ?--+---=??- -

数理方程习题集综合

例 1.1.1 设v=v(线x,y),二阶性偏微分方程v xy =xy 的通解。 解 原方程可以写成 e/ex(ev/ey) =xy 两边对x 积分,得 v y =¢(y )+1/2 x 2 Y, 其中¢(y )是任意一阶可微函数。进一步地,两边对y 积分,得方程得通解为 v (x,y )=∫v y dy+f (x )=∫¢(y )dy+f (x )+1/4 x 2y 2 =f (x )+g (y )+1/4 x 2y 2 其中f (x ),g (y )是任意两个二阶可微函数。 例1.1.2 即 u(ξ,η) = F(ξ) + G(η), 其中F(ξ),G(η)是任意两个可微函数。 例1.2.1设有一根长为L 的均匀柔软富有弹性的细弦,平衡时沿直线拉紧,在受到初始小扰动下,作微小横振动。试确定该弦的运动方程。 取定弦的运动平面坐标系是O XU ,弦的平衡位置为x 轴,弦的长度为L ,两端固定在O,L 两点。用u(x,t)表示弦上横坐标为x 点在时刻t 的位移。由于弦做微小横振动,故u x ≈0.因此α≈0,cos α≈1,sin α≈tan α=u x ≈0,其中α表示在x 处切线方向同x 轴的夹角。下面用微元法建立u 所满足的偏微分方程。 在弦上任取一段弧'MM ,考虑作用在这段弧上的力。作用在这段弧上的力有力和外力。可以证明,力T 是一个常数,即T 与位置x 和时间t 的变化无关。 事实上,因为弧振动微小,则弧段'MM 的弧长 dx u x x x x ? ?++=?2 1s ≈x ?。 这说明该段弧在整个振动过程中始终未发生伸长变化。于是由Hooke 定律,力T 与时间 t 无关。 因为弦只作横振动,在x 轴方向没有位移,故合力在x 方向上的分量为零,即 T(x+x ?)cos α’-T(x)cos α=0. 由于co's α’≈1,cos α≈1,所以T(X+?x)=T(x),故力T 与x 无关。于是,力是一个

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方程总结

数学物理方程总结 Revised by Jack on December 14,2020

浙江理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:221 1 (,,, ,,,)0n u u u F x u x x x ???=??? 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 那么就做变换(,) (,)x y x y ξφηψ=??=? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。 主

数理方程练习题.

数理方程练习题一(2009研 1. 设(,u u x y =,求二阶线性方程 20u x y ?=?? 的一般解。 解先把所给方程改写为 (0u x y ??=?? 2分两边对x 积分,得 (0((u u dx dx y y y x y ?????==+=????? 4分这里, (y ?是任意函数。再两边对y 积分,得方程的一般解为y ((((u u dy y dy f x f x g y y ??==+=+?? ? 6分这里,(,(f x g y 是任意两个一次可微函数。 2. 设 u f = 满足Laplace 方程

222 2 0u u x y ????+ = 求函数u. 解 : ,.r x r y r x r x r ??===?? ''(,(.u x u y f r f r x r y r ???==?? 3分因此有 222''' 223222 ''' 223 ((((u x y f r f r x r r u y x f r f r y r r ?=+??=+? 3分原方程化为:'''1((0f r f r r += 2分故有 :1212(ln r u f r c c c c ==+= 2分 例1 求Cauchy 问题

2 20 00(,(0,cos tt xx t t t u a u x t u x u x x ==?-=∈?∞??==∈??R R 的解. 解由定理3.1得 22222((1u(x, tcos 221 cos sin x at x at x at x at d a x a t x at a ξξ+-++-=+=++? 例2 求解Cauchy 问题 200cos (,(0,cos 010tt xx t t t u a u t x x t x x u x u x ==?-=∈?∞?≥?? ==??

2019年数学物理方程-第二章分离变量法.doc

2019年数学物理方程-第二章分离变量法.doc

第二章 分离变量法 分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换 法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论. §2?1 特征值问题 2.1.1 矩阵特征值问题 在线性代数中,我们已学过线性变换的特征值问题. 设A 为一n 阶实矩阵,A 可视为n R 到自身的线性变换。该变换的特征值问题(eigenvalue problem )即是求方程: ,n Ax x x R λ=∈, (1.1) 的非零解,其中C λ∈为待定常数. 如果对某个λ,问题(1.1)有非零解n x R λ∈,则λ就称为矩阵A 的特征值(eigenvalue),相应的n x R λ∈称为矩阵A 的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于n 个相异的特征值和线性无关的特征向量. 但可证明: 任一n 阶矩阵都有n 个线性无关的广义特征向量,以此n 个线性无关的广义特征向量作为n R 的一组新基,矩阵就能够化为Jordan 标准型. 若A 为一n 阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正交矩阵T 使得 1T AT D -=, (1.2) 其中D =diag 12(,,...,)n λλλ为实对角阵. 设12[ ... ]n T T T T =,i T 为矩阵T 的第i 列向量(1)i n ≤≤,则式(1.2)可写为如下形式 1212 [ ... ][ ... ]n n A T T T T T T D =, 或 , 1.i i i A T T i n λ=≤≤ (1.3) 上式说明,正交矩阵T 的每一列都是实对称矩阵A 的特征向量,并且这n 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定理的形式给出. 定理1.1 设A 为一n 阶实对称矩阵,考虑以下特征值问题 ,n Ax x x R λ=∈, 则A 的所有特征值为实数,且存在n 个特征向量,1i T i n ≤≤,它们是相互正交的(正交性orthogonality ),可做为n R 的一组基(完备性completeness ). 特征值问题在线性问题求解中具有重要的意义,下面举例说明之. 为简单起见,在下面两个例子中取A 为n 阶非奇异实矩阵,故A 的所有特征值非零,并且假设A 有n 个线性无关的特征向量,i T 相应的特征值为, 1i i n λ≤≤. 例1.1 设n b R ∈,求解线性方程组 Ax b =. 解 由于向量组{1}i T i n ≤≤线性无关,故可做为n R 的一组基. 将,x b 按此

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条 件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件 为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2 222)1(])1[(t u h x x u h x x E ??-=??-??ρ 其中h 为圆锥的高(如图1) 证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:

(整理)数学物理方程第二章分离变量法word版

第五讲补充常微分方程求解相关知识。

第二章 分离变量法 偏微分方程定解问题常用解法,分离变量法。 解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数 一阶线性偏微分方程的求解问题,基本方法也是转化为一阶线性常微分方程组的求解问题 对于二阶以及更高阶的偏微分方程定解问题,情况有些不同:即使可以先求出通解,由于通解中含有待定函数,一般来说,很难直接根据定解条件定出,因此,通常的办法就是把它转化为常微分方程问题 (第六讲) §2.1 有界弦的自由振动 什么是分离变量法?使用分离变量法应具备那些条件? 下面通过两端固定的弦的自由振动问题来说明。 定解问题:考虑长为l ,两端固定的弦的自由振动,其数理方程及定解条件为 .0 ),(u ),(u 0, ,0u ,0u 0, l,0 ,0 t 0022 222l x x x t t x x u a t u t t l x x ≤≤==>==><

数学物理方程第一章部分答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数理方程题库

第一部分分离变量法 一、(1) 求解特征值问题 (2) 验证函数系关于内积 正交,并求范数 二、用分离变量法求解定解问题 的解的表达式,写出具体的分离变量过程. 进一步,当时,求和时的 值. 三、(方程非齐次的情形)求定解问题 四、(边界非齐次的情形)求定解问题 五、(Possion方程)求定解问题 六、求定解问题: 注意: 1、考试只考四种边界条件,即还有以下三种:

2) 3) 4) 2、以上均为抛物型方程,还可以考双曲型方程(相应的初值条件变为两个)和椭圆型方程(无初值条件); 3、考试中除特别要求(如以上的第二题)外,不要求必须用分离变量法、特征函数法等方法求解,你可以自己选择方法(如上面的第三题)可以用Laplace 变换求解。 第二部分 积分变换法 一、请用下面三种方法求解无穷限波动问题 ()()22222 00 ,, 0, ,t t u u a x t t x u x x u x x t ?ψ==???=-∞<<∞>????? =-∞<<∞????=-∞<<∞??? (1) 用积分变换法推导达朗贝尔公式 (2) 用特征线法推导达朗贝尔公式 (3) 用降维法推导达朗贝尔公式 二、用积分变换法求解定解问题 22 3 01,1, 0, 1cos ,0y x u x y x y x y u x x u y y ==??=>>?????=≥?? =>??? 注意:只考应用Fourier 变换和Laplace 变换求解方程的问题 第三部分 特征线问题 一、判断方程 的类型. 二、从达朗贝尔公式出发,证明在无界弦问题中 (1) 若初始位移()x ?和初始速度()x ψ为奇函数,则(),00u t = (2) 若初始位移()x ?和初始速度()x ψ为偶函数,则(),00x u t = 三、请用下列方法求解定解问题

数学物理方程第一章答案

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 ),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条 件为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为

数理方程例题I

数学物理方程例题和习题 (2009-10-31) 一、二阶常微分方程常数变易法 二阶常微分方程初值问题 ?? ?='=>=+''β αω)0(,)0(0 ),()()(2y y x x f x y x y 先考虑对应齐次方程:02=+''y y ω。利用辅助方程 022=+ωm , ωi m ±= 得齐次方程通解 )sin()cos()(21x C x C x y ωω+= 将常数替换为待定的函数,即 )sin()()cos()()(x x v x x u x y ωω+= 有两个未知函数待定。代入微分方程得恒等式,由一个等式不能唯一确定两个函数。如果人 为增加一个等式,就可以构造出二元线性方程组,朗斯基行列式方法是成功的确定两个待定函数的方法,方法如下,对假设的函数求一阶导数,得 在上面表达式中,令第一个方栝号为零,得第一个等式 0)sin()cos(='+'x v x u ωω 同时,由 )cos()sin(x v x u y ωωωω+-=' 继续求导数,得 )]sin()cos([)]cos()sin([22x v x u x v x u y ωωωωωωωω+-'+'-='' 代入方程,得第二个等式 f x v x u ='+'-)cos()sin(ωωωω 将两个等式联立,得线性代数方程组 ?? ?='+'-=+'f x v x u x v x u )cos()sin(0 )sin()cos(ωωωωωω 或写成矩阵形式 ?? ????=??????''??????-f v u x x x x 0)cos()sin()sin() cos(ωωωωωω 上式的系数矩阵行列式称为朗斯基行列式,由于 ωωωωωωω=-= ) cos()sin() sin()cos(x x x x ? 利用克莱姆法则解方程组,有 )sin()()cos()sin(01x x f x f x ωωωω-==?,)cos()() sin(0 )cos(2x x f f x x ωωωω=-= ? )sin()(1 /1x x f u ωω - =='??,)cos()(1 /2x x f v ωω = ='?? )]cos()sin([)]sin()cos([x v x u x v x u y ωωωωωω+-+'+'='

数学物理方程课程

《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。 二、课程与相关课程的联系与分工 学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

三、教学内容与基本要求 第一章绪论 1.教学内容 第一节偏微分方程的基本概念 第二节弦振动方程及定解条件 第三节热传导方程及定解条件 第四节拉普拉斯方程及定解条件 第五节二阶线性偏微分方程的分类 第六节线性算子 2.重点难点 重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题 难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间 3.基本要求 (1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论 (4)掌握两个变量二阶线性偏微分方程分类方法及化简方法 (5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。 第二章分离变量法 1.教学内容 第一节有界弦的自由振动。 第二节有界长杆的热传导问题。 第三节二维拉普拉斯方程的边值问题。 第四节非齐次方程得求解问题。

相关文档
最新文档