原子物理知识点总结

原子物理知识点总结
原子物理知识点总结

原子物理

一、波粒二象性

1、热辐射:一切物体均在向外辐射电磁波。这种辐射与温度有关。故叫热辐射。

特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与

温度有关。

2)温度一定时,不同物体所辐射的光谱成分不同。

2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。

黑体辐射的实验规律:

1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。

2)温度升高时,各种波长的辐射强度均增加。

3)温度升高时,辐射强度的极大值向波长较短方向移动。

4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν

εh

=)

h?

?

J

=-。由量子理论得出的结果与黑体的辐射强度63

10

s

.6

(34叫普朗克常量

图像吻合的非常完美,这印证了该理论的正确性。

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象。发

射出来的电子叫光电子。光电效应由赫兹首先发现。

爱因斯坦指出:

① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;

② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9s )。电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象;

③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν

④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目。

若ν≥c ν,无论光照强度如何也会有光电效应现象产生

若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生

知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关。

e W e h U c 0-=ν0(W h E k -=ν由)得出和00W h eU E eU c k c -=-=-ν

6. 康普顿效应:由于光在介质中与物质微粒相互作用,光的传播方向发生改变的现象,叫光的散射。在光的散射中,除了有与入射光波长相同的成分外,还有波长更长的光成分,这种现象叫康普顿效应。康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释:他认为这种现象是由光量子和电子的相互碰撞引起的。光量子不仅具有能量,而且具有某些类似力学意义的动量,在碰撞过程中,光子把一部分能量传递给电子,减少了它的能量,由能量子公式νεh =可知光的频率减小。再由λν=c 知波长变长。 总结: 1)由光电效应和康普顿效应知光子具有粒子性。

能量νεh =,

动量λh p = (由2mc E =得λ

λννh h c E mc ===) 2)光子既具有波动性又具有粒子性,叫光的波粒二象性。大量光子易显示出波动性(概率波),少量光子易显示出粒子性。波粒二象性中所说的波是一种概率波,对大量光子才有意义。波粒二象性中所说的粒子,是指其不连续性,是一份能量。

● 个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。 ● ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性。

● 光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。 ● 由光子的能量νεh =,光子的动量λ

h p =也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。由以上两式和波速公式λν=c 还可以得出:pc =ε。

7. 德布罗意提出: 任何运动着的物体都有一种波与之对应,这种波叫德布罗意波,又叫物质波。物质波对应的两个量:h

εν= p h =λ 特点是波长短,不易观察。

注: 1)一切运动的物体都具有波动性;

2)德布罗意波是一种概率波;

3)该假说是光子的波粒二象性在一切物质上的推广。

8. 不确定性关系: π

4h p x =??? 此式反映微观粒子的坐标和动量不能同时测准。 二、原子结构

1、普吕克尔发现阴极射线。汤姆孙通过进一步研究,发现这些阴极射线是一些带负电粒子。称为电子。这使人们认识到原子有复杂结构。他通过电子在电场和磁场中的偏转测出比荷。汤姆孙还提出原子的枣糕模型,又叫汤姆孙模型(错误)。后来密立根通过油滴实验测出电子的电荷量e 。所有带电体的带电量均是e 的整数倍。即电荷是量子化的。

2、卢瑟福通过α粒子散射实验提出原子核式结构模型。

⑴用α粒子轰击金箔现象:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,只有少数α粒子发生了较大的偏转。这说明原子的正电荷和质量一定集中在一个很小的核上。(注:实验需在真空中进行)

⑵卢瑟福由α粒子散射实验提出原子的核式结构,即在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。

3、氢原子光谱:

实验表明:1)不同元素的原子产生的明线光谱是不同的。某种物质的原子可由其明线光谱

加以鉴别,因此称某种元素原子的明线光谱的谱线为这种元素原子的特征谱

线。

2)各种原子的吸收光谱中的每一条暗线都跟该原子的明线光谱中的一条明线相

对应。即某种原子发出的光与吸收的光的频率是特定的,因此吸收光谱中的

暗线也是该元素原子的特征谱线。

3)明线光谱和吸收光谱均可用于鉴别和确定物质的组成成分,这叫光谱分析。

其优点是灵敏度高。

4)氢原子光谱在可见光区域的谱线满足经验公式:

叫里德伯常量其中1-722m 1010.1R ...5,4,3),121(1

?==-=n n

R λ

玻尔原子模型:氢原子的明线光谱用经典物理无法得到解释,按经典理论,原子应是一个不稳定系统,因为按经典理论,绕核运转的电子不断向外辐射能量,电子将逐渐接近原子核,最后落入原子核内部,原子消失,而实际上原子是一个很稳定的系统。

于是玻尔提出:

①电子轨道的量子化: ...3,2,1,12==n r n r n ,r 1=0.53×10-10m.即原子中电子在库仑引力的

作用下,绕原子核作圆周运动,电子运行轨道的半径不是任意的。电子在这些轨道的运行是稳定的,不产生电磁辐射。

②能量量子化:...),3,2,1(21==n n

E E n 注:基态能量E 1=-13.6eV 。当电子在不同的轨道运行时,原子处于不同的状态中,具有不同的能量,这些量子化的能量值叫能级,原子中这些具有确定能量的稳定状态叫定态,能量最低的状态叫基态(最稳定的状态),其他状态叫激发态。量子力学体系状态发生跳跃式变化的过程叫跃迁。

③电子从某一轨道跃迁到另一轨道上时,原子也便从某一能级跃迁到另一能级,同时

这个原子便吸收或放出一个光子。光子的能量等于两能级的能量差,n m E E h -=ν。

12

345-13.6-3.4-0.85-0.54-1.51

n E /e V 0

注: 1) 原子能量包括原子核与电子具有的电势能和电子运动的动能。

2) n=1对应于基态,n →∞对应于原子的电离。

3)原子从基态跃迁到激发态时要吸收能量,从激发态跃迁到基态要以光子的形式放出能

量。需要注意的是使原子从基态跃迁到激发态的粒子可以是光子,也可以是实体粒子(例如电子)。若是光子,则务必要满足光子的能量等于两能级差;若是实体粒子,则只要满足该粒子的能量大于等于两能级差即可。另外使原子电离的光子或实体粒子的能量只要大于或等于该能级差即可。

4)对于一个原子和一群原子而言,一个处于量子数为n 的氢原子最多可以辐射出(n-1)

条光谱线。一群处于量子数为n 的氢原子可能辐射出的光谱条数为2

)1(2-=n n C n 。 5) 玻尔理论的成功与局限性。成功:引进了量子理论(不连续性)成功解释氢光谱的规律。是对卢瑟福原子模型的进一步完善。局限:保留了过多的经典物理理论,在解释其他原子的光谱上都遇到很大的困难。

另外,玻尔理论对氢光谱的解释:

1)对巴耳末公式的解释,经过推导证明氢原子光谱的巴耳末系是电子从n=3,4,5等能级跃迁到n=2能级时辐射出来的。

2)对稀薄气体导电时辉光现象的解释,通常情况下原子处于基态,气体导电管中的原子受到高速运动的电子撞击,有可能跃迁到激发态,处于激发态的原子是不稳定的,会自发的向低能级跃迁,最终回到基态,放出光子,形成辉光现象。

3)对特征谱线的解释,由于原子的能级是分立的,所以原子向低能级跃迁时放出的光子能量也是分立的,故原子的发射光谱只有一些分立的亮线。

原子核

1、天然放射现象: 放射性元素自发的发出射线的现象。由贝克勒尔发现.使人们认识到原子核也有复杂结构。物质发射射线的性质叫放射性。

注: 1)原子序数≥83的元素都有放射性。原子序数<83的某些元素也有放射性。

2)放射性物质所发出的射线有三种:

2、放射性元素的原子核放出α粒子或β粒子后变成新原子核的过程叫原子核的衰变。 衰变包括α衰变和β衰变。

α衰变是指两个质子和两个中子结合成一个整体从原子核中射出的过程。

(He Th 4223490823

92U +→,核内He n 2H 2421011→+)

β衰变是指原子核中的一个中子转化为一个质子和一个电子后,该电子被射出核外的过

程。(e Pa Th 012349123490-+→,

核内e H n 011110-+→)

+β衰变:e Si P 01301430

15+→(核内e n H 011011+→) γ射线是原子核经α或β衰变后产生了处于激发态的新核,这些新核(原子核的能量也不连续)在向低能级跃迁时辐射出的光子。即γ射线是伴随着α、β衰变产生的。

3、半衰期: 放射性元素的原子核有半数发生衰变所需的时间。

注: 1)半衰期只由核内部因素决定,与它所处的物理状态(压强,温度等)或化学状态

(单质,化合物)无关。

2)T t m m )21(0=,T t N N )2

1(0=。 3)半衰期是大量原子核衰变的统计规律。对少数原子核无意义。

4)在处理衰变题目列衰变方程式时要注意电荷守恒,质量数守恒。在处理衰变次数

时,一般先由质量数的改变确定α衰变的次数,因为β衰变次数的多少对质量数没有影响,然后根据衰变规律确定β衰变次数。

4、探测射线的方法: 威尔逊云室、气泡室、盖革-米勒计数器

5、原子核在其他粒子的轰击下生成新原子核的过程叫核反应。实质是粒子打入原子核内部使核发生转化,而不是原子核被撞开!注:所有核反应的反应前后都遵守:质量数守恒、电荷数守恒。(注意:质量并不守恒。)

H O He N 11718424

17

+→+(卢瑟福发现质子的核反应,也是人类第一次实现原子核的人式转变) n C Be He 1021

6944

2+→+(查德威克发现中子的核反应)

人工放射性同位素:具有放射性性质的同位素。

n P Al He 103015271342+→+ e Si P 0130143015+→(小居里夫妇发现人工合成的放射性同位素.注:经过α粒子轰击后的铝片中含有放射性磷。)

天然放射性同位素不过只有40多种,而人工制造的放射性同位素已达到1000多种,每种元素都有了自己的放射性同位素。人工制造的放射性同位素具有很多优点:品种多、半衰期短、废料容易处理、可制成各种形状、强度容易控制。

放射性同位素的应用

⑴利用射线:α射线电离性强,用于使空气电离,消除有害静电。γ射线贯穿性强,可用于金属探伤,γ射线高能量可用于治疗恶性肿瘤。射线可使DNA 发生突变,可用于生物工程,基因工程。

⑵作为示踪原子。

⑶进行考古研究。利用放射性同位素碳14,判定出土木质文物的产生年代。

6、核力

1)四种基本相互作用:万有引力、电磁相互作用、强相互作用、弱相互作用

2)核力:组成原子核的相邻核子之间存在着一种特殊的力。属于强相互作用,为短程

力,作用范围为1.5×10-15m 内,在它的作用范围内核力比库仑力大的多。若核子间

距在m 15108.0-?到m 15105.1-?内体现为引力,小于0.8×10-15m 体现为斥力。核力与核

子是否带电无关,质子与质子间、质子与中子间、中子与中子间都可以有核力作用。每个核子只跟邻近的核子发生核力作用的性质称为核力的饱和性。

3)弱相互作用 是引起β衰变的原因,力程更短为10-18m 。

7、结合能: 克服核力束缚,使原子核分解为单个核子时所需要的能量,或若干个核子在核力作用下结合成原子核时释放的能量。例如,一个氘核被拆成一个中子和一个质子时,需要一个等于或大于2.2MeV 能量的γ光子照射。相反,当一个中子和一个质子结合成一个氘核时,会释放出同样的能量,这个能量以γ光子的形式辐射出去。

比结合能:结合能与核子数之比。也叫平均结合能。它反映了原子核的稳定程度。 比结合能越大,核越稳定。中等大小的原子核比结合能最大,核子的平均质量最小,最稳定。

8、质量亏损:原子核质量小于组成它的核子质量之和的现象。

9、爱因斯坦质能方程:2mc E =

注: 1)该方程告诉我们物体具有的能量和它的质量之间存在的简单正比关系,物体的能量 增大了,其质量也增大,能量减少了,其质量也减少。

2)该式反映的是质量亏损和释放出核能这两种现象之间的联系。并不表示质量和能量之间的转变关系。根据爱因斯坦的相对论,辐射出的γ光子静质量虽然为零,但他有动质量,而且这个动质量刚好等于亏损质量,所以质量守恒和能量守恒仍然成立。

3) 核子在结合成原子核过程中出现质量亏损,所以要释放能量,也即结合能!由上式可得结合能和质量亏损之间的关系式:ΔΕ=Δmc 2

4) 应用质能方程解题的流程图 书写核反应方程→计算质量亏损Δm →利用ΔE =Δmc 2

计算释放的核能

(1)根据ΔE =Δmc 2计算能量:计算时Δm 的单位是“kg ”,c 的单位是“m/s ”,ΔE 的单位是“J ”。

(2)根据ΔE =Δm ×931.5 MeV 计算能量。因1原子质量单位(u)相当于931.5 MeV 的能量,所以计算时Δm 的单位是“u ”,ΔE 的单位是“MeV ”

5) 比结合能曲线: 不同原子核的比结合能随质量数变化的曲线

从图中可以看出中等质量原子核的比结合能最大,轻核和重核的比结合能都比中等质量的原子核要小。说明中等核子数的原子核比较稳定。

启发: 当比结合能较小的原子核转化为比结合能较大的原子核时就可能重新释放核能。利用核能的两个途径:由于中等大小的原子核比结合能最大,因此可将重核裂变或轻核聚变。

10、核裂变: 重核分裂成质量较小的核时,释放出核能的反应称为原子核的裂变。

德国物理学家哈恩与斯特拉斯曼利用中子轰击铀核时发现了铀核裂变。向核能的利用迈出了第一步。铀核的裂变只能发生在人为的核反应中,自然界中不会自发的产生裂变,而是发生衰变。

n 3Kr Ba n U 1089364145610235

92++→+

n 3Kr Ba n U 109236141

5610235

92++→+

n 10n U 1009833615410235

92++→+Sr Xe

当一个中子引起一个铀核裂变后,裂变中放出的中子再引起其他铀核的裂变,且能不断地继续下去,这种反应叫核裂变的链式反应。

原子核的体积非常小,原子内部空隙很大,如果铀块不够大,中子在铀块中通过时就有可能碰不到铀核而跑到铀块外部,链式反应不能继续,只有铀块足够大时,裂变产生的中子才有足够的概率打中某个铀核,使链式反应进行下去。通常把核裂变物质能够发生链式反应的最小体积叫做它的临界体积。

链式反应的条件: 1)发生裂变物质的体积大于等于临界体积。

2)有足够浓度的铀235。

3)有足够数目的慢中子(目的是为了让铀235吸收)。

重核裂变的特点: 1)释放能量大。(一块铅笔大小的核燃料所产生的能量与10吨标准煤完全燃烧放出的热量相当)

2)裂变产物多样性。

3)裂变产物有放射性。

4)能产生多个中子。

重核裂变的主要应用:原子弹 核电站

核反应堆主要构造:

①核燃料。用浓缩铀(能吸收慢中子的铀235)。②慢化剂。用石墨、重水、轻水(使裂变

中产生的中子减速,以便被铀235吸收)。③控制棒。用镉做成(镉吸收中子的能力很强)。④导热剂。用水或液态钠(把反应堆内的热量传输出去用于发电,同时使反应堆冷却)。⑤水泥防护层。用来屏蔽裂变产物放出的各种射线。

11、核聚变: 两个轻核结合成质量较大的原子核时释放出能量的过程。

(n He H H 1042312

1+→+)

核聚变发生的条件: 需使两核距离达到10-15

m ,即需使核具有很大的初动能。方法:加热到高温(需要几百万度高温)。 故核聚变又叫热核反应。

轻核聚变(热核反应)主要应用:氢弹,太阳能量来源

轻核聚变与重核裂变比较,其优点:①产能效率高,核聚变比核裂变平均每个核子放出的能量大约要大3-4倍②核燃料储量丰富,③安全清洁,放射性污染小。但不如裂变容易控制。

注: 1)人工转变核反应和衰变的比较:不同点是人工转变核反应的是其他粒子与原子核相撞的结果,需要一定装置和条件才行。而衰变是原子核的自发变化,不受物理、化学条件影响。相同点是电荷守恒,质量数守恒。

在无光子辐射的情况下,核反应释放的核能为新核的动能,可根据动量守恒和能量守恒求解。

12、 粒子物理学

到19世纪末,人们认识到物质由分子组成,分子由原子组成,原子由原子核和电子组成,原子核由质子和中子组成。

20世纪30年代以来,人们认识了正电子、μ子、K 介子、π介子等粒子。后来又发现了各种粒子的反粒子(质量相同而电荷及其它一些物理量相反)。

现在已经发现的粒子达400多种,形成了粒子物理学。按照粒子物理理论,可以将粒子分成三大类:媒介子、轻子和强子,其中强子是由更基本的粒子——夸克组成。从目前的观点看,媒介子、轻子和夸克是没有内部结构的“点状”粒子。

用粒子物理学可以较好地解释宇宙的演化。

总结:原子物理各种重要的反应式汇总

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。故叫热辐射. 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温 度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔. 热辐射特点吸收反射特点 一般物体辐射电磁波的情况与温度,材 料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体辐射电磁波的强度按波长的 分布只与黑体温度有关完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν εh =) 10 63 .6 (34叫普朗克常量 s J h? ? =-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为 ε=h ν,其中h=6。63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目. 若ν≥c ν,无论光照强度如何也会有光电效应现象产生 若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关. e W e h U c 0 -=ν0(W h E k -=ν由) 得出和00W h eU E eU c k c -=-=-ν

高考考点:原子物理考 点分析一、历史人物及相关成就 1、汤姆生:发现电子,并提出原子枣糕模型——说明原子可再分 2、卢瑟福: 粒子散射实验— —说明原子的核式结构模型 发现质子 3、查德威克:发现中子 4、约里奥.居里夫妇:发现正电子 5、贝克勒尔:发现天然放射

现象——说明原子核可再分6、爱因斯坦:质能方程2mc E=, 2 mc E? = ? 7、玻尔:提出玻尔原子模型,解释氢原子线状光谱8、密立根:油滴实验——测 量出电子的电 荷量 二、核反应的 四种类型 类型可 控 性 核反应 例 衰 变 α衰 变 自 发 β衰 变 自 发

人工转变人 工 控 制 H o He N1 1 17 8 4 2 14 7 + → +卢 瑟福 发现质子 n C He Be1 12 6 4 2 9 4 + → +查 德威 克发现中子 n P He l1 30 15 4 2 27 13 A+ → +约里 奥.居里夫妇 e Si P0 1 30 14 30 15 + →发

重核裂变比较容易进行人工控制 轻核聚除 变氢 弹 外 无 法 控 制 提醒: 1、核反应过程一般都是不可逆的,所以核反

应方程只能用单箭头表示反应方向,不能用等号连接。2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核 反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 种 类

速 度 0.1c 0.99c C 在电磁场中偏转与a射 线反向 偏转 不偏转 贯穿本领最弱, 用纸能 挡住 较强, 穿透几 毫米的 铝板 最强, 穿透几 厘米的 铅板 对 空 气 的 电 离 作 用 很强较弱

高中物理光学原子物理知识要点精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

光学 一、光的折射 2.光在介质中的光速:n=n/n 1.折射定律:n=nnn大角 nnn小角 3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。 4.真空/空气的n等于1,其它介质的n都大于1。 5.真空/空气中光速恒定,为n=3×108m/s,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。 6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。 二、光的全反射 1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为nnn n=n 。 n 2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。 3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。 4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)

三、光的本质与色散 1.光的本质是电磁波,其真空中的波长、频率、光速满足n=nn(频率也可能用n表示),来源于机械波中的公式n=n/n。 2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。 3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。 4.色散的现象有:棱镜色散、彩虹。 5.红光和紫光的不同属性汇总如下:

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关,只随着入射光频率的增大而增大。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U0。回路中的光电流随着反向电压的增加而减小,当反向电压 1 U0满足:-mv max =eU o,光电流将会减小到零,所以遏止电压与入射光的频率有2 关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率, 无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长, 实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子? 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv的整数倍,hv称为一个能量量子。即能量是一份一份的。其中v辐射频率,h是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量&跟光的频率v成正比。;=hv,其中:h是普朗克常量,v是光的频率。 三、光电效应方程 1、逸出功VW.电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

原 子 物 理 一、卢瑟福的原子模型-—核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型。 2。物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D 。α粒子穿过金箔时都有较大的偏转。 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。其中一个 α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________。 ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n =。其中n 称为量子数,只能取正整数。E 1=-13。6eV ,r 1=0。53×10-10 m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 原子的较高能量状态称为_______,对应电子在离核较远的轨道上运动. 4.氢原子核外的电子绕核运动的轨道与其能量相对应 核外电子绕核做圆周运动的向心力,来源于库仑力(量子化的卫星运动模型) 由r v m r e k F 222 ==库得动能r ke mv E k 2 22121==, 即r 越大时,动能________。 又因为12r n r n =,21 n E E n = 即量子数n 越大时,动能_______,势能______,总能量_______. 5.用玻尔量子理论讨论原子跃迁时释放光子的频率种数 氢原子处于n=k 能级向较低激发态或基态跃迁时,可能产生的光谱线条数的计算公式为:2 ) 1(2 -= =k k C N k 例1:氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中 ( ) A .原子要吸收光子,电子的动能增大,原子的电势能增大 图1-1 c 原子核 α粒子

、波粒二象性 1、热辐射: 一切物体均在向外辐射电磁波。这种辐射与温度有关。故叫热辐射。 特点: 1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种 波长 的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与 温度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体: 一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在 热辐射的同时能够完全吸收入射的各种波长的电磁波, 而不发生反射, 这种物体叫做黑体 ( 或 绝对黑体 )。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如, 空腔壁上的小孔。 注意,黑体并不一定是黑色的。 热辐射特点 吸收反射特点 一般物体 辐射电磁波的情况与温度, 材 料种类及表面状况有关 既吸收,又反射,其能力与材 料的种类及入射光波长等因 素 有关 黑体 辐射电磁波的强度按波长的 分布只与黑体温度有关 完全吸收各种入射电磁波, 不 反射 黑体辐射的强度,随波长分布有一个极大值。 各种波长的辐射强度均增加。 辐射强度的极大值向波长较短方向移动。 4、能量子 :上述图像在用经典物理学解释时与该图像存在严重的不符 (维恩、 瑞利的解释) 普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值 ε 叫做能 量子. h (h 6.63 10 34 J s 叫普朗克常量 ) 。 由量子理论得出的结果与黑体的辐射强度 图像吻合的非常完美,这印证了该理论的正确性。 原子物理 黑体辐射的实验规 律: 1)温度一定 时, 2)温度升高

5 光电效应: 在光的照射下,金属中的电子从金属表面逸出的现象。 射出 来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出 : ① 光的能量是不连续的, 是一份一份的, 每一份能量子叫做一个光 子. 光子的能量为 ε= h ν ,其中 h= 6.63× 10- 34 J · s 叫普朗克常量, ν是光的频率; ② 当光照射到金属表面上时, 一个光子会被一个电子吸收, 吸收的过程是瞬间的 (不 -9 超过 10-9 s )。电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子, 不会有一个电子连续吸收多个光子的情况, 该过程需 要克服金属内部原子束缚做功(逸出功 W 0,其大小与金属材料有关),然后才有可能从金 属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出, 否则电子无法克服原子束缚从金属中逸出。 由能量守恒可得 光电效应方程 : E k h W 0 ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。 光的强度只会影响 从金属中逸出的电子数目。 能使某种金属发生光电效应的最小频率叫做该种金属的截止频率 (极限频 率 ).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面 单位面积上入射光中光子总数目。 若ν≥ c ,无论光照强度如何也会有光电效应现象产生 若ν< c ,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之 光电管的伏安特性曲线: 在光照条件不变时, 若正向电压升高, 则电路中的光电 流会随之变大, 当正向电压调到某值后电路中的电流不再增加, 该电流叫饱和电流。 饱和电 流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中 的光电流会随之变小, 当反向电压达到某值后, 电路中的电流变为零, 这个电压叫遏止电压。 遏止电压只与入射光频率有关。 h W 0 e e (由E k h W 0 和 eU c 0 E k 得出 eU c h W 0) U c

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是 α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得: 2min 202 1 21()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???143.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?

解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有: 2 min 04p Ze r K πε= 192 9 13619 79(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.4 钋放射的一种α粒子的速度为71.59710?米/秒,正面垂直入射于厚度为710-米、密度为41.93210?3/公斤米的金箔。试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。已知金的原子量为197。 解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是: dn Ntd n σ= 其中单位体积中的金原子数:0//Au Au N m N A ρρ== 而散射角大于090的粒子数为:2'dn dn nNt d ππ σ=?=?

高考考点:原子物理考点分析 一、 历史人物及相关成就 1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分 2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子 3、 查德威克:发现中子 4、 约里奥.居里夫妇:发现正电子 5、 贝克勒尔:发现天然放射现象——说明原子核可再分 6、 爱因斯坦:质能方程2mc E =,2 mc E ?=? 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量 二、 核反应的四种类型 提醒: 1、 核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连 接。 2、 核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写 出核反应方程 3 、 核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 提醒: 1、 半衰期:表示原子衰变一半所用时间 2、 半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如 单质、化合物)无关

3、 半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少 数原子核,无半衰期而言。 4、 放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、 原子结构 1、 原子的核式结构模型 (1)α粒子散射实验结果: 绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。 (2)原子的核式结构模型: 在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 (3)原子核的尺度:原子核直径的数量级为10-15 m ,原子直径的数量级约为10-10 m 。 (4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。 2、玻尔原子模型 (1)原子只能处于一系列能量不连续的状态中,具有确定能量的未定状态叫定态。原子处于最低能级的状态叫基态,其他的状态叫激发态。 (2)频率条件: 高能m 到低能m 态:辐射光子λ c h E E hv n m =-= (3)原子的不同能量状态对应于电子的不同运行轨道。 五、氢原子光谱 1、氢原子光谱的实验规律 巴耳末系是氢光谱在可见光区的谱线,其波长公式 )为里德伯常量(1722101.01R ..R .,54,3n )n 1-21R(1 -?===m λ 2、 氢原子的能级和轨道半径 (1) 氢原子的能级公式:...)3,2,1(1 12==n E n En 其中E 1 =-3.6ev (2) 氢原子的半径公式:...)3,2,1(12 =?=n r n r n ,其中r1=0.53×10-10 m (3) 氢原子能级图: 提醒: A 、 原子跃迁条件:n m E E hv -=,只适用于光子和原 子作用而使原子在各定态之间跃迁的情况。对于光 子和原子作用而使原子电离时,只要入射光的能量 eV E 6.13≥,原子就能吸收,对于实物粒子与原子作用使原子激发时,粒子能量大于或 等于能级差即可。 B 、 原子跃迁发出的光谱线条数2 ) 1(2 -= =n n C N n ,是一群氢原子,而不是一个,因为某一个氢原子有固定的跃迁路径。 六、核力与核能 1、核力:原子核内核子间存在的相互作用力 2、特点:强相互作用、短程力,作用范围1.5×10-15 m 之内 3、核能 (1)质能方程:一定的能量和一定的质量相联系,物体的总能量和他的质量成正比。即2 mc E = 含义:物体具有的能量与他的质量之间存在简单的正比关系,物体的能量增大,质量也增大,物体的能量减小,质量也减小。 (2)核子在结合成核子时出现质量亏损m ?,吸收的能量也要相应减小。2 mc E ?=? 原子核分解成核子时要吸收一定的能量,相应的质量增加m ?,吸收能量2mc E ?=? (4) 获得方式:重核裂变和轻核聚变 聚变反应比裂变反应平均每个核子放出的能量大约要大3-4倍。 1 -13.61 2 -3.40 3 -1.51 4 -0.85 5 -0.54 ∞ 0 n E /eV 图3

检查重点: 1.光电效应 2.玻尔原子假设与能级跃迁规律 3.半衰期 4.爱因斯坦质能方程及其计算 5. 物理学史(物理学家的贡献) 第17章 光电效应 波粒二象性 一、黑体辐射与能量子 1.黑体辐射的实验规律 ①一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关. ②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关. a .随着温度的升高,各种波长的辐射强度都增加. b .随着温度的升高,辐射强度的极大值向波长较短的方向移动. 2.能量子 (1)定义:普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子. (2)能量子的大小:ε=h ν,其中ν是电磁波的频率,h 称为普朗克常量.h =6.63×10- 34 J ·s. 二、光电效应 1.光电效应现象 光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子. 2.光电效应实验规律 (1)每种金属都有一个极限频率. (2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是瞬时的. (4)光电流的强度与入射光的强度成正比. 3.爱因斯坦光电效应方程 (1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=h ν,其 中h 是普朗克常量,其值为6.63×10- 34 J ·s. (2)光电效应方程:E k =h ν-W 0. 其中h ν为入射光的能量,E k 为光电子的最大初动能,W 0是金属的逸出功. 4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c . (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 5.由E k -ν图象(如图)可以得到的信息 (1)极限频率:图线与ν轴交点的横坐标νc . (2)逸出功:图线与E k 轴交点的纵坐标的绝对值E =W 0. (3)普朗克常量:图线的斜率k =h . 三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性. (2)光电效应和康普顿效应说明光具有粒子性. (3)光既具有波动性,又具有粒子性,称为光的波粒二象性. 2.光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变的现象。 康普顿效应:在研究电子对X 射线的散射时发现有些散射波的波长比入射波的波长略大,康普顿认为这是因为光子不仅有能量,还有动量;说明了光具有粒子性。 光子的动量:由于光子的能量是h ν,由相对论知E=mc 2 ,因此m= 2 c h ν,动量p=c h ν=λh 。

百度文库 - 让每个人平等地提升自我 第一讲 原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 § 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

1 高考考点:原子物理考点分析 一、 历史人物及相关成就 1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分 2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子 3、 查德威克:发现中子 4、 约里奥.居里夫妇:发现正电子 5、 贝克勒尔:发现天然放射现象——说明原子核可再分 6、 爱因斯坦:质能方程2mc E =,2mc E ?=? 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量 二、 核反应的四种类型

提醒: 1、核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连接。 2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 2

提醒: 1、半衰期:表示原子衰变一半所用时间 2、半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如单质、化合物)无关 3、半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少数原子核,无半衰期而言。 4、放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、原子结构 1、原子的核式结构模型 (1)α粒子散射实验结果: 绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。 (2)原子的核式结构模型: 在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。 (3)原子核的尺度:原子核直径的数量级为10-15m,原子直径的数量级约为10-10m。 (4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。 2、玻尔原子模型 3

相关文档
最新文档