高中数学人教版教案:§2.4.2平面向量数量积的运算律
平面向量数量积的定义

1
A1
c
B1
C
证明: 任取一点 O, 作 OA a , AB b , OC c . 因为 a b (即OB) 在 c 方向上的投影等于 a 、b 在 c 方向上的投影的和. 由此可证,运算律( 3 )成立 (以下见黑板) .
练一练
判断题 (1) (a b)c a(b c)
注: 两个向量的数量积是一个数量,这个数量的大 小与两个向量的长度及其夹角有关. (2)“ a b a b ”能不能写成“ 式? ”或者 ab “ ” 的形
例题分析: 例1 已知|a|=5,|b|=4,a与b的夹角 θ=120°,求a· b。
解:a· b=|a| |b|cosθ=5×4×cos120°
1、已知a
a 与b 的交角为90 o,则a b 0 2, b 3,
;
(1)a⊥b a · b=0 (判断两向量垂直的依据) 2、若 a
a、b共线,则 a b 3或- b 3, . 3 1,
(2)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b = -| a | · | b | .( a // b 特别地
B
B b
B
b
b
O a
B1
A
B1Biblioteka Oa A O( B1 ) a
A
θ为锐角时, | b | cosθ>0 a O b B 。 0时,它是 | b |
θ为钝角时, | b | cosθ<0 b A B O
θ为直角时, | b | cosθ=0 a A
θ为
。 θ为 180时,它是 -| b |
向量数量积的性质
高中数学 2.4.2平面向量的数量积(一)课件 新人教A版必修4

完整版ppt
1
设计问题 创设情境
平面向量的数量积
学生探索 尝ห้องสมุดไป่ตู้解决
信息交流 揭示规律
运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
完整版ppt
2
设计问题 创设情境
平面向量的数量积
学生探索 尝试解决
信息交流 揭示规律
运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
信息交流 运用规律
变式演练
揭示规律 解决问题
深化提高
反思小结 观点提炼
完整版ppt
10
设计问题 创设情境
学生探索 尝试解决
平面向量的数量积
信息交流 揭示规律
运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
请同学们想一想,本节课我们学习了哪些知识? 用到了什么思想方法?你还有其他什么收获?
⑴掌握平面向量数量积的坐标表达式, 会进行平面向量数量积的运算;
⑵掌握平面向量的模的坐标公式以及平面内 两点间的距离公式;
⑶掌握两个平面向量的夹角的坐标公式; ⑷能用平面向量数量积的坐标公式判断
两个平面向量的垂直关系;
完整版ppt
11
[作业精选,巩固提高]
• P108习题2.4 A组:9,10,11.
完整版ppt
12
完整版ppt
3
设计问题 创设情境
平面向量的数量积
学生探索 尝试解决
信息交流 揭示规律
运用规律 解决问题
变式演练 深化提高
反思小结 观点提炼
完整版ppt
4
设计问题 创设情境
学生探索 尝试解决
高中数学 2.4.2平面向量的数量积(二)课件 新人教A版必修4

完整版ppt
6
思考5:如何利用数量积的坐标表示证明 (a+b)·c=a·c+b·c?
完整版ppt
7
探究(二):向量的模和夹角的坐标表示
思考1:设向量a=(x,y),利用数量积 的坐标表示,︱a︱等于什么?
︱a︱ x2 y2
思考2:如果表示向量a的有向线段的起点 和终点的坐标分别为(x1,y1), (x2,y2), 那么向量a的坐标如何表示?︱a︱等于什 么?a=(x2-x1,y2-y1);
2.4.2 平面向量的数量积
完整版ppt
1
问题提出
1.向量a与b的数量积的含义是什么?
a·b=|a||b|cosθ. 其中θ为向量a与b的夹角
完整版ppt
2
2.向量的数量积具有哪些运算性质?
(1)a⊥b a·b=0(a≠0,b≠0); (2)a2=︱a︱2; (3)a·b=b·a;
(4)(λa)·b=λ(a·b)=a·(λb);
(5)(a+b)·c=a·c+b·c; (6)︱a·b︱≤︱a︱︱b︱.
完整版ppt
3
3.平面向量的表示方法有几何法和坐标 法,向量的表示形式不同,对其运算的 表示方式也会改变.向量的坐标表示,对 向量的加、减、数乘运算带来了很大的 方便.若已知向量a与b的坐标,则其数量 积是唯一确定的,因此,如何用坐标表 示向量的数量积就成为我们需要研究的 课题.
△ABC是直角三角形
例3 已知向量a=(5,-7),b= (-6,-4),求向量a 与b的夹角θ (精确到1°).
cosθ≈-0.03完,整版ppθt ≈92°.
11
例4 已知向量a=(λ,-2),b= (-3,5),若向量a 与b的夹角为钝角, 求λ的取值范围.
高中数学第二章平面向量2.4平面向量的数量积2.4.2平面向量数量积的坐标表示、模、夹角课件新人教A

又| | =
| | =
32 + 32 = 3 2,
(-1)2 + 62 = 37,
∴cos∠BAC=
·
15
5 74
=
=
.
3
2×
37
74
||||
反思已知三角形各顶点(dǐngdiǎn)坐标求其内角时,可转化为求向量的
1 2+1 2
21+21
22 +22
直接求出cos θ 的值;
(4)在 0≤θ≤π 内,由 cos θ 的值求角 θ.
第十七页,共22页。
题型一
题型二
题型三
题型四
【变式训练 3】若向量 a=(1,2),b=(1,-1),求 2a+b 与 a-b 的夹角.
解:∵a=(1,2),b=(1,-1),∴2a+b=(3,3),
解析:∵a⊥(a-b),
∴a·(a-b)=0,
∴a2-a·b=5-(x-4)=0,解得x=9.
答案:A
反思有关向量垂直的问题,通常利用它们的数量积为0来解决.本题
(běntí)也可先求出a-b的坐标,再代入a·(a-b)=0,解得x.
第十二页,共22页。
题型一
题型二
题型三
题型四
【变式训练 2】 已知向量 a=(1,2),b=(2,-3),若向量 c 满足(a+c)
①
又 c⊥(a+b),且 a+b=(3,-1),
②
∴3x-y=0.
7
9
7
3
由 ①②,得 x=− , = − .
∴c=
高一数学教案:平面向量的数量积及运算律(2)

课 题:平面向量的数量积及运算律(2)教学目的: 1掌握平面向量数量积运算规律; 2能利用数量积的5个重要性质及数量积运算规律解决有关问题; 3掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题教学重点:平面向量数量积及运算规律教学难点:平面向量数量积的应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos ,(0≤θ≤π)并规定0与任何向量的数量积为03.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量 1e ⋅a = a ⋅e =|a |cos ;2a b a ⋅b = 0 3当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = |a ||b | 特别的a ⋅a = |a |2或a a a ⋅=|| 4cos =||||b a b a ⋅ ;5|a ⋅b | ≤ |a ||b | C7.判断下列各题正确与否: 1若a = 0,则对任一向量b ,有a ⋅b = 0 ( √ )2若a 0,则对任一非零向量b ,有a ⋅b 0 ( × )3若a 0,a ⋅b = 0,则b = 0 ( × ) 4若a ⋅b = 0,则a 、b 至少有一个为零 ( × )5若a 0,a ⋅b = a ⋅c ,则b = c ( × )6若a ⋅b = a ⋅c ,则b = c 当且仅当a 0时成立 ( × ) 7对任意向量a 、b 、c ,有(a ⋅b )⋅c a ⋅(b ⋅c ) ( × ) 8对任意向量a ,有a 2 = |a | ( √ )二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a证:设a ,b 夹角为,则a ⋅ b = |a ||b |cos ,b ⋅ a = |b ||a |cos∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos , λ(a ⋅b ) =λ|a ||b |cos ,a ⋅(λb ) =λ|a ||b |cos,若λ< 0,(λa )⋅b =|λa ||b |cos() = λ|a ||b |(cos ) =λ|a ||b |cos , λ(a ⋅b ) =λ|a ||b |cos ,a ⋅(λb ) =|a ||λb |cos() = λ|a ||b |(cos ) =λ|a ||b |cos3.分配律:(a + b )⋅c = a ⋅c + b ⋅c 在平面内取一点O ,作= a , = b ,= c ,∵a + b (即)在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos 1 + |c | |b | cos2 ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角解:由(a + 3b )(7a 5b ) = 0 ⇒ 7a 2 + 16a ⋅b 15b 2 = 0 ①(a 4b )(7a 2b ) = 0 ⇒ 7a 2 30a ⋅b + 8b 2 = 0 ②两式相减:2a ⋅b = b 2代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos =21222==⋅||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和中,=,=,=+∴||2=⋅++=+2||222而=-∴|BD |2=⋅-+=-2||222∴||2 + |BD |2 = 2222+= 2222||||||||AD DC BC AB +++例3 四边形ABCD 中,=a,=b,=с,=d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2①同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0即a·b=0,∴a⊥b也即AB ⊥BC综上所述,四边形ABCD 是矩形 评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系四、课堂练习:1下列叙述不正确的是( )A BC D a ·b 是一个实数2已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( )A B -72 C 36 D 3|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A B C 夹角为3π D 4已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2=5已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= 6设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ=参考答案:1C 2B 3B 4 5-1+2335 6±53 五、小结 通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题六、课后作业 1已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A 60° B ° C 135° D 2已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A 2 B 3 C 6 D 123已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A 充分但不必要条件 BC D 既不充分也不必要条件 4已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= 5已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b =6已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______7已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |(3)若a -b 与a 垂直,求a 与b 的夹角8设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角 9对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角 参考答案:1D 2B 3C 4 5 –63 6 11 7(1)- 2 (2)23+ (3)45 8 120° 9 90七、板书设计(略)八、课后记及备用资料:1常用数量积运算公式 在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛即(a +b )2=a 2+2a ·b +b 2,(a -b )2=a 2-2a ·b +b 2上述两公式以及(a +b )(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用2应用举例[例1]已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |解:∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×(-3)+52=23∴|a +b |=23,∵(|a -b |)2=(a -b )2=a 2-2a ·b +b 2=22-2×(-3)×52=35,∴|a -b |=35.[例2]已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°)解:∵(|a +b |)2=(a +b )2=a 2+2a ·b +b 2=|a |2+2|a |·|b |cosθ+|b |2 ∴162=82+2×8×10cosθ+102,∴cosθ=4023,∴θ≈55°。
平面向量的数量积及运算律(一)教案

●(一)、新课引入——为什么定义平面向量数量积 在物理学中学过功的概念,一个物体在力F 的作用下产生位移S ,那么力F 所作的功W=FScos θ。
思考:W 是什么量?F 和S 是什么量?和向量有什么关系?W 是标量(实数),F 和S 是矢量(向量)这个式子建立了实数和向量之间的关系,是实数和向量互相转化的桥梁。
我们学过的向量运算a b,a b,a +-λ结果都是向量。
因此定义一个新的运算,不仅是物理学的需要,也是数学建立起实数和向量两个不同领域关系的需要。
●(二)、新课学习★新课学习阶梯一 ——怎么定义平面向量数量积 思考:模仿物理学功的定义:a b a b cos ⋅=θ思考:由数学中对称的思想,有余弦出没的地方就少不了正弦的陪伴,可否定义 a *b a b sin =θ,有什么几何意义?引导学生阅读课本P118,找出数学定义的特点:针对两个非零向量定义,规定零向量与任意向量的数量积为0。
1.两个非零向量夹角的概念 已知非零向量a 与b ,作OA =a ,OB =b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角(右图的夹角分别是什么) 2.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ 叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为0 思考:功怎么用数量积表示:F S ⋅数学的定义从实践中来,又回到实践指导实践。
★新课学习阶梯二 ——怎么全方位认识这个定义学习数学两手都要硬,一手抓代数、一手抓几何,渗透数形结合的思想方法,而向量恰好是用量化的方法研究几何问题的最佳工具。
1几何意义:“投影”的概念:作图A BO ab θ AB O a b θ定义:|b |cos θ 叫做向量b 在a 方向上的投影思考:投影是否是长度?投影是否是向量?投影是否是实数?投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积2.代数性质(两个向量的数量积的性质):(1)两个非零向量a 与b ,a ⊥b ⇔ a ⋅b= 0(此性质可以解决几何中的垂直问题);(2)两个非零向量a 与b ,当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |(此性质可以解决直线的平行、点共线、向量的共线问题);(3)cos θ =||||a b a b ⋅(此性质可以解决向量的夹角问题); (4)a ⋅a = |a |2,||a a a =⋅,a ba b cos ⋅=θ(此性质可以解决长度问题即向量的模的问题);(5)|a ⋅b | ≤ |a ||b |(此性质要注意和绝对值的性质区别,可以解决不等式的有关问题);3.任何一种运算都满足一定的运算律,以方便运算,数量积满足哪些算律? 实数的运算律向量数量积运算律 (交换律) ab=baa b?b a ⋅⋅ √ (结合律)(ab)c=a(bc)(a b)c?a (b c)⋅⋅⋅⋅ × (分配律)a(b+c)=ab+aca (b c)?a b ac ⋅+⋅+⋅ √ (a)b?(a b)?a (b)λ⋅λ⋅⋅λ √思考:运用对比联想的思想方法猜测向量数量积保留了实数哪些运算律,变异了哪些运算律?课下对成立的运算律给出证明,对不成立的运算律举出反例。
人教A版高中数学选修平面向量的数量积教案第二课时
§2.4 平面向量的数量积(2)教学目标:掌握平面向量数量积运算规律;能利用数量积的5个重要性质及数量积运算规律解决有关问题;掌握两向量共线、垂直的几何判断,会证明两量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质教学过程:一、问题情境1.情境引入:平面向量数量积(内积)的定义,θcos ||||b a b a =⋅.2.提出问题:平面向量数量积有怎样的一些运算性质呢?与实数积的性质是否相同?二、学生活动问题1:实数积的运算率有哪些?交换律,结合律,分配律.问题2:向量数量积也有交换律、结合律、分配律吗?三、建构数学1.向量的交换律:a b b a ⋅=⋅ 证:设,夹角为θ,则θcos ||||=⋅,θcos ||||=⋅ ∴⋅=⋅ 2.数乘结合律:⋅=⋅=⋅=⋅λλλλ)()()(若0>λ,θλλcos ||||)(=⋅,θλλcos ||||)(=⋅,θλλcos ||||)(=⋅; 若0<λ,θλθλθπλλcos ||||)cos (||||)cos(||||)(=--=-=⋅θλλcos ||||)(=⋅,θλθλθπλλcos ||||)cos (||||)cos(||||)(b a b a b a b a =--=-=⋅⋅=⋅=⋅=⋅∴λλλλ)()()(3.向量的分配律:⋅+⋅=⋅+)( 设向量,,和实数λ,则向量的数量积满足下列运算率:(1)⋅=⋅(2)b a b a b a b a ⋅=⋅=⋅=⋅λλλλ)()()((3)⋅+⋅=⋅+)(4.回顾反思:(1)向量的数量积运算满足结合率吗?在实数中,有)()(bc a c ab =,但是)()(c b a c b a ⋅≠⋅显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线. (2)有如下常用性质:⋅+⋅+⋅+⋅=+⋅+)()(2222)(b b a a b a +⋅+=+五、数学运用1.例题例1.已知4||,6||==b a ,,的夹角为060,求)3()2(b a b a -⋅+的值.例2.已知5||,3||==b a ,且λ+与λ-垂直,求λ.例3.已知2||,1||==,(1)若//,求⋅;(2)若,的夹角为060,求||+; (3)若-与垂直,求,的夹角.例4.设,是两个单位向量,夹角为060,求向量n m a +=2与m n b 32-=的夹角.2.练习:可以讨论课本P80练习第1、2、3题.六、总结反思。
人教版高一数学必修四第二章平面向量数量积的坐标表示、模、夹角
2.4.2平面向量数量积的坐标表示、模、夹角考点学习目标核心素养向量数量积的坐标表示掌握平面向量数量积的坐标表示,会用向量的坐标形式求数量积数学运算平面向量的模与夹角的坐标表示能根据向量的坐标计算向量的模、夹角及判定两个向量垂直数学运算、逻辑推理问题导学预习教材P106-P107,并思考下列问题:1.平面向量数量积的坐标表示是什么?2.如何用坐标表示向量的模、夹角和垂直?1.两向量的数量积与两向量垂直的坐标表示设两个非零向量a=(x1,y1),b=(x2,y2).数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2两个向量垂直a⊥b⇔x1x2+y1y2=0公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.三个重要公式判断(正确的打“√”,错误的打“×”) (1)向量的模等于向量坐标的平方和.( )(2)|AB →|的计算公式与A ,B 两点间的距离公式是一致的.( ) 答案:(1)× (2)√已知a =(-3,4),b =(5,2),则a ·b 的值是( ) A .23 B .7 C .-23 D .-7 答案:D已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则x =( ) A .1 B .2 C .4 D .-4答案:C已知a =(3,1),b =(-3,1),则向量a ,b 的夹角θ=______. 答案:120°数量积的坐标运算向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2 【解析】 因为a =(1,-1),b =(-1,2), 所以(2a +b )·a =(1,0)·(1,-1)=1. 【答案】 C数量积坐标运算的两个途径一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.1.设向量a =(1,-2),向量b =(-3,4),向量c =(3,2),则向量(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-11 解析:选C.依题意可知,a +2b =(1,-2)+2(-3,4)=(-5,6),所以(a +2b )·c =(-5,6)·(3,2)=-5×3+6×2=-3.2.已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,AF →=2FD →,则BE →·CF →=________.解析:建立平面直角坐标系如图所示,则A (0,2),E (2,1),D (2,2),B (0,0),C (2,0),因为AF →=2FD →,所以F (43,2).所以BE →=(2,1),CF →=(43,2)-(2,0)=(-23,2),所以BE →·CF →=(2,1)·(-23,2)=2×(-23)+1×2=23.答案:23平面向量的模(1)已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________. (2)(2019·山东枣庄三中期中检测)已知平面向量a =(2m -1,2),b =(-2,3m -2),且|a +b |=|a -b |,则5a -3b 在向量a 方向上的投影为________.【解析】 (1)设C (x ,y ),因为点A (0,1),向量AC →=(4,-1),所以AC →=(x ,y -1)=(4,-1),所以{x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC →=(3,2),|BC →|=9+4=13.(2)由|a +b |=|a -b |得a ·b =0,所以-2(2m -1)+2(3m -2)=0,解得m =1,所以a =(1,2),b =(-2,1),5a -3b =(11,7),由投影公式可得所求投影为a ·(5a -3b )|a |=255=5 5.【答案】 (1)13 (2)55求向量的模的两种基本策略(1)字母表示下的运算利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.已知向量a=(cos θ,sin θ),向量b=(3,0),则|2a-b|的最大值和最小值分别是()A.42,0 B.4,2 2C.25,1 D.5,1解析:选D.因为2a-b=2(cos θ,sin θ)-(3,0)=(2cos θ-3,2sin θ),所以|2a-b|2=(2cos θ-3)2+(2sin θ)2=13-12cos θ,又cos θ∈[-1,1],所以|2a-b|2∈[1,25],所以|2a-b|∈[1,5],故|2a-b|的最大值和最小值分别是5,1,故选D.平面向量的夹角(垂直)已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【解】(1)因为a·b=4×(-1)+3×2=2,|a|=42+32=5,|b|=(-1)2+22=5,设a与b的夹角为θ,所以cos θ=a·b|a||b|=255=2525.(2)因为a-λb=(4+λ,3-2λ),2a+b=(7,8),又(a-λb)⊥(2a+b),所以7(4+λ)+8(3-2λ)=0,所以λ=529.利用数量积求两向量夹角的步骤1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .23 B. 3 C .0D .- 3解析:选B.因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m ,又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.2.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形解析:选A.由题设知AB →=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB →⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.规范解答平面向量的夹角和垂直问题(本题满分12分)已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.【解】 (1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3).(2分)AB →·AD →=1×(-3)+1×3=0,利用数量积为0,证明向量垂直所以AB →⊥AD →,所以AB ⊥AD . (4分)(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.(5分)设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.(7分)所以点C 的坐标为(0,5).所以AC →=(-2,4). 又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16.(9分)正确求出这三个量是求两向量夹角的关键设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.(11分)故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.(12分)(1)解答两向量的夹角的步骤:求数量积、求模、求余弦值、求角.(2)利用cos θ=a ·b|a ||b |判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为180°;cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.1.已知向量a =(2,0),a -b =(3,1),则下列结论正确的是( ) A .a ·b =2 B .a ∥b C .b ⊥(a +b ) D .|a |=|b |解析:选C.因为向量a =(2,0),a -b =(3,1),设b =(x ,y ),则⎩⎪⎨⎪⎧2-x =3,0-y =1,解得⎩⎪⎨⎪⎧x =-1,y =-1,所以b =(-1,-1),a +b =(1,-1),b ·(a +b )=-1×1+(-1)×(-1)=0,所以b ⊥(a +b ).2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________.解析:由四边形ABCD 为平行四边形,知AC →=AB →+AD →=(3,-1),故AD →·AC →=(2,1)·(3,-1)=5.答案:53.已知a =(1,3),b =(2,m ). (1)当3a -2b 与a 垂直时,求m 的值; (2)当a 与b 的夹角为120°时,求m 的值. 解:(1)由题意得3a -2b =(-1,33-2m ), 由3a -2b 与a 垂直,得-1+9-23m =0, 所以m =433.(2)由题意得|a |=2,|b |=m 2+4,a ·b =2+3m ,所以cos 120°=a ·b |a |·|b |=2+3m 2m 2+4=-12,整理得2+3m +m 2+4=0,化简得m 2+23m =0, 解得m =-23或m =0(舍去). 所以m =-2 3.[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 2解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1, 所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.解析:由题意得AB →=(2,1),CD →=(5,5),所以AB →·CD →=15,所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.答案:3229.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4.(2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cos θ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5.设c =(x ,y ),因为(a +b )·c =52, 所以x +2y =-52.又a ·c =x +2y , 所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12, 所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC→的取值范围是( ) A.⎣⎡⎦⎤12,2 B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1) =(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知向量a =(1,3),b =(-2,0).(1)求a -b 的坐标以及a -b 与a 之间的夹角;(2)当t ∈[-1,1]时,求|a -t b |的取值范围.解:(1)因为向量a =(1,3),b =(-2,0),所以a -b =(1,3)-(-2,0)=(3,3),所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32. 因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].14.(选做题)已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)·OA →+λOB →(λ2≠λ).(1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,并在AB →=BC →时,求λ的值;(3)求|OC →|的最小值.解:(1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, 所以OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线.当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。
人教A版高中数学必修四第五章教案平面向量的数量积及运算律
第十一教时教材:平面向量的数量积及运算律目的:掌握平面向量的数量积的定义及其几何意义,掌握平面向量数量积的性质和它的一些简单应用。
过程:一、复习:前面已经学过:向量加法、减法、实数与向量的乘法。
它们有一个共同的特点,即运算的结果还是向量。
但这种运算与实数的运算有了很大的区别。
二、 导入新课:1.力做的功:W = |F |⋅|s |cos θθ是F 与s 的夹角2.定义:平面向量数量积(内积)的定义,a ⋅b = |a ||b |cos θ, 并规定0与任何向量的数量积为0。
⋅3.向量夹角的概念:范围0︒≤θ≤180︒4.注意的几个问题;——两个向量的数量积与向量同实数积有很大区别 1︒两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定。
2︒两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而ab 是两个数量的积,书写时要严格区分。
3︒在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0。
因为其中cos θ有可能为0。
这就得性质2。
4︒已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c 。
但是如右图:a ⋅b = |a ||b |cos β = |b ||OA|b ⋅c = |b ||c |cos α = |b ||OA| ⇒ab =bc 但a ≠ c 5︒在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c ) 显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a与c 不共线。
5.例题、P116—117 例一 (略) 三、投影的概念及两个向量的数量积的性质:θ = 0︒ θ = 180︒ O O A B B A1.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影。
注意:1︒投影也是一个数量,不是向量。
高中数学 第二章 平面向量 2.4 平面向量的数量积(第2课时)教学课件 新人教A版必修4
思路点拨:(1)按求向量夹角的步骤求解; (2)利用两向量垂直数量积为零来证明.
(1)解:由题意知,|a|=பைடு நூலகம்,|b|=1,a·b=-12cos
α+
3 2 sin
α.
则
cos
θ
= |aa|·|bb|
=
-12cos α+ 1×1
∴λ-2·1>1+0,λ2≠λ-1. 即λλ≠>-1,1, 解得 λ>1.
∴λ 的取值范围是(1,+∞).
谢谢观看!
结束语
高中数学 第二章 平面向量 2.4 平面向量的数量积 (第2课时)教学课件 新人教A版必修4
2.向量垂直与向量平行坐标表示的区别
已知非零向量a=(x1,y1),b=(x2,y2), 若a∥b⇔x1y2=x2y1; 若a⊥b⇔x1x2=-y1y2. 两个命题不能混淆,可以对比学习,分别简记 为:纵横交错积相等,横横纵纵积相反.
数量积的坐标运算
已知向量a=(1,3),b=(2,5),c=(2,1), 求: (1)a·b; (2)(a+b)·(2a-b);
3 2 sin
α
=
- 12
cos
α+
3 2 sin
α=
cos(120°-α). ∵0°≤α≤90°,∴30°≤120°-α≤120°.
又 0°≤θ≤180°,
∴θ=120°-α,即两向量的夹角为 120°-α.
(2)证明:∵(a+b)·(a-b)=cos
α-12,sin
α+
3 2
·cos
α+12,sin
解析:(1)(a+λb)⊥(a-λb)⇒(a+λb)·(a-λb)=a2-λ2b2=0 ⇒18-2λ2=0⇒λ=±3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8课时
§2.4.2平面向量数量积的运算律
教学目的:
1.掌握平面向量数量积运算规律;
2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
教学重点:平面向量数量积及运算规律.
教学难点:平面向量数量积的应用
授课类型:新授课
教 具:多媒体、实物投影仪
内容分析:
启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意
数量积性质的相关问题的特点,以熟练地应用数量积的性质.
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的
夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量
|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,
(0≤θ≤π).并规定0与任何向量的数量积为0.
3.“投影”的概念:作图
定义:|b|cos叫做向量b在a方向上的投影.
投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为
直角时投影为0;当 = 0时投影为 |b|;当 = 180时投影为 |b|.
4.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.
5.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
C
1 ea = ae =|a|cos; 2 ab ab = 0
3 当a与b同向时,ab = |a||b|;当a与b反向时,ab = |a||b|. 特别的aa = |a|2或aaa||
4cos =||||baba ;5|ab| ≤ |a||b|
二、讲解新课:
平面向量数量积的运算律
1.交换律:a b = b a
证:设a,b夹角为,则a b = |a||b|cos,b a = |b||a|cos
∴a b = b a
2.数乘结合律:(a)b =(ab) = a(b)
证:若> 0,(a)b =|a||b|cos, (ab) =|a||b|cos,a(b) =|a||b|cos,
若< 0,(a)b =|a||b|cos() = |a||b|(cos) =|a||b|cos,(ab) =|a||b|cos,
a(b) =|a||b|cos() = |a||b|(cos) =|a||b|cos.
3.分配律:(a + b)c = ac + bc
在平面内取一点O,作OA= a, AB= b,OC= c, ∵a + b (即OB)在c方向上的
投影等于a、b在c方向上的投影和,即 |a + b| cos = |a| cos1 + |b| cos2
∴| c | |a + b| cos =|c| |a| cos1 + |c| |b| cos2, ∴c(a + b) = ca + cb 即:(a + b)c = ac +
bc
说明:(1)一般地,(a·b)с≠a(b·с)
(2)a·с=b·с,с≠0a=b
(3)有如下常用性质:a2=|a|2,
(a+b)(с+d)=a·с+a·d+b·с+b·d
(a+b)2=a2+2a·b+b2
三、讲解范例:
例1 已知a、b都是非零向量,且a + 3b与7a 5b垂直,a 4b与7a 2b垂直,求a与b
的夹角.
解:由(a + 3b)(7a 5b) = 0 7a2 + 16ab 15b2 = 0 ①
(a 4b)(7a 2b) = 0 7a2 30ab + 8b2 = 0 ②
两式相减:2ab = b2
代入①或②得:a2 = b2
设a、b的夹角为,则cos =21222||||||bbbaba ∴ = 60
例2 求证:平行四边形两条对角线平方和等于四条边的平方和.
解:如图:平行四边形ABCD中,DCAB,BCAD,AC=ADAB
∴|AC|2=ADABADABADAB2||222
而BD=ADAB ,
∴|BD|2=ADABADABADAB2||222
∴|AC|2 + |BD|2 = 2222ADAB= 2222||||||||ADDCBCAB
例3 四边形ABCD中,AB=a,BC=b,CD=с,DA=d,且a·b=b·с=с·d=
d·a
,试问四边形ABCD是什么图形?
分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量.
解:四边形ABCD是矩形,这是因为:
一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2
即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2
由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2①
同理有|a|2+|d|2=|с|2+|b|2②
由①②可得|a|=|с|,且|b|=|d|即四边形ABCD两组对边分别相等.
∴四边形ABCD是平行四边形
另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD可得a=-с,
代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB⊥BC.
综上所述,四边形ABCD是矩形.
评述:(1)在四边形中,AB,BC,CD,DA是顺次首尾相接向量,则其和向量是零
向量,即a+b+с+d=0,应注意这一隐含条件应用;
(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两
种关系.
四、课堂练习:
1.下列叙述不正确的是( )
A.向量的数量积满足交换律 B.向量的数量积满足分配律
C.向量的数量积满足结合律 D.a·b是一个实数
2.已知|a|=6,|b|=4,a与b的夹角为60°,则(a+2b)·(a-3b)等于( )
A.72 B.-72 C.36 D.-36
3.|a|=3,|b|=4,向量a+43b与a-43b的位置关系为( )
A.平行 B.垂直 C.夹角为3 D.不平行也不垂直
4.已知|a|=3,|b|=4,且a与b的夹角为150°,则(a+b)2= .
5.已知|a|=2,|b|=5,a·b=-3,则|a+b|=______,|a-b|= .
6.设|a|=3,|b|=5,且a+λb与a-λb垂直,则λ= .
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记: