平面向量的数量积教案

合集下载

平面向量的数量积教案;

平面向量的数量积教案;

平面向量的数量积教案; -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN§2.4.1 平面向量数量积的物理背景及其含义一、教材分析:教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。

向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。

教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。

这些结论可以看成是定义的直接推论。

教材例一是对数量积含义的直接应用。

二、学情分析:前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

三、三维目标:(一)知识与技能1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。

2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。

(二)过程与方法1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。

(三)情感态度价值观1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。

2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.四、教学重难点:1、重点:平面向量数量积的概念、性质的发现论证;2、难点:平面向量数量积、向量投影的理解;五、教具准备:多媒体、三角板六、课时安排:1课时七、教学过程:(一)创设问题情景,引出新课问题:请同学们回顾一下,我们已经研究了向量的哪些运算这些运算的结果是什么新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义(二)新课:1、探究一:数量积的概念 从视频中抽象出下面的物理模型 背景的第一次分析:问题:真正使汽车前进的力是什么它的大小是多少答:实际上是力→F 在位移方向上的分力,即θCOS F →,在数学中我们给它一个名字叫投影。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的概念及其几何意义。

2. 学会计算平面向量的数量积,并能熟练运用数量积解决实际问题。

3. 掌握平面向量的数量积的性质,并能运用其性质进行向量运算。

二、教学重点:1. 平面向量的数量积的概念及其几何意义。

2. 平面向量的数量积的计算方法。

3. 平面向量的数量积的性质。

三、教学难点:1. 平面向量的数量积的计算方法。

2. 平面向量的数量积的性质的证明。

四、教学准备:1. 教师准备PPT,内容包括平面向量的数量积的概念、计算方法、性质及其应用。

2. 教师准备一些实际问题,用于引导学生运用平面向量的数量积解决实际问题。

五、教学过程:1. 导入(5分钟)教师通过PPT展示一些实际问题,引导学生思考如何运用向量的知识解决这些问题。

2. 讲解平面向量的数量积的概念(10分钟)教师通过PPT讲解平面向量的数量积的概念,并展示其几何意义。

3. 讲解平面向量的数量积的计算方法(15分钟)教师通过PPT讲解平面向量的数量积的计算方法,并给出一些例题进行讲解。

4. 练习平面向量的数量积的计算(10分钟)学生独立完成一些练习题,教师进行解答和讲解。

5. 讲解平面向量的数量积的性质(10分钟)教师通过PPT讲解平面向量的数量积的性质,并给出一些证明。

6. 练习平面向量的数量积的性质(10分钟)学生独立完成一些练习题,教师进行解答和讲解。

7. 应用平面向量的数量积解决实际问题(10分钟)教师给出一些实际问题,引导学生运用平面向量的数量积解决这些问题。

8. 总结(5分钟)教师对本节课的内容进行总结,并强调平面向量的数量积的重要性和应用价值。

9. 布置作业(5分钟)教师布置一些练习题,巩固学生对平面向量的数量积的理解和应用。

10. 课堂反馈(5分钟)教师通过课堂反馈了解学生对平面向量的数量积的掌握情况,为下一步的教学做好准备。

六、教学拓展:1. 教师通过PPT讲解平面向量的数量积与其他向量知识的联系,如向量的模、向量的加减法等。

《平面向量的数量积》教学设计

《平面向量的数量积》教学设计
二.概念获得
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
定义:
已知两个非零向量与,它们的夹角为,我们把数量叫做与的数量积(或内积),记作:,即:,其中是与的夹角.
规定:零向量与任一向量的数量积为0.
问题5:向量的数量积运算与线性运算的结果有什么不同?(两个向量的内积是数量还是向量?)
用性质和运算律证明
学生独立完成
巩固所学
六.课堂练习
1. 若且与反向,则
2. 已知向量满足且则与的夹角为————。
3. 已知在方向上的投影为,则
4. 已知向量与,满足求的取值范围。
变式:在中,且则是( )。
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等腰三角形
5.已知且求.
利用向量垂直的充要条件求解
3.情感态度与价值观
•在探究过程中让学生体验获取知识的成功感受,激发学生善于发现、勇于探索的精神;树立理论来源于实践又反作用于实践的辨证唯物主义的观点.
三、学习者特征分析
通过平时教学的反馈知道学生已具备了功等物理知识,熟知实数的运算体系,对向量的概念和线性运算都比较熟练,并且通过前面知识的学习初步体会了研究向量运算的一般方法。因此学生已经做好了学习本节的准备.
让学生在类比的基础上进行猜想归纳,得出数量积的运算律,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
五.应用提高
例2.求证:
例3.已知.已知与的夹角求。
例4. 已知.已知且与不共线,为何值时,向量与互相垂直?
2.对教学内容组织及教学设计环节的反思

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案一、教学目标知识与技能目标:使学生理解平面向量数量积的概念,掌握平面向量数量积的计算公式及性质,能够运用数量积解决一些几何问题。

过程与方法目标:通过探究平面向量数量积的概念和性质,培养学生的抽象思维能力和逻辑推理能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在现实生活中的应用价值。

二、教学重点与难点重点:平面向量数量积的概念,计算公式及性质。

难点:平面向量数量积的运算规律及其在几何中的应用。

三、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生主动探究,发现平面向量数量积的规律,提高学生解决问题的能力。

四、教学准备教师准备PPT,涵盖平面向量数量积的概念、计算公式、性质及应用实例。

学生准备笔记本,以便记录学习过程中的疑问和感悟。

五、教学过程1. 导入新课教师通过展示一个实际问题,引导学生思考平面向量数量积的定义和作用。

2. 探究平面向量数量积的概念(1)教师引导学生根据定义,探究平面向量数量积的计算公式。

(2)学生通过实例,理解并掌握平面向量数量积的计算方法。

3. 学习平面向量数量积的性质(1)教师引导学生总结平面向量数量积的性质。

(2)学生通过练习,巩固对平面向量数量积性质的理解。

4. 应用平面向量数量积解决几何问题教师展示几个应用实例,引导学生运用平面向量数量积解决几何问题。

学生分组讨论,合作解决问题,分享解题过程和心得。

5. 课堂小结教师引导学生总结本节课所学内容,强调平面向量数量积的概念、计算公式及性质。

学生整理学习笔记,反思自己在学习过程中的收获和不足。

6. 布置作业教师布置一些有关平面向量数量积的练习题,巩固所学知识。

学生认真完成作业,巩固课堂所学内容。

七、教学反思教师在课后对自己的教学过程进行反思,分析教学效果,针对学生的掌握情况,调整教学策略。

学生反思自己的学习过程,总结经验教训,提高学习效果。

八、教学评价教师通过课堂表现、作业完成情况和课后练习成绩,全面评价学生对平面向量数量积的掌握程度。

平面向量数量积授课教案

平面向量数量积授课教案

平面向量数量积授课优秀教案一、教学目标1. 知识与技能:(1)理解平面向量的概念,掌握向量的表示方法;(2)掌握向量的坐标运算,包括加法、减法和数乘;(3)理解向量数量积的概念,掌握数量积的计算公式和性质;(4)学会运用数量积解决实际问题。

2. 过程与方法:(1)通过图形和实例,培养学生的直观想象能力;(2)运用逻辑推理,引导学生发现向量数量积的计算规律;(3)通过练习题,提高学生运用向量数量积解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生感受数学在生活中的应用,提高学生的数学素养。

二、教学重点与难点1. 教学重点:(1)平面向量的概念及表示方法;(2)向量的坐标运算;(3)向量数量积的计算公式和性质;(4)运用向量数量积解决实际问题。

2. 教学难点:(1)向量数量积的计算规律的发现;(2)向量数量积在实际问题中的应用。

三、教学准备1. 教具准备:黑板、粉笔、投影仪;2. 学具准备:笔记本、练习本、相关书籍。

四、教学过程1. 导入新课:(1)复习旧知识:回顾二维空间中的点、线、面的基本概念;(2)提出问题:如何表示一个平面内的向量?向量之间有什么基本的运算?2. 讲解向量的概念及表示方法:(1)介绍向量的定义;(2)讲解向量的表示方法,如用箭头表示、用坐标表示等。

3. 讲解向量的坐标运算:(1)向量的加法、减法和数乘;(2)举例说明运算规律。

4. 讲解向量数量积的概念和性质:(1)介绍数量积的定义;(2)讲解数量积的计算公式;(3)阐述数量积的性质。

5. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)挑选学生回答问题,及时给予评价和指导。

五、课后作业1. 复习本节课所学内容,整理笔记;2. 完成课后练习题,巩固向量数量积的知识;3. 思考实际生活中的向量数量积问题,提高数学应用能力。

六、教学拓展1. 引导学生探索向量数量积的推广:(1)从二维向量推广到三维向量;(2)探讨更高维向量的数量积。

必修四2.4.平面向量的数量积(教案)

必修四2.4.平面向量的数量积(教案)

2.4 平面向量的数量积教案 A第1课时教学目标一、知识与技能1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;二、过程与方法本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.三、情感、态度与价值观通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.教学重点、难点教学重点:平面向量数量积的定义.教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用.教学关键:平面向量数量积的定义的理解.教学方法本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.学习方法通过类比物理中功的定义,来推导数量积的运算.教学准备教师准备: 多媒体、尺规.学生准备: 练习本、尺规.教学过程一、创设情境,导入新课在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W可由下式计算:W=| F | | s | cosθ,其中θ是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量).故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.二、主题探究,合作交流提出问题①a ·b 的运算结果是向量还是数量?它的名称是什么?②由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律?师生活动:已知两个非零向量a 与b ,我们把数量|a ||b |cosθ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ(0≤θ≤π).其中θ是a 与b 的夹角,|a |cosθ(|b |cosθ)叫做向量a 在b 方向上(b 在a 方向上)的投影.在教师与学生一起探究的活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a ·0=0; (3)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<2π时cosθ>0,从而a ·b >0;当2π<θ≤π时,cosθ<0,从而a ·b <0.与学生共同探究并证明数量积的运算律.已知a 、b 、c 和实数λ,则向量的数量积满足下列运算律: ①a ·b =b ·a (交换律); ②(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律); ③(a +b )·c =a ·c +b ·c (分配律). 特别是:(1)当a ≠0时,由a ·b =0不能推出b 一定是零向量.这是因为任一与a 垂直的非零向量b ,都有a ·b =0.注意:已知实数a 、b 、c (b ≠0),则ab =bc ⇒a =c .但对向量的数量积,该推理不正确,即a ·b =b ·c 不能推出a =c .由上图很容易看出,虽然a ·b =b ·c ,但a ≠c .对于实数a 、b 、c 有(a ·b )c =a (b ·c );但对于向量a 、b 、c ,(a ·b )c =a (b ·c )不成立.这是因为(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而c 与a 不一定共线,所以(a ·b )c =a (b ·c )不成立.提出问题①如何理解向量的投影与数量积?它们与向量之间有什么关系? ②能用“投影”来解释数量积的几何意义吗?师生活动:教师引导学生来总结投影的概念,可以结合“探究”,让学生用平面向量的数量积的定义,从数与形两个角度进行探索研究.教师给出图形并作结论性的总结,提出注意点“投影”的概念,如下图.定义:|b |cos θ叫做向量b 在a 方向上的投影.并引导学生思考. A . 投影也是一个数量,不是向量;B . 当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b |;当θ=180°时投影为-|b |.教师结合学生对“投影”的理解,让学生总结出向量的数量积的几何意义: 数量积a ·b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质:设a 、b 为两个非零向量,θ为两向量的夹角,e 是与b 同向的单位向量. A . e ·a =a ·e =|a |cos θ. B . a ⊥b ⇔a ·b =0.C . 当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |.特别地a ·a =|a |2或|a |=a a ∙. D . cosθ=||||a ba b ∙. E . |a ·b |≤|a ||b |.上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质.讨论结果: ①略.②向量的数量积的几何意义为数量积a ·b 等于a 的长度与b 在a 方向上投影|b |cosθ的乘积.三、拓展创新,应用提高例1 已知|a |=5,|b |=4,a 与b 的夹角为120°,求a ·b活动:教师引导学生利用向量的数量积并结合两向量的夹角来求解.解: a ·b =|a ||b |cosθ=5×4 ×cos120°=5×4×(21-) =-10.点评: 确定两个向量的夹角,利用数量积的定义求解.例2 我们知道,对任意a ,b ∈R ,恒有(a +b )2=a 2+2ab +b 2,(a +b )(a -b )=a 2-b 2.对任意向量a 、b ,是否也有下面类似的结论?(1)(a +b )2=a 2+2a ·b +b 2; (2)(a +b )·(a -b )=a 2-b 2. 解:(1)(a +b )2=(a +b )·(a +b )=a ·b +a ·b +b ·a +b ·b =a 2+2a ·b +b 2;(2)(a +b )·(a -b )=a ·a -a ·b +b ·a -b ·b=a 2-b 2.例3 已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a -3b ). 解: (a +2b )·(a -3b )=a ·a -a ·b -6b ·b=|a |2-a ·b -6|b |2=|a |2-|a ||b |cosθ-6|b |2 =62-6×4×cos60°-6×42 =-72.例4 已知|a |=3,|b |=4,且a 与b 不共线,当k 为何值时,向量a +k b 与a -k b 互相垂直?解: a +k b 与a -k b 互相垂直的条件是(a +k b )·(a -k b )=0, 即a 2-k 2b 2=0.∵a 2=32=9,b 2=42=16, ∴9-16k 2=0.∴k =±43.也就是说,当k =±43时,a +k b 与a -k b 互相垂直.点评:本题主要考查向量的数量积性质中垂直的充要条件.四、小结1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.课堂作业1.已知a ,b ,c 是非零向量,则下列四个命题中正确的个数为( ) ①|a ·b |=|a ||b |⇔a ∥b ②a 与b 反向⇔a ·b =-|a ||b | ③a ⊥b ⇔|a +b |=|a -b | ④|a |=|b |⇔|a ·c |=|b ·c |A .1B .2C .3D .4 2.有下列四个命题:①在△ABC 中,若AB ·BC >0,则△ABC 是锐角三角形;②在△ABC 中,若AB ·BC >0,则△ABC 为钝角三角形; ③△ABC 为直角三角形的充要条件是AB ·BC =0; ④△ABC 为斜三角形的充要条件是AB ·BC ≠0. 其中为真命题的是( )A .①B .②C .③D .④ 3.设|a |=8,e 为单位向量,a 与e 的夹角为60°,则a 在e 方向上的投影为( ) A .43 B .4C .42D .8+234.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,有下列四个命题: ①(a ·b )c -(c ·a )b =0; ②|a |-|b |<|a -b |; ③(b ·c )a -(c ·a )b 不与c 垂直; ④(3a +2b )·(3a -2b )=9|a |2-4|b |2. 其中正确的是( )A .①②B .②③C .③④D .②④ 5.在△ABC 中,设AB =b ,AC =c ,则22(|||)()b c b c ∙-等于( ) A .0 B .21S △ABC C .S △ABC D .2S △ABC 6.设i ,j 是平面直角坐标系中x 轴、y 轴方向上的单位向量,且a =(m+1)i -3j ,b =i +(m -1)j ,如果(a +b )⊥(a -b ),则实数m=_____________.7.若向量a 、b 、c 满足a +b +c =0,且|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a =_________. 参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13第2课时教学目标一、知识与技能1.掌握平面向量数量积运算规律.2.能利用数量积的性质及数量积运算规律解决有关问题.3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三、情感、态度与价值观通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.教学重点、难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.教学关键:平面向量数量积的坐标表示的理解.教学突破方法:教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.并通过练习,使学生掌握数量积的应用.教法与学法导航教学方法:启发诱导,讲练结合.学习方法:主动探究,练习巩固.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前面我们学习了平面向量的坐标表示和坐标运算,以及平面向量的数量积,那么,能否用坐标表示平面向量的数量积呢?若能,如何表示呢?由此又能产生什么结论呢?本节课我们就来研究这个问题.(板书课题)二、主题探究,合作交流提出问题:①已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?②怎样用向量的坐标表示两个平面向量垂直的条件?③你能否根据所学知识推导出向量的长度、距离和夹角公式?师生活动:教师引导学生利用前面所学知识对问题进行推导和探究.提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下:A.平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和, 即a =(x 1,y 1),b =(x 2,y 2), 则a ·b =x 1x 2+y 1y 2. B . 向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=22y x +.如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=.)()(212212y y x x -+-C . 两向量垂直的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),则 a ⊥b ⇔x 1x 2+y 1y 2=0.D . 两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=121222221122||||x x y y a ba b x yx y+=++三、拓展创新,应用提高例1 已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明. 活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB =(2-1,3-2)=(1,1),AC =(-2-1,5-2)=(-3,3),∴AB ·AC =1×(-3)+1×3=0. ∴AB ⊥AC .∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.例2 设a =(5,-7),b =(-6,-4),求a ·b 及a 、b 间的夹角θ(精确到1°). 解:a ·b =5×(-6)+(-7)×(-4)=-30+28=-2.|a |=74)7(522=-+,|b |=22(6)(4)52-+-=,由计算器得cos θ=52742⨯-≈-0.03.利用计算器得θ≈1.6rad=92°. 四、小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.课堂作业1.若a =(2,-3),b =(x ,2x ),且a ·b =34,则x 等于( ) A .3 B .31 C .31- D .-32.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( ) A .m>21 B .m<21 C .m>21- D .m<21- 3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b ) 4.与a =(u ,v )垂直的单位向量是( ) A .(2222,vu u vu v ++-)B .(2222,vu u vu v +-+)C .(2222,vu u vu v ++)D .(2222,v u u v u v++-)或(2222,vu uv u v +-+) 5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u的模的最小值.6.已知a ,b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角.7.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积. 参考答案:1.C 2.D 3.C 4.D5.|a |=23sin 23cos 67cos 23cos 2222+=+=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22° =cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a ·b +t 2b 2=t 2+2t+1=(t+22)2+21≥21. 当t=22-时,|u|mi n =22. 6.由已知(a +3b )⊥(7a -5b )⇔(a +3b )·(7a -5b )=0⇔7a 2+16a ·b -15b 2=0.①又 (a -4b )⊥(7a -2b )⇔(a -4b )·(7a -2b )=0⇔7a 2-30a ·b +8b 2=0. ②①-②得46a ·b =23b 2,即a ·b =.2||222b b =③ 将③代入①,可得7|a |2+8|b |2-15|b |2=0,即|a |2=|b |2,有|a |=|b |,∴若记a 与b 的夹角为θ,则cosθ=2||12||||||||2b a b a b b b ∙==g g .又θ∈[0°,180°],∴θ=60°,即a 与b 的夹角为60°. 7.分析:S △ABC =21|AB ||AC |sin ∠BAC ,而|AB |,|AC |易求,要求sin ∠BAC 可先求出cos ∠BA C .解:∵AB =(2,0),AC =(3,4),|AB |=2,|AC |=5, ∴cos ∠BAC =23043255||||AB AC AB AC ⨯+⨯==⨯.∴sin ∠BAC =54.∴S △ABC =21|AB ||AC |sin ∠BAC =21×2×5×54=4.教案 B第一课时教学目标一、知识与技能1. 了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;2. 体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算.二、过程与方法体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力. 三、情感、态度与价值观通过自主学习、主动参与、积极探究,学生能感受数学问题探究的乐趣和成功的喜悦,增加学习数学的自信心和积极性,并养成良好的思维习惯. 教学重点平面向量数量积的定义,用平面向量的数量积表示向量的模、夹角. 教学难点平面向量数量积的定义及运算律的理解,平面向量数量积的应用. 教 具多媒体、实物投影仪. 内容分析本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的3个重要性质;平面向量数量积的运算律. 教学流程概念引入→概念获得→简单运用→运算律探究→理解掌握→反思提高 教学设想:一、情境设置:问题1:回忆一下物理中“功”的计算,功的大小与哪些量有关?sθF结合向量的学习你有什么想法?力做的功:W = |F |⋅|S |cos θ,θ是F 与S 的夹角.(引导学生认识功这个物理量所涉及的物理量,从“向量相乘”的角度进行分析)二、新课讲解1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π).并规定:0与任何向量的数量积为0.问题2:定义中涉及哪些量?它们有怎样的关系?运算结果还是向量吗?(引导学生认清向量数量积运算定义中既涉及向量模的大小,又涉及向量的交角,运算结果是数量)注意:两个向量的数量积与向量同实数积有很大区别.(1)两个向量的数量积是一个实数,不是向量,符号由cosθ的符号所决定.(2)两个向量的数量积称为内积,写成a⋅b;今后要学到两个向量的外积a×b,而a⋅b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a≠0,且a⋅b=0,则b=0;但是在数量积中,若a≠0,且a⋅b=0,不能推出b=0.因为其中cosθ有可能为0.(4)已知实数a、b、c(b≠0),则ab=bc ⇒ a=c.但是在向量的数量积中,a⋅b= b⋅c 推导不出a= c.如下图:a⋅b= |a||b|cosβ = |b||OA|,b⋅c= |b||c|cosα = |b||OA|⇒ a⋅b=b⋅c,但a≠c.(5)在实数中,有(a⋅b)c = a(b⋅c),但是在向量中,(a⋅b)c≠a(b⋅c)显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c 不共线.(“投影”的概念):作图2.定义:|b|cosθ叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|.3.向量的数量积的几何意义:数量积a⋅b等于a的长度与b在a方向上投影|b|cosθ的乘积.例1 已知平面上三点A 、B 、C 满足|AB |=2,|BC |=1,|CA |=3,求AB ·BC +BC ·CA +CA .AB 的值. 解:由已知,|BC |2+|CA |2=|AB |2,所以△ABC 是直角三角形.而且∠ACB =90°, 从而sin ∠ABC =23,sin ∠BAC =21. ∴∠ABC =60°,∠BAC =30°.∴AB 与BC 的夹角为120°,BC 与CA 的夹角为90°,CA 与AB 的夹角为150°.故AB ·BC +BC ·CA +CA ·AB =2×1×cos120°+1×3cos90°+3×2cos150°=-4.点评:确定两个向量的夹角,应先平移向量,使它们的起点相同,再考察其角的大小,而不是简单地看成两条线段的夹角,如例题中AB 与BC 的夹角是120°,而不是60°. 探究1:非零向量的数量积是一个数量,那么它何时为正,何时为0 ,何时为负?当0°≤θ< 90°时a ·b 为正;当θ =90°时a ·b 为零; 90°<θ ≤180°时a ·b 为负.探究2:两个向量的夹角决定了它们数量积的符号,那么它们共线或垂直时,数量积有什么特殊性呢?4.两个向量的数量积的性质: 设a 、b 为两个非零向量. (1)a ⊥b ⇔ a ⋅b = 0.(2)当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||.(3) |a ⋅b | ≤ |a ||b |. 公式变形:cos θ =||||b a b a ⋅探究3:对一种运算自然会涉及运算律,回忆过去研究过的运算律,向量的数量积应有怎样的运算律?(引导学生类比得出运算律,老师作补充说明)向量a 、b 、c 和实数λ,有(1) a ⋅ b= b ⋅ a(2)(λa )⋅ b= λ(a ⋅ b )= a ⋅(λb ) (3)(a +b )⋅ c = a · c+ b ⋅ c(进一步)你能证明向量数量积的运算律吗?(引导学生证明(1)、(2)) 例2 判断正误:①a ·0=0;②0·a =0;③0-AB =BA ;④|a ·b|=|a ||b|;⑤若a ≠0,则对任一非零b有a ·b≠0;⑥a ·b=0,则a 与b中至少有一个为0;⑦对任意向量a ,b,с都有(a ·b)с=a(b·с);⑧a 与b是两个单位向量,则a 2=b2.上述8个命题中只有②③⑧正确;例3 已知|a |=3,|b|=6,当①a ∥b,②a ⊥b,③a 与b的夹角是60°时,分别求a ·b.解:①当a ∥b时,若a 与b同向,则它们的夹角θ=0°, ∴a ·b=|a |·|b|cos0°=3×6×1=18; 若a 与b反向,则它们的夹角θ=180°, ∴a ·b=|a ||b|cos180°=3×6×(-1)=-18; ②当a ⊥b时,它们的夹角θ=90°, ∴a ·b=0;③当a 与b的夹角是60°时,有a ·b=|a ||b|cos60°=3×6×21=9.评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a ∥b时,有0°或180°两种可能.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律. 三、课堂练习1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A .60° B .30° C .135° D .45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为π3,那么向量m =a -4b 的模为( )A .2B .23C .6D .12 3.已知a 、b 是非零向量,若|a |=|b |则(a +b )与(a -b ) . 4.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .6.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为45°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.参考答案:1.D 2.B 3.垂直4.215.-37;6. 解:(1)若a、b方向相同,则a·b=2;若a、b方向相反,则a·b=2(2)|a+b|=5.(3)45°.四、知识小结(1)通过本节课的学习,你学到了哪些知识?(2)关于向量的数量积,你还有什么问题?五、课后作业教材第108页习题2.4 A组1、2、3、6、7教学后记数学课堂教学应当是数学知识的形成过程和方法的教学,数学活动是以学生为主体的活动,没有学生积极参与的课堂教学是失败的.本节课教学设计按照“问题——讨论——解决”的模式进行,并以学生为主体,教师以课堂教学的引导者、评价者、组织者和参与者同学生一起探索平面向量数量积定义、性质和运算律的形成与发展过程.始终做到以“学生为主体、教师为主导、思维为主攻、训练为主线”.第2课时教学目标一、知识与技能掌握平面向量的数量积坐标运算及应用.二、过程与方法1.通过平面向量数量积的坐标运算,体会向量的代数性和几何性.2.从具体应用体会向量数量积的作用.三、情感、态度与价值观学会对待不同问题用不同的方法分析的态度.教学重点、难点教学重点:平面向量数量积的坐标表示.教学难点:平面向量数量积的坐标表示的综合运用.教具多媒体、实物投影仪.教学设想一、复习引入向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.二、探究新知:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+=.所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=. 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=. 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=.2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式). (2)向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x . (3)两非零向量夹角的余弦(πθ≤≤0) cos θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=.三、例题讲解例1 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x . 解:设x = (t , s ), 由{{9,39,4,24,x a t s x b t s ⋅=-=⇒⋅=-+=-{2,3.t s =⇒=- . ∴x = (2,-3).例2 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1).有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a . 又∵0≤θ≤π,∴θ=4π. 评述:已知三角形函数值求角时,应注重角的范围的确定.例3 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x -5, y -2).∵OB ⊥AB ∴x (x -5) + y (y -2) = 0 即:x 2 + y 2 -5x - 2y = 0.又∵|OB | = |AB | ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29.由{22121273,,520,223710429,,.22x x x y x y x y y y ⎧⎧==⎪⎪+--=⇒⎨⎨+==-=⎪⎪⎩⎩或.∴B 点坐标)23,27(-或)27,23(;AB =)27,23(--或)23,27(- .例4在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当∠A = 90︒时,AB ⋅AC = 0,∴2×1 +3×k = 0, ∴k =23-.当∠B = 90︒时,AB ⋅BC = 0,BC =AC -AB = (1-2, k -3) = (-1, k -3),∴2×(-1) +3×(k -3) = 0 ∴k =311.当∠C = 90︒时,AC ⋅BC = 0,∴-1 + k (k -3) = 0, ∴k =2133±. 四、小结1.本节课的内容:有关公式、结论(由学生归纳、总结).2.本节课的思想方法:数形结合思想、分类讨论思想、方程(组)思想等. 五、课外作业教材第107页练习.。

2023高中数学平面向量的数量积教案范文

2023高中数学平面向量的数量积教案范文

2023高中数学平面向量的数量积教案范文2020高中数学平面向量的数量积教案范文一一、教学内容分析1、教学主要内容(1)平面向量数量积及其几何意义(2)用平面向量处理有关长度、角度、直垂问题2、教材编写特点本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。

3、教学内容的核心教学思想用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。

4、我的思考本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。

因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。

二、学生分析1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。

因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣即a·b=∣a∣∣b∣cosθ理解并记忆。

对于cosθ= ,等的变形应用,同学们甚感兴趣。

2、我的思考对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。

三、学习目标1、知识与技能(1)掌握平面向量数量积及其几何意义。

(2)平面向量数量积的应用。

2、过程与方法通过学生小组探究学习,讨论并得出结论。

3、情感态度与价值观培养学生运算推理的能力。

四、教学活动内容师生互动设计意图时间 1、课题引入师:请同学请回忆我们所学过的相关同里的运算。

生:加法、减法,数乘师:这些运算所得的结果是数还是向量。

生:向量。

师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。

3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab②O与任何向量的数里积为O。

平面向量数量积的教案

平面向量数量积的教案

平面向量数量积的教案教学目标:1. 理解平面向量的概念及其几何表示。

2. 掌握平面向量的数量积的定义及其性质。

3. 学会运用数量积解决实际问题。

教学内容:一、平面向量的概念及其几何表示1. 向量的定义2. 向量的几何表示3. 向量的坐标表示二、平面向量的数量积1. 数量积的定义2. 数量积的性质a. 交换律b. 分配律c. 互补律3. 数量积的计算公式三、数量积的运算律1. 交换律的应用2. 分配律的应用3. 互补律的应用四、数量积与向量垂直1. 数量积与向量垂直的定义2. 数量积与向量垂直的性质3. 数量积与向量垂直的应用五、数量积在实际问题中的应用1. 力学中的问题2. 几何中的问题3. 其它实际问题教学方法:1. 采用讲授法,系统地讲解平面向量的概念、数量积的定义及其性质。

2. 通过例题演示数量积的运算律及应用。

3. 引导学生运用数量积解决实际问题,培养学生的实际应用能力。

教学准备:1. 教案、PPT课件2. 课堂练习题3. 相关实际问题素材教学过程:一、导入(5分钟)1. 复习平面向量的概念及其几何表示。

2. 引出本节课的主题——平面向量的数量积。

二、新课讲解(20分钟)1. 讲解平面向量的数量积的定义。

2. 引导学生通过实例理解数量积的几何意义。

3. 讲解数量积的性质,如交换律、分配律、互补律。

4. 给出数量积的计算公式。

三、数量积的运算律(15分钟)1. 通过例题讲解数量积的交换律、分配律、互补律的应用。

2. 引导学生总结数量积的运算律。

四、数量积与向量垂直(15分钟)1. 讲解数量积与向量垂直的定义。

2. 引导学生掌握数量积与向量垂直的性质。

3. 通过例题展示数量积与向量垂直的应用。

五、数量积在实际问题中的应用(15分钟)1. 给出力学、几何等方面的实际问题。

2. 引导学生运用数量积解决实际问题。

3. 总结数量积在实际问题中的应用。

六、课堂练习(10分钟)1. 让学生独立完成课堂练习题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4《平面向量的数量积》教案(第一课时)2017级应用数学专业康萍一.教学内容分析本课内容选自普通高中课程标准实验教科书数学必修4(人教A版)§2.4 平面向量的数量积的第一课时,本课主要内容是向量的数量积的定义及运算律,本节课让学生了解从特殊到一般再由一般到特殊的这种认识规律和体会概念法则的学习过程.二.学生学习情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法。

在功的计算公式和研究向量运算的一般方法的基础上,学生基本上能类比得到数量积的含义和运算律,对于运算律不一定给全或给对,对运算律的证明可能会存在一定的困难,教学中老师要注意引导学生分析判断.三.设计思想遵循新课标以人为本的理念,以启发式教学思想和建构主义理论为指导,采用探究式教学,以多媒体手段为平台,利用问题让学生自主地参与探究,在探究过程中注重学生学习过程的体验和数学能力的发展,引导学生积极将知识融入自己的知识体系。

四.教学目标知识与技能:以物理中功的实例认识理解平面向量数量积的含义及物理意义。

过程与方法:培养学生观察、归纳、类比、联想和数形结合等发现规律的一般方法。

情感态度价值观:让学生经历由实例到抽象的数学定义的形成过程,性质的发现到论证过程,进一步参悟数学的本质。

五.教学重点和难点重点是平面向量数量积的概念、用平面向量数量积表示向量的模及夹角;难点是平面向量数量积的定义及运算律的理解,平面向量数量积的应用。

六.教学过程设计活动一:创设问题情景,引出新课1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?答:向量的加法、减法及数乘运算。

这些运算的结果是向量。

很好,那既然两个向量可以进行加法、减法运算。

我们自然就想:两个向量能进行乘法运算吗?如果能,结果也是向量吗?【设计意图】1.让学生明白新旧知识的联系性。

2.明确研究向量的数量积这种运算的途径。

活动二:探究数量积的概念1、给出有关材料并提出问题2:(1)如图所示,一物体在力F 的作用下产生位移S ,那么力F 所做的功:W = |F | |S | cos α。

(2)这个公式有什么特点?请完成下列填空:① W (功)是 量,② F (力)是 量,③ S (位移)是 量,④α是 。

(3)你能用文字语言表述“功的计算公式”吗?答:功是力与位移的大小及其夹角余弦的乘积这就给我们一种启示:能否把功W 看成两个向量F 和S 的一种运算结果呢?为此我们引入平面向量数量积,今天,我们就来学习平面向量的数量积。

2、明晰数量积的定义(1)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量θcos b a 叫做向量a 与b 的数量积(或内积),记作:b a ⋅,即:θcos b a b a =⋅。

(2)定义说明:①记法“b a ⋅”中间的“·”不可以省略,也不可以用“⨯”代替。

②规定:零向量与任何向量的数量积为零。

【设计意图】1.认识向量的数量积的实际背景。

2.使学生在形式上认识数量积的定义。

3.从数学和物理两个角度创设问题情景,使学生明白为什么研究这种运算,从而产生强烈的求知欲望。

3、提出问题3:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?答:线性运算的结果是向量,而数量积的结果则是数量,这个数量的大小不仅和向量a 与b 的模有关,还和它们的夹角有关。

4、学生讨论并完成下表:θ的范围0°≤θ<90° θ=90° 90°<θ≤180° b a ⋅的符号 【设计意图】引导学生通过自主研究,明确两个向量的夹角决定它们的数量积的S Fα符号,进一步从细节上理解向量数量积的定义。

5、研究数量积的几何意义(1)给出向量投影的概念: 如图,我们把θcos b (θcos a ) 叫做向量b 在a 方向上(a 在b 方向上)的投影, 记做:OB 1=θcos b(2)提出问题4:数量积的几何意义是什么? 答:数量积b a ⋅等于a 的长度a 与b 在a 的方向上的投影θcos b 的乘积。

【设计意图】这里将数量积的几何意义提前,使学生从代数和几何两个方面对数量积的特征有了更加充分的认识。

6、研究数量积的物理意义(1)请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。

(2)尝试练习:一物体质量是10千克,分别做以下运动:①、竖直下降10米;②、竖直向上提升10米;③、在水平面上位移为10米; ④、沿倾角为30度的斜面向上运动10米;分别求重力做功的大小。

【设计意图】通过尝试练习,一方面使学生尝试计算数量积,巩固对定义的理解;另一方面使学生理解数量积的物理意义,明白学科间的联系,同时也为数量积的性质埋下伏笔。

活动三:探究数量积的运算性质1、提出问题5:(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论? (2)比较b a ⋅与b a 的大小,你有什么结论?2、请证明上述结论。

3、明晰:数量积的性质设a 与b 是非零向量,则1、0=⋅⇔⊥b a b a 2、b a b a b a b a b a b a -=⋅=⋅反向时,与当同向时,与当; 3、特别地,时当b a = 22;a a a a a a a a a =⋅===⋅或 4、b a b a ≤⋅【设计意图】将尝试练习的结论推广得到数量积的运算性质,使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。

活动四:探究数量积的运算律1、提出问题6:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?答:①交换律:ab=ba ②结合律:(ab)c=a(bc)③分配律:(a+b)c=ac+bc 猜想:①a b b a ⋅=⋅ ②)()()(b a b a b a ⋅=⋅=⋅λλλ ③c b c a c b a ⋅+⋅=⋅+)(2、分析猜想:猜想①的正确性是显而易见的。

关于猜想②的正确性,请同学们先讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?答:左边是与向量c 共线的向量,而右边则是与向量a 共线的向量,显然在向量c 与向量a 不共线的情况下猜测②是不正确的。

【设计意图】要求学生通过对过去所学过的运算律的回顾类比得出数量积的运算律。

通过讨论纠错来理解不同运算的运算律不尽相同,看到数学的法则与法则间的相互联系与区别,体会法则,学习研究的重要性。

3、明晰:数量积的运算律:已知向量c b a ,,,则 (1)a b b a ⋅=⋅ (2))()()(b a b a b a ⋅=⋅=⋅λλλ (3)c b c a c b a ⋅+⋅=⋅+)(4、学生活动:证明运算律2在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:当λ<0时,向量a a λ与,b b λ与的方向的关系如何?此时,向量b a λ与及a b λ与的夹角与向量b a 与的夹角相等吗?5、师生活动:证明运算律(3)【设计意图】学会利用定义证明运算律(1)(2),运算律(3)的图形构造有些困难,先让学生讨论,后根据学生的情况加以指导或共同完成。

活动五:应用与提高1、学生独立完成:已知4,5==b a , b a 与的夹角θ,(1)b a ⋅=时,求当120θ (2)b a b a ⋅⊥时,求 【设计意图】通过计算巩固对定义的理解,同时让学生学会运用性质解决问题。

2、师生共同完成:已知4,6==b a , b a 与的夹角为60°,求)3()2(b a b a -⋅+,并思考此运算过程类似于哪种实数运算?3、学生独立完成:对任意向量a ,b 是否有以下结论:(1)()2222b b a a b a +⋅+=+ (2)()()22b a b a b a -=-+【设计意图】让学生体会解题中运算律的作用,比较向量运算与数运算的异同。

4、反馈练习已知△ABC 中,0,,<⋅==→→b a b Ac a AB 当时,试判断△ABC 的形状。

【设计意图】1.加强学生的练习。

2.通过观察、问答等方式对学生的掌握情况有了进一步的了解和把握。

活动六:小结1、本节课我们学习的主要内容是什么?2、平面向量的数量积有哪些应用?3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?4、类比向量的线性运算,我们还应该怎样研究数量积?【设计意图】通过学生讨论总结,加强了学生概念法则的理解和掌握,体会整个内容的研究过程,明白了为什么要学这些内容,学了这些内容可以做什么,这对以后的学习有什么指导意义。

活动七:布置作业1、课本P 119习题2.4A 组1、2、3。

2、拓展与提高: 已知b a 与都是非零向量,且b a b a 573-+与垂直b a b a 274--与垂直,求b a 与的夹角。

(本题供学有余力的同学选做)【设计意图】通过设计不同层次的作业既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到激发兴趣和“减负”的目的。

八.教学反思本节课从总体上说是一节概念教学,从数学和物理两个角度创设问题情景来引入数量积概念能激发学生的学习兴趣,。

通过安排学生讨论影响数量积结果的因素并完成表格和将数量积的几何意义提前有助于学生更好理解数量积的结果是数量而不是向量。

数量积的性质和运算律是数量积概念的延伸,这两方面的内容按照创设一定的情景,让学生自己去探究、去发现结论,教师明晰后,再由学生或师生共同完成证明。

这样能更清楚地看到数学法则与法则间的联系与区别,体会法则学习研究的重要性,例题和练习的选择都是围绕数量积的概念和运算律展开的,这能使学生更好在掌握概念法则.。

相关文档
最新文档