湖南省2017中考数学第二部分重难题型突破题型三图形动态探究题试题
(完整word版)2017年湖南省长沙市中考数学试卷(含答案解析版)

2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是( )A.B.πC.D.12.(3分)下列计算正确的是( )A.= B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8。
26×107 C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4) D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60° B.70°C.80° D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为( )A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2= .14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0。
2017年湖南省长沙市中考数学(word版,有解析)

湖南省长沙市2017年中考数学试卷一、选择题:1.下列实数中,为有理数的是( ) A .3 B .π C .32 D .1【答案】D 【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数. 故选:D考点:有理数2.下列计算正确的是( ) A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =【答案】C 【解析】试题分析:根据同类二次根式的意义,可知A 不能计算,故不正确; 根据同类项的意义,可知a+2a=3a ,故不正确, 根据整式的乘法,可知x(1+y )=x+xy ,故正确,根据积的乘方,可知(mn 2)3=mn 6,故不正确. 故选:c.考点:1、同类项,2、同类二次根式,3、单项式乘以多项式,4、积的乘方3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯【答案】B 【解析】试题分析:由科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此82600000=71026.8⨯. 故选:B考点:科学记数法的表示较大的数4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )【答案】C 【解析】试题分析:利用“在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形”“在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形”,可知A 既不是轴对称图形,也不是中心对称图形,故不正确,B 是轴对称图形,但不是中心对称图形,故不正确,c 既是轴对称图形,也是中心对称图形,故正确, D 不是轴对称图形,但是中心对称图形,故不正确. 故迭:C考点:1、中心对称图形,2、轴对称图形5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 【答案】B 【解析】试题分析:根据三角形的内角和为180°,可知最大角为90°,因式这个三角形是直角三角形. 故选:B考点:直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人同月同日生”为必然事件 【答案】D 【解析】试题分析:检测某批次灯泡的使命,适用抽样调查,故A 不正确, 可能性是1%的事件在一次性事件中有可能发生,故B 不正确,把这组数据从小到大排列为:-2,1,3,4,5,中间一个数是3,所以中位数是4,故不正确, “367人中有两人同月同日生”是必然事件,故正确. 故选:D考点:事件发生的可能性7.某几何体的三视图如图所示,因此几何体是( )A .长方形B .圆柱C .球D .正三棱柱 【答案】B 【解析】试题分析:根据三视图的意义,可知这个几何体是圆柱. 故选:B考点:几何体的三视图8.抛物线4)3(22+-=x y 的顶点坐标是( ) A .)4,3( B .)4,3(- C .)4,3(- D .)4,2(【答案】A 【解析】试题分析:根据二次函数的顶点式y=a (x-h )2+k 的顶点为(h ,k ),可知此函数的顶点为(3,4).故选:A考点:二次函数的顶点式9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A .060B .070C .080D .0110【答案】B 【解析】试题分析:根据平行线的性质,两直线平行,同位角相等,且∠2的这个同位角是∠1的邻补角,故可知∠2=70°. 故选:B考点:1、平行线的性质,2、邻补角10.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20 【答案】D 【解析】试题分析:根据菱形的对角线互相垂直,可知OA=3,OB=4,根据勾股定理可知AB=5,所以菱形的周长为4×5=20. 故选:D考点:菱形的性质11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A .24里 B .12里 C .6里 D .3里 【答案】C 【解析】试题分析:设第一天走了x 里,则根据题意知x (1+12+122+123+124+125)=378,解得x=192,故最后一天的路程为125×192=6(里). 故选C.考点:等比数列12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22 B .21C .215-D .随H 点位置的变化而变化【答案】B 【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m=8a , 设CM=x ,DE=y ,则DM=2a-x ,EM=2a-y , ∵∠EMG=90°,∴∠DME+∠CMG=90°. ∵∠DME+∠DEM=90°, ∴∠DEM=∠CMG ,又∵∠D=∠C=90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG=(2)(2)=,x a x x a y CG MG y y--=△CMG 的周长为CM+CG+MG=24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a-x )2+y 2=(2a-y )2整理得4ax-x 2=4ay∴CM+MG+CG=2444ax x aya y y-===n . 所以12n m = 故选:B考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理 二、填空题13.分解因式:=++2422a a .【答案】2(a+1)2【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式a 2-b 2=(a+b)(a-b ),完全平方公式a 2+2ab+b 2=(a ±b)2)、三检查(彻底分解),可以先提公因式2,再用完全平方分解为2(a+1)2.故答案为:2(a+1)2考点:因式分解 14.方程组⎩⎨⎧=-=+331y x y x 的解是 .【答案】10x y =⎧⎨=⎩【解析】试题分析:利用加减消元法,用方程①+方程②可得x=1,代入方程x+y=1可得y=0,解得方程组的解为10x y =⎧⎨=⎩.[ 故答案为:10x y =⎧⎨=⎩考点:加减消元法解二元一次方程组15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径为 .【答案】5【解析】试题分析:设圆的半径为r ,根据垂径定理可知CE=3,OE=r-1,然后根据勾股定理可知32+(r-1)2=r 2,解得r=5. 故答案为5.考点:1、垂径定理,2、勾股定理16.如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .【答案】(1,2) 【解析】试题分析:根据位似变换的性质及位似比12,可知A ′的坐标为(1,2). 故答案为:(1,2) 考点:位似变换17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”) 【答案】乙 【解析】试题分析:根据方差的意义,方差越小,数据越稳定,可知乙同学的成绩更稳定. 故答案为:乙. 考点:方差18.如图,点M 是函数x y 3=与xky =的图象在第一象限内的交点,4=OM ,则k 的值为 .【答案】43考点:一次函数与反比例函数 三、解答题19.计算:100)31(30sin 2)2017(|3|-+--+-π【答案】6 【解析】试题分析:根据绝对值的性质、零次幂的性质、特殊角的三角函数值、和负整指数幂的性质可直接额计算. 试题解析:原式=3+1-1+3=6 考点:实数的运算20.解不等式组⎩⎨⎧+>---≥)1(31592x x xx ,并把它的解集在数轴上表示出来.【答案】x >2【解析】试题分析:分别接两个不等式,然后画出数轴,再取其公共部分即可求解集.考点:解不等式组21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中=a ;=b ;(2)请计算扇形统计图中B 组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率. 【答案】(1)a=0.3,b=45(2)108°(3)16【解析】 试题分析:(1)根据频数的和为样本容量,频率的和为1,可直接求解; (2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可. 试题解析:(1)a=0.3,b=45 (2)360°×0.3=108° (3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东060方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东030方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【答案】(1)30°(2)安全(2)只需算出航线上与P 点最近距离为多少即可 过点P 作PH ⊥AB 于点H在Rt △APH 中,∠PAH=30°,3PH在Rt △BPH 中,∠PBH=30°,3∴23算出325,不会进入暗礁区,继续航行仍然安全. 考点:解直角三角形23.如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,¼¼CD CE =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.【答案】(1)证明见解析(2)2=233S π-阴影 试题解析:(1)连接OC ,则OC ⊥AB∵¼¼CD CE =∴∠AOC=∠BOC在△AOC 和△BOC 中,90AOC BOC OC OCOCA OCB ⎧∠=∠⎪=⎨⎪∠=∠=⎩o∴△AOC ≌△BOC (ASA ) ∴AO=BO考点:1、切线的性质,2、三角形的面积,3、扇形的面积24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元. (1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润y 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益. 【答案】(1)A 型商品的进价为160元,B 型商品的进价为150元 (2)函数关系式为:y=10m+17500(80≤m ≤125)(3)当0<a <10时,当m=125时利润最大,y max =1250-125a+17500=18750-125a 当a=10时,y=17500,y max =17500当a >10时,当m=80时利润最大,y max =800-80a+17500=18300-80a 【解析】 试题分析:(1)设一件A 型商品的进价为x 元,则B 型商品的进价为(x-10)元,然后根据“用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍”列分式方程求解即可;(2)设A 型商品m 件,B 型商品(250-m )件,然后根据“欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件”列不等式,根据利润=售价-进价即可求解函数的解析式;(3)根据(2)的结果,由收益=利润-捐款,得到函数的解析式,然后分类讨论即可. 试题解析:(1)设一件A 型商品的进价为x 元,则 16000x =2×7500x-10解得x=160经检验,x=160是原方程的根,且符合题意. 此时,x-10=150所以一件A 型商品的进价为160元,B 型商品的进价为150元; (2)设A 型商品m 件,B 型商品(250-m )件,则80250(240160)(220150)(250)m my m m -⎧⎨=-+--⎩≤≤ 解得80≤m ≤125函数关系式为:y=10m+17500(80≤m ≤125) (3)y=10m+17500-ma=(10-a )m+17500当0<a <10时,y 随m 的增大而增大,当m=125时利润最大,y max =1250-125a+17500=18750-125a 当a=10时,y=17500,y max = 17500当a >10时,y 随m 的增大而减小,当m=80时,利润最大,y max =800-80a+17500=18300-80a 考点:1、分式方程,2、不等式,2、一次函数及最值25.若三个非零实数z y x ,,满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数z y x ,,构成“和谐三数组”. (1)实数1,2,3可以构成“和谐三数组”吗?请说明理由. (2)若),1(),,1(),,(321y t M y t N y t M +-三点均在函数y=xk(k 为常数,0≠k )的图象上,且这三点的纵坐标321,,y y y 构成“和谐三数组”,求实数的值;(3)若直线)0(22≠+=bc c bx y 与x 轴交于点)0,(1x A ,与抛物线)0(332≠++=a c bx ax y 交于),(),,(3322y x C y x B 两点.①求证:A ,B ,C 三点的横坐标x1,x2,x3构成“和谐三组数”; ②若a >2b >3c ,x2=1,求点P (,)与原点O 的距离OP 的取值范围.【答案】(1)不可以(2)t=-4,-2或2(3210OP OP ≠1 【解析】试题分析:(1)根据“和谐三组数”的意义直接判断即可,(2)分别表示出M 、N 、R 的坐标,然后根据“和谐三组数”求出t 的值;(3)①令y=2bx+2c=0表示出x 1,然后联立方程组得到ax 2+bx +c=0,然后由韦达定理表示出x 2、x 3的关系,从而判断;②由已知求出OP 表达式,然后根据表达式求范围.试题解析:(1)由已知1<2<3 ∴111123>>又∵1≠11+23 ∴1,2,3不可以构成“和谐三组数” (2)M (t ,k t ),N (t+1,1k t +),R (t+3,3k t +) k t ,1k t +,3k t +组成“和谐三组数” ①若k t =1k t ++3k t +,得t=-4 ②若13t t t k k k++=+,得t=-2 ③若31t t t k k k ++=+,得t=2 综上,t=-4,-2或22323231111x x b x x x x c x ++==-=⋅ ∴∴123x x x ,,构成“和谐三组数” ②∵x 2=1∴a+b+c=0∴c=-a-b∴OP=222222()b c b a b a a+++==22()2()1b b a a ++ ∵a >2b >3c∴-35<b <2a ∴-35<b a <12令t=b a ,p=22)2()1b b a a++(=2221t t ++ ∵-35<t <12且t ≠-1或0 ∴12<p <52且p ≠1 ∴21022OP ≤<且OP ≠1。
2017年湖南省长沙市中考数学试题与答案

2017年湖南省长沙市中考数学试题与答案(本试卷满分150分,考试时间120分钟,)注意事项:1、 答题前,请考生先将自己的姓名、准考证、填写清楚,并认真核对条形码上的姓名、 准考证号、考室和座位号;2、 必须在答題卡上答題,在萆稿纸、试題卷上答題无效;3、 答题时,请考生注意各大題題号后面的答题提示;4、 请勿折叠答題卡,保持字体工整、笔迹清晰、卡面清洁;5、 答题卡上不准使用涂改液、涂改胶和贴纸。
一、选择题:(共12个小题,每小题4分,共48分) 1.下列实数中,为有理数的是( )A .3B .πC .32D .1 2.下列计算正确的是( )A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯ B .71026.8⨯ C .6106.82⨯ D .81026.8⨯ 4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形 6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人同月同日生”为必然事件 7.某几何体的三视图如图所示,因此几何体是( )A .长方形B .圆柱C .球D .正三棱柱 8.抛物线4)3(22+-=x y 的顶点坐标是( )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A .060 B .070 C .080 D .011010.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 2011.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A .24里 B .12里 C .6里 D .3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化二、填空题(共6个小题,每小题4分,共24分) 13.分解因式:=++2422a a .14.方程组⎩⎨⎧=-=+331y x y x 的解是 .15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径为 .16.如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”) 18.如图,点M 是函数x y 3=与xky =的图象在第一象限内的交点,4=OM ,则k 的值为 .三、解答题 (共7个小题,共78分)19.计算:1)31(30sin 2)2017(|3|-+--+-π20.解不等式组⎩⎨⎧+>---≥)1(31592x x xx ,并把它的解集在数轴上表示出来.21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题: (1)表中=a ;=b ;(2)请计算扇形统计图中B 组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率. 22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东060方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东030方向上. (1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元. (1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润y 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.25.若三个非零实数z y x ,,满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数z y x ,,构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由. (2)若),1(),,1(),,(321y t M y t N y t M +-三点均在函数y=xk(k 为常数,0≠k )的图象上,且这三点的纵坐标321,,y y y 构成“和谐三数组”,求实数t 的值;(3)若直线)0(22≠+=bc c bx y 与x 轴交于点)0,(1x A ,与抛物线)0(332≠++=a c bx ax y 交于),(),,(3322y x C y x B 两点.①求证:A ,B ,C 三点的横坐标x1,x2,x3构成“和谐三组数”; ②若a >2b >3c ,x2=1,求点P (,)与原点O 的距离OP 的取值范围.参考答案一、选择题:1.D2.C3.B4.C5.B6.D7.B8.A9.B 10.D 11.C 12.B二、填空题 13. 2(a+1)214.10x y =⎧⎨=⎩15. 5 16. (1,2) 17. 乙 18. 三、解答题19.原式=3+1-1+3=6 20、21.(1)a=0.3,b=45 (2)360°×0.3=108° (3)列关系表格为:由表格可知,满足题意的概率为:16. 22.(2)只需算出航线上与P 点最近距离为多少即可 过点P 作PH ⊥AB 于点H在Rt △APH 中,∠PAH=30°,在Rt △BPH 中,∠PBH=30°,BH=3PH ∴AB=AH算出25,不会进入暗礁区,继续航行仍然安全. 23.(1)连接OC ,则OC ⊥AB∵∴∠AOC =∠BOC 在△AOC 和△BOC 中,90AOC BOC OC OCOCA OCB ⎧∠=∠⎪=⎨⎪∠=∠=⎩∴△AOC≌△BOC(ASA ) ∴AO=BO24.(1)设一件A 型商品的进价为x 元,则B 型商品的进价为(x-10)元,然后根据“用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍”列分式方程求解即可;(2)设A 型商品m 件,B 型商品(250-m )件,然后根据“欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件”列不等式,根据利润=售价-进价即可求解函数的解析式;(2)设A 型商品m 件,B 型商品(250-m )件,则80250(240160)(220150)(250)m my m m -⎧⎨=-+--⎩≤≤ 解得80≤m ≤125函数关系式为:y=10m+17500(80≤m ≤125) (3)y=10m+17500-ma=(10-a )m+17500当0<a <10时,y 随m 的增大而增大,当m=125时利润最大,y max =1250-125a+17500=18750-125a 当a=10时,y=17500,y max = 17500当a >10时,y 随m 的增大而减小,当m=80时,利润最大,y max =800-80a+17500=18300-80a 25.(1)由已知1<2<3∴111123>>又∵1≠11+23∴1,2,3不可以构成“和谐三组数”(2)M (t ,k t ),N (t+1,1k t +),R (t+3,3k t +) k t ,1k t +,3k t +组成“和谐三组数” ①若k t =1k t ++3k t +,得t=-4②若13t t t k k k ++=+,得t=-2 ③若31t t t k k k++=+,得t=2 综上,t=-4,-2或2∴2323231111x x b x x x x c x ++==-=⋅ ∴123x x x ,,构成“和谐三组数” ②∵x 2=1 ∴a+b+c =0 ∴c =-a-b∴OP=∵a>2b>3c∴-35<b<2a∴-35<ba<12令t=ba,p=22)2()1b ba a++(=2221t t++∵-35<t<12且t≠-1或0∴12<p<52且p≠1∴22OP<且OP≠111。
2017年湖南省长沙市中考数学试卷(含答案解析)

2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=.14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.62=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳米,方差分别是S甲定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•长沙)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)(2017•长沙)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)(2017•长沙)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•长沙)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)(2017•长沙)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)(2017•长沙)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)(2017•长沙)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)(2017•长沙)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)(2017•长沙)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)(2017•长沙)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•长沙)分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2017•长沙)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)(2017•长沙)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)(2017•长沙)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)(2017•长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)(2017•长沙)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•长沙)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)(2017•长沙)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•长沙)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A60≤x<70170.17B70≤x<8030aC80≤x<90b0.45D90≤x<10080.08请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2017•长沙)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)(2017•长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S=2﹣π阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)(2017•长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A 型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)(2017•长沙)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)(2017•长沙)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.。
中考数学二轮复习专题二解答重难点题型突破题型六二次函数与几何图形综合题课件

1 (3)存在,设 M(n,2n-2),①以 BD 为对角线,如解图①, 4+5 9 1 ∵四边形 BNDM 是菱形,∴MN 垂直平分 BD,∴n= 2 ,∴M(2,4), 9 1 ∵M,N 关于 x 轴对称,∴N(2,-4);
②以 BD 为边,如解图②, ∵四边形 BNMD 是菱形,∴MN∥BD,MN=BD=MD=1, 过 M 作 MH⊥x 轴于 H,∴MH2+DH2=DM2, 1 28 23 4 即(2n-2)2+(n-5)2=12,∴n1=4(不合题意),n2= 5 ,∴N( 5 ,5), 1 2 5 2 5 同理(2n-2)2+(4-n)2=1,∴n1=4+ 5 (不合题意,舍去),n2=4- 5 , 2 5 5 ∴N(5- 5 ,- 5 ),
【对应训练】
1.(2017·新乡模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为 Q(2,-1),且与y轴交于点 C(0,3),与x轴交于 A,B两点(点A 在点B的右 侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重 合),过点P作PD∥y轴,交AC于点D. (1)求该抛物线的解析式; (2)当△ADP是直角三角形时,求点P的坐标;
∴y=(x-2)2-1,即y=x2-4x+3;
(2)分两种情况: ①当点P1为直角顶点时,点P1与点B重合; 令y=0,得x2-4x+3=0,解得x1=1,x2=3; ∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);
②当点 A 为△AP2D2 的直角顶点时; ∵OA=OC,∠AOC=90° ,∴∠OAD2=45° ; 当∠D2AP2=90° 时,∠OAP2=45° ,∴AO 平分∠D2AP2; 又∵P2D2∥y 轴,∴P2D2⊥AO,∴P2、D2 关于 x 轴对称; 设直线 AC 的函数关系式为 y=kx+b(k≠0).
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题试题-人教版初中九年级

题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
2017年湖南省长沙市中考数学试卷
B. π
2.下列计算正确的是
A. 2 3 5
C. x(1 y) x xy
C. 3 2
B. a 2a 2a2 D. (mn2 )2 mn4
() D.1
()
3.据国家旅游局统计,2017 年端午小长假全国各大景点共接待游客约为 82 600 000 人次.
上
数据 82 600 000 用科学记数法表示为
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------------
13.分解因式: 2a2 4a 2
.
14.方程组
x y 1, 3x y 3
的解是
.
15.如图, AB 为 O 的直径,弦 CD AB 于点 E ,已知 CD 6,
EB 1,则 O 的半径为
.
16.如图, △ABO 三个顶点的坐标分别为 A(2, 4) , B(6,0) , O(0,0)
AB 折叠后与边 BC 交于点 G .设正方形 ABCD 的周长为 m ,
△CHG 的周长为 n ,则 n 的值为 m
()
A. 2
B. 1
2
2
C. 5 1 2
D.随 H 点位置的变化而变化
湖南省长沙市2017年中考数学试题(含答案)
2017年长沙市初中毕业学业水平考试数学试卷一、选择题:1.下列实数中,为有理数的是( )A .3B .πC .32D .12.下列计算正确的是( )A .532=+B .222a a a =+C .xy x y x +=+)1(D .632)(mn mn =3.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A .锐角三角形B .之直角三角形C .钝角三角形D .等腰直角三角形6.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .“367人中有2人同月同日生”为必然事件7.某几何体的三视图如图所示,因此几何体是( )A .长方形B .圆柱C .球D .正三棱柱8.抛物线4)3(22+-=x y 的顶点坐标是( )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(9.如图,已知直线b a //,直线c 分别与b a ,相交,01101=∠,则2∠的度数为( )A .060B .070C .080D .011010.如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 2011.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( )A .24里B .12里C .6里D .3里12.如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化二、填空题13.分解因式:=++2422a a . 14.方程组⎩⎨⎧=-=+331y x y x 的解是 . 15.如图,AB 为⊙O 的直径,弦AB CD ⊥于点E ,已知1,6==EB CD ,则⊙O 的半径为 .16.如图,ABO ∆三个顶点的坐标分别为)0,0(),0,6(),4,2(C B A ,以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到O B A ''∆,已知点'B 的坐标是)0,3(,则点'A 的坐标是 .17.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)18.如图,点M 是函数x y 3=与xk y =的图象在第一象限内的交点,4=OM ,则k 的值为 .三、解答题19.计算:100)31(30sin 2)2017(|3|-+--+-π 20.解不等式组⎩⎨⎧+>---≥)1(31592x x x x ,并把它的解集在数轴上表示出来.21.为了传承中华优秀的传统文化,市教育局决定开展“经典诵读进校园”活动,某校园团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表:请根据所给信息,解答以下问题:(1)表中=a ;=b ;(2)请计算扇形统计图中B 组对应的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列举法或树状图法求甲、乙两名同学都被选中的概率.22.为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东060方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东030方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.如图,AB 与⊙O 相切于C ,OB OA ,分别交⊙O 于点E D ,,CE CD =.(1)求证:OB OA =;(2)已知34=AB ,4=OA ,求阴影部分的面积.24.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润v 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.25.若三个非零实数z y x ,,满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数z y x ,,构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由.(2)若),1(),,1(),,(321y t M y t N y t M +-三点均在函数xk (k 为常数,0≠k )的图象上,且这三点的纵坐标321,,y y y 构成“和谐三数组”,求实数t 的值;(3)若直线)0(22≠+=bc c bx y 与x 轴交于点)0,(1x A ,与抛物线)0(332≠++=a c bx ax y 交于),(),,(3322y x C y x B 两点.①若OAC ∆为等腰直角三角形,求m 的值;②若对任意0>m ,E C ,两点总关于原点对称,求点D 的坐标(用含m 的式子表示);(3)当点D 运动到某一位置时,恰好使得OAD ODB ∠=∠,且点D 为线段AE 的中点,此时对于该抛物线上任意一点),(00y x P 总有503123461020---≥+y my n 成立,求实数n 的最小值.。
2017年湖南省长沙市中考数学试卷
2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC. D.12.(3分)下列计算正确的是()A.= B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为(). B.分)方程组的解是16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•长沙)下列实数中,为有理数的是()A.B.πC. D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)(2017•长沙)下列计算正确的是()A.= B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)(2017•长沙)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•长沙)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)(2017•长沙)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)(2017•长沙)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)(2017•长沙)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)(2017•长沙)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)(2017•长沙)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)(2017•长沙)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)(2017•长沙)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A. B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG 分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•长沙)分解因式:2a2【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,是解本题的关键.14.(3分)(2017•长沙)方程组的解是【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)(2017•长沙)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)(2017•长沙)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k是解题的关键.17.(3分)(2017•长沙)甲、乙两名同学进行跳高测试,每人成绩恰好是1.6米,方差分别是S甲2=1.2学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)(2017•长沙)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)(2017•长沙)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)(2017•长沙)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•长沙)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2017•长沙)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)(2017•长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE 的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2∴S=2﹣π阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)(2017•长沙)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)(2017•长沙)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)(2017•长沙)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.。
2017年湖南省长沙市中考数学试卷(含解析)(word文档良心出品)
2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=.14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,同学的成绩更稳定(填“甲”或“乙”)18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.20.(6分)解不等式组,并把它的解集在数轴上表示出来.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题:(1)表中a=,b=;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.2017年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.1【分析】根据有理数是有限小数或无限循环小数,无理数是无限不循环小数,可得答案.【解答】解:,π,是无理数,1是有理数,故选:D.【点评】本题考查了实数,正确区分有理数与无理数是解题关键.2.(3分)下列计算正确的是()A.=B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn6【分析】分别利用合并同类项法则以及单项式乘以多项式和积的乘方运算法则化简判断即可.【解答】解:A、+无法计算,故此选项错误;B、a+2a=3a,故此选项错误;C、x(1+y)=x+xy,正确;D、(mn2)3=m3n6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及单项式乘以多项式和积的乘方运算等知识,正确掌握运算法则是解题关键.3.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8.26×107C.82.6×106D.8.26×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将82600000用科学记数法表示为:8.26×107.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形 B.正五边形C.正方形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件【分析】根据可能性的大小、全面调查与抽样调查的定义及中位数概念、必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:A、检测某批次灯泡的使用寿命,调查具有破坏性,应采用抽样调查,此选项错误;B、可能性是1%的事件在一次试验中可能发生,此选项错误;C、数据3,5,4,1,﹣2的中位数是3,此选项错误;D、“367人中有2人同月同日出生”为必然事件,此选项正确;故选:D.【点评】本题主要考查可能性的大小、全面调查与抽样调查的定义及中位数概念、随机事件,熟练掌握基本定义是解题的关键.7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.【解答】解:从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是圆,这样的几何体是圆柱,故选B.【点评】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(2,4)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【解答】解:y=2(x﹣3)2+4是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(3,4).故选A.【点评】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60°B.70°C.80°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∴∠3=∠1=110°,∴∠2=180°﹣110°=70°,故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A.5cm B.10cm C.14cm D.20cm【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里 D.3里【分析】设第一天走了x里,则第二天走了x里,第三天走了×x…第六天走了()5x里,根据路程为378里列出方程并解答.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故选:C.【点评】本题考查了一元一次方程的应用.根据题意得到()5x里是解题的难点.12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B.C.D.随H点位置的变化而变化【分析】设CH=x,DE=y,则DH=﹣x,EH=﹣y,然后利用正方形的性质和折叠可以证明△DEH∽△CHG,利用相似三角形的对应边成比例可以把CG,HG分别用x,y分别表示,△CHG的周长也用x,y表示,然后在Rt△DEH中根据勾股定理可以得到x﹣x2=y,进而求出△CHG的周长.【解答】解:设CH=x,DE=y,则DH=﹣x,EH=﹣y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴==,即==,∴CG=,HG=,△CHG的周长为n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2即(﹣x)2+y2=(﹣y)2整理得﹣x2=,∴n=CH+HG+CG===.∴=.故选:B.【点评】本题考查翻折变换及正方形的性质,正方形的有些题目有时用代数的计算证明比用几何方法简单,甚至几何方法不能解决的用代数方法可以解决.本题综合考查了相似三角形的应用和正方形性质的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)方程组的解是.【分析】根据加减消元法,可得答案.【解答】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.【点评】本题考查了解二元一次方程组,利用加减消元法是解题关键.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为5.【分析】连接OC,由垂径定理知,点E是CD的中点,AE=CD,在直角△OCE 中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=5,∴⊙O的半径为5,故答案为:5.【点评】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是(1,2).【分析】根据位似变换的性质进行计算即可.【解答】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2),故答案为:(1,2).【点评】本题考查的是位似变换的性质,掌握平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k是解题的关键.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.2,S乙2=0.5,∴S甲>S乙,∴甲、乙两名同学成绩更稳定的是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.(3分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为4.【分析】作MN⊥x轴于N,得出M(x,x),在Rt△OMN中,由勾股定理得出方程,解方程求出x=2,得出M(2,2),即可求出k的值.【解答】解:作MN⊥x轴于N,如图所示:设M(x,y),∵点M是函数y=x与y=的图象在第一象限内的交点,∴M(x,x),在Rt△OMN中,由勾股定理得:x2+(x)2=42,解得:x=2,∴M(2,2),代入y=得:k=2×2=4;故答案为:4.【点评】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点M的坐标是解决问题的关键.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣3|+(π﹣2017)0﹣2sin30°+()﹣1.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3+1﹣1+3=6.【点评】此题考查了实数的运算,绝对值,以及零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.20.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x≥﹣9﹣x,得:x≥﹣3,解不等式5x﹣1>3(x+1),得:x>2,则不等式组的解集为x>2,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题:(1)表中a=0.3,b=45;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人),故答案为:0.3,45;(2)360°×0.3=108°,答:扇形统计图中B组对应扇形的圆心角为108°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.23.(9分)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.【分析】(1)连接OC,由切线的性质可知∠ACO=90°,由于=,所以∠AOC=∠BOC,从而可证明∠A=∠B,从而可知OA=OB;(2)由(1)可知:△AOB是等腰三角形,所以AC=2,从可求出扇形OCE的面积以及△OCB的面积【解答】解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影【点评】本题考查切线的性质,解题的关键是求证OA=OB,然后利用等腰三角形的三线合一定理求出BC与OC的长度,从而可知扇形OCE与△OCB的面积,本题属于中等题型.24.(9分)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三种情形讨论即可解决问题.【解答】解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.由题意:=×2,解得x=150,经检验x=150是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元.(2)因为客商购进A型商品m件,所以客商购进B型商品(250﹣m)件.由题意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,(3)设利润为w元.则w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,①当10﹣a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750﹣125a)元.②当10﹣a=0时,最大利润为17500元.③当10﹣a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300﹣80a)元.【点评】本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.25.(10分)若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c (a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.【分析】(1)由和谐三组数的定义进行验证即可;(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.【解答】解:(1)不能,理由如下:∵1、2、3的倒数分别为1、、,∴+≠1,1+≠,1+≠∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k ≠0)的图象上,∴y1、y2、y3均不为0,且y1=,y2=,y3=,∴=,=,=,∵y1,y2,y3构成“和谐三组数”,∴有以下三种情况:当=+时,则=+,即t=t+1+t+3,解得t=﹣4;当=+时,则=+,即t+1=t+t+3,解得t=﹣2;当=+时,则=+,即t+3=t+t+1,解得t=2;∴t的值为﹣4、﹣2或2;(3)①∵a、b、c均不为0,∴x1,x2,x3都不为0,∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),∴0=2bx1+2c,解得x1=﹣,联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,∴x2、x3是方程ax2+bx+c=0的两根,∴x2+x3=﹣,x2x3=,∴+===﹣=,∴x1,x2,x3构成“和谐三组数”;②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,)∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大值,当m=﹣时,OP2有最小值,当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小值,当m=时,OP2有最大值,∴≤OP2<且OP2≠1,∵P到原点的距离为非负数,∴≤OP<且OP≠1.【点评】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.26.(10分)如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 题型三 图形动态探究题 类型一 线段问题 针对演练
1. 在△ABC中,已知AB>AC,AD平分∠BAC交BC于点D,点E在DC的延长线上,过E作EF∥AB交AC的延长线于点F. (1)如图①,当DEBD=1时,求证:AF+EF=AB;
(2)如图②,当DEBD=2时,直接写出线段AF,EF,AB之间满足的数量关系:____________; (3)如图③,当DEBD=k时,请猜想线段AF,EF,AB之间满足的数量关系(含k),并证
明你的结论.
第1题图
2. (2016甘孜州)如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG2
的边DG和DE上,连接BG、AE. (1)求证:BG=AE; (2)将正方形DEFG绕点D旋转,当线段EG经过点A时(如图②所示). ①求证:BG⊥GE; ②设DG与AB交于点M,若AG∶AE=3∶4,求GMMD的值.
第2题图
3. (2016南平)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,3
点P是线段DE上一定点(其中EP(1)如图①,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G. ①求证:PG=PF; ②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论; (2)拓展:如图②,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;
若不成立,请写出它们所满足的数量关系式,并说明理由.
第3题图
4. (2016葫芦岛)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点4
A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF. (1)请直接写出线段AF,AE的数量关系______; (2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF、AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转.请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
第4题图
5. (2016达州)某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做5
了如下探究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF. (1)观察猜想 如图①,当点D在线段BC上时. ①BC与CF的位置关系为:____________; ②BC,CD,CF之间的数量关系为:____________;(将结论直接写在横线上) (2)数学思考 如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明; (3)拓展延伸 如图③,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=22,CD=14BC,请求出GE的长.
第5题图
6. (2016衡阳模拟)已知正方形ABCD中,点E为对角线BD上一点,过E点作EF⊥BD交BC于点F,连接DF,点G为DF的中点,连接EG,CG. 6
(1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF的中点G,连接EG、CG,问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由; (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
第6题图
类型二 图形形状问题 针对演练
1. (2014娄底)如图①,在△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们7
的速度均为1 cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题: (1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少? (2)如图②,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值; (3)当t为何值时,△APQ是等腰三角形?
第1题图
2. 已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O. (1)如图①,连接AF、CE.求证四边形AFCE为菱形,并求AF的长; (2)如图②,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A、C、P、Q四点为顶点的四边形是平8
行四边形时,求t的值. 第2题图
3. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接
EM并延长交AD于点F,设点E的运动时间为t秒.
(1)求四边形ABCD的面积; (2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由; (3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果9
不能,请说明理由. 第3题图
4. (2016名校招生试题)如图,已知OABC是一张放在平面直角坐标系中的矩形纸片,O为坐标原点,点A在x轴上,点C在y轴上,点B在第一象限,且OA=15,OC=9,在边AB上选取一点D,将△AOD沿OD翻折,使点A落在BC边上,记为点E. (1)求点E和点D的坐标; (2)在x轴、y轴上是否分别存在点M、N,使四边形MNED的周长最小?如果存在,求出点M、N的坐标及四边形MNED周长的最小值;如果不存在,请说明理由; (3)设点P在x轴上,以点O、E、P为顶点的三角形是等腰三角形,请直接写出所有满10
足条件的点P的坐标. 第4题图
5. (2016包头)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.
(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;
(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论; ②求EF的长; (3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=47,求AFBF的值. 11
第5题图 6. (2016镇江)如图①,在菱形ABCD中,AB=65,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒).将线段CE绕点C顺时针旋转一个角 α(α=∠BCD),得到对应线段CF. (1)求证:BE=DF; (2)当t=________秒时,DF的长度有最小值,最小值等于________; (3)如图②,连接BD、EF,BD交EC、EF于点P、Q.当t为何值时,△EPQ是直角三角形?
第6题图 12
7. (2017原创)已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB、OC为邻边作 OBFC,连接OF,与BC交于点H,再连接EF.
(1)如图①,若△ABC为等边三角形,求证:①EF⊥BC;②EF=3BC; (2)如图②,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果; (3)如图③,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.
第7题图 13
类型三 图形面积问题 针对演练
1. (2016梅州)如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.
(1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.
第1题图 14
2. 如图,在矩形ABCD中,AB=6 cm,BC=8 cm,动点M、N同时从点A出发,M点按折线A→C→B→A的路径以3 cm/s的速度运动,N点按折线A→C→D→A的路径以2 cm/s的速度运动.运动时间为t(s),当点M回到A点时,两点都停止运动. (1)求对角线AC的长; (2)经过几秒,以点A、C、M、N为顶点的四边形是平行四边形? (3)设△CMN的面积为S(cm2),求:当t >5时,S与t的函数关系式.