2017年中考数学试题分类汇编-13操作性问题(第3部分)(word原题及解析版)
山东省潍坊市2017年中考数学试题(word版,含答案)

⼭东省潍坊市2017年中考数学试题(word版,含答案)秘密★启⽤前试卷类型:A2017年潍坊市初中学业⽔平考试数学试题2017.06注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I卷为选择题,36分;第Ⅱ卷为⾮选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上⼀律⽆效.第Ⅰ卷(选择题共36分)⼀、选择题(本⼤题共12⼩题,在每个⼩题给出的四个选项中,只有⼀项是正确的,请把正确的选项选出来,每⼩题选对得3分,选错、不选或选出的答案超过⼀个均记0分)1.下列计算,正确的是().A.623aaa=B.33aaa=22aaa=+ D.422aa=)(2.如图所⽰的⼏何体,其俯视图是().3.可燃冰,学名叫“天然⽓⽔合物”,是⼀种⾼效清洁、储量巨⼤的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿⽤科学记数法可表⽰为().A.3101? B.8101000? C.11101? D.14101?4.⼩莹和⼩博⼠下棋,⼩莹执圆⼦,⼩博⼠执⽅⼦.如图,棋盘中⼼⽅⼦的位置⽤()0,1-表⽰,右下⾓⽅⼦的位置⽤()1,0-表⽰.⼩莹将第4枚圆⼦放⼊棋盘后,所有棋⼦构成⼀个轴对称图形.她放的位置是().A.()1,2-B.()1,1-C.()2,1-D.()2,1--5.⽤教材中的计算器依次按键如下,显⽰的结果在数轴上对应点的位置介于()之间.B.C与D C、E与F D、A与B6.如图,?=∠90BCD,DEAB//,则α∠与β∠满⾜()A. ?=∠+∠180βα B.?=∠-∠90αβC.αβ∠=∠3 D.?=∠+∠90βα7.甲、⼄、丙、丁四名射击运动员在选拔赛中,每⼈射击了10次、甲、⼄两⼈的成绩如表所⽰,丙、丁两⼈的成绩如图所⽰.欲选⼀名运动员参赛,从平均数和⽅差两个因丙 D. 丁8.⼀次函数baxy+=与反⽐例函数xbay-=,其中0<ab,ba、为常数,它们在同⼀坐标系中的图象可以是().9.若代数式12--xx有意义,则实数x的取值范围是().A.1≥x B.2≥x C.1>x D.2>x10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,CD AO⊥,垂⾜为E,连接BD,?=∠50GBC,则DBC∠的度数为().A.50°B.60°C.80°D.85°11.定义[]x表⽰不超过实数x的最⼤整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所⽰,则⽅程[]221xx=的解为().A.0或2B.0或2C.1或2- D.2或2-12.点CA、为半径是3的圆周上两点,点B为CA的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为().A.5或22 B.5或32 C.6或22第Ⅱ卷(⾮选择题共84分)说明:将第Ⅱ卷答案⽤0.5mm的⿊⾊签字笔答在答题卡的相应位置上.⼆、填空题(本⼤题共6⼩题,共18分,只要求填写最后结果,每⼩题填对得3分)13.计算:=--÷--12)111(2xxx.14.因式分解:=-+-)2(22xxx .15.如图,在ABC中,ACD、分别为边AB、AC上的点,ADAC3=,AEAB3=,点F为BC边上⼀点,添加⼀个条件: ,可以使得FDB与ADE相似.(只需写出⼀个)16.已知关于x的⼀元⼆次⽅程0122=+-xkx有实数根,则k的取值范围是 .17.如图,⾃左⾄右,第1个图由1个正六边形、6个正⽅形和6个等边三⾓形组成;第2个图由2个正六边形、11个正⽅形和10个等边三⾓形组成;第3个图由3个正六边形、16个正⽅形和14个等边三⾓形组成;…按照此规律,第n个图中正⽅形和等边三⾓形的个数之和为个.18.如图,将⼀张矩形纸⽚ABCD的边BC斜着向AD边对折,使点B落在D上,记为B',折痕为CE;再将CD边斜向下对折,使点D落在CB'上,记为D',折痕为CG,2=''DB,BCBE31=.则矩形纸⽚ABCD的⾯积为 .三、解答题(本⼤题共7⼩题,共66分.解答要写出必要的⽂字说明、证明过程或演算步骤)19.(本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进⾏了1000⽶跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男⽣,请估计成绩未达到良好有多少名?(3)某班甲、⼄两位成绩优秀的同学被选中参加即将举⾏的学校运动会1000⽶⽐赛,预赛分为A、B、C三组进⾏,选⼿由抽签确定分组.甲、⼄两⼈恰好分在同⼀组的概率是多少?20.(本题满分8分)如图,某数学兴趣⼩组要测量⼀栋五层居民楼CD 的⾼度.该楼底层为车库,⾼2.5⽶;上⾯五层居住,每层⾼度相等.测⾓仪⽀架离地1.5⽶,在A 处测得五楼顶部点D 的仰⾓为?60,在B 处测得四楼顶部点E 的仰⾓为?30,14=AB ⽶.求居民楼的⾼度(精确到0.1⽶,参考数据:3≈1.73).21.(本题满分8分)某蔬菜加⼯公司先后两批次收购蒜薹(tai )共100吨.第⼀批蒜薹价格为4000元/吨;因蒜薹⼤量上市,第⼆批价格跌⾄1000元/吨,这两批蒜薹共⽤去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进⾏加⼯,分为粗加⼯和精加⼯两种粗加⼯每吨利润400元,精加⼯每吨利润1000元.要求精加⼯数量不多于粗加⼯数量的三倍.为获得最⼤利润,精加⼯数量应为多少吨?最⼤利润是多少?22.(本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的⼀条弦,D 为C B的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若36==DF DA ,求阴影区域的⾯积.(结果保留根号和π)23.(本题满分9分)⼯⼈师傅⽤⼀块长为10dm ,宽为6dm 的矩形铁⽪制作⼀个⽆盖的长⽅体容器,需要将四⾓各裁掉⼀个正⽅形,(厚度不计)(1)在图中画出裁剪⽰意图,⽤实线表⽰裁剪线,虚线表⽰折痕;并求长⽅体底⾯⾯积为212dm 时,裁掉的正⽅形边长多⼤?(2)若要求制作的长⽅体的底⾯长不⼤于底⾯宽的五倍,并将容器进⾏防锈处理,侧⾯每平⽅分⽶的费⽤为0.5元,底⾯每平⽅分⽶的费⽤为2元,裁掉的正⽅形边长多⼤时,总费⽤最低,最低为多少?24.(本题满分12分)边长为6的等边ABC ?中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l )如图1,将DEC ?沿射线EC ⽅向平移,得到C E D '''?,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的⾓平分线交于点N .当C C '多⼤时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ?绕点C 旋转α(?<①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最⼤时,求D A '的值.(结果保留根号)25.(本题满分13分)如图1,抛物线c bx ax y ++=2经过平⾏四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另⼀交点为E .经过点E 的直线l 将平⾏四边形ABCD 分割为⾯积相等的两部分,与抛物线交于另⼀点P .点P 为直线l 上⽅抛物线上⼀动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,PFE ?的⾯积最⼤?并求最⼤值的⽴⽅根;(3)是否存在点P 使PAE ?为直⾓三⾓形?若存在,求出t 的值;若不存在,说明理由.。
四川省泸州市2017年中考数学试题(word版,含答案)

四川省泸州市2017年中考数学试题(word 版含答案)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7-的绝对值为( ) A .7 B .7- C .17 D .17- 2. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A .356710⨯ B .456.710⨯ C .55.6710⨯ D .60.56710⨯ 3. 下列各式计算正确的是( )A .236x x x ⋅=B .32x x x -=C .2(2)4x x =D .623x x x ÷= 4. 下图是一个由4个相同的正方体组成的立体图形,它的左视图是( )5. 已知点(,1)A a 与点(4,)B b -关于原点对称,则a b +的值为( ) A .5 B .5- C .3 D .3-6. 如图,AB 是O 的直径,弦CD AB ⊥于点E ,若8,1AB AE ==,则弦CD 的长是( )A .7B .27C .6D .87. 下列命题是真命题的是( ) A .四边都相等的四边形是矩形 B .菱形的对角线相等C .对角线互相垂直的平行四边形是正方形D .对角线相等的平行四边形是矩形8. 下列曲线中不能表示y 是x 的函数的是( )9. 已知三角形的三遍长分别为,,a b c ,求其面积问题,中外数学家曾经进行过深入的研究,故希腊的几何学甲海伦给出求其面积的海伦公式()()()S p p a p b p c =---,其中2a b cp ++=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式222221()22a b c S a b +-=-,若一个三角形的三边分别为2,3,4,其面积是 ( ) A .3158 B .3154 C .3152 D .15211.如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( ) A .24 B .14 C .13 D .2312. 已知抛物线214y x =具有如下性质:给抛物线上任意一点到定点(0,2)F 的距离与到x 轴的距离相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一动点,则PMF∆周长的最小值是( )A .3B .4C .5D .6第Ⅱ卷(共90分)二、填空题(每题4分,满分12分,将答案填在答题纸上)13.在一个不透明的袋子中赚够4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是 . 14.分解因式:228m -= . 15.关于x 的分式方程2322x m mx x++=--的解为正实数,则实数m 的取值范围是 .16.在ABC ∆中,已知BD 和CE 分别是边,AC AB 上的中线,且BD CE ⊥,垂足为O , 若2,4OD cm OE cm ==,则线段AO 的长为 cm .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 计算:200(3)201718sin 45-+-⨯18. 如图,点,,,A F C D 在同一直线上,已知,,//AF DC A D BC EF =∠=∠,.求证:AB DE =.19.化简:2225(1)14x x x x -+⋅++- . 四、本大题共2小题,每小题7分,共14分20. 某单位750名职工积极参加项贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5A B C D E表示,根据统计数据绘制了如图所示的不本、6本、7本、8本五类,分别用,,,,完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.某种为打造书香校园,计划购进甲乙两种规格的书柜放置新苟静的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4320元,请设计几种购买方案供这个学校选择.五、本大题共2小题,每小题8分,共16分.22.如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的30方向上;求该渔船此时与小岛C之间的距离.北偏东23.一次函数)0(≠+=k b kx y 的图象经过点)6,2(-A ,且与反比例函数xy 12-=的图象 交于点)4,(a B(1)求一次函数的解析式;(2)将直线AB 向上平移10个单位后得到直线l :),0(1111≠+=k b x k y l 与反比例函数xy 62=的图象相交,求使21y y <成立的x 的取值范围.六、本大题共两个小题,每小题12分,共24分24.如图,⊙O 与ABC Rt ∆的直角边AC 和斜边AB 分别相切于 点;,D C 与边BC 相交于点F ,OA 与CD 相交于点E , 连接FE 并延长交AC 边于点G . (1)求证:DF //AO(2)若,10,6==AB AC 求CG 的长.25.如图,已知二次函数)0(2≠++=a c bx ax y 的图象经过)2,0(),0,4(),0,1(C B A -三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足CAO DBA ∠=∠(O 是坐标原点),求点D的坐标;(3)点P 是该二次函数图象上位于一象限上 的一动点,连接PA 分别交y BC ,轴与点,,F E若CEF PEB ∆∆,的面积分别为,,21S S 求21S S -的最大值.泸州市二0一七年高中阶段学校招生考试数学试题参考答案一.选择题答案题号1 2 3 4 5 6 7 8 9 10 11 12 选项 A CBDCBDCBDAC二.填空题 13. 3114. )2)(2(2-+m m 15. 26≠<m m 且 16. 54 三.17.解:原式=9+172223=⨯- 18.证明: BC //EF⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆=+=+∴=∠=∠∴DFE ACB DE AC D A DEF ABC DF AC FCDC FC AF DC AF DFE ACB 中与在即:又DEAB ASA DEF ABC =∴∆≅∆∴)(21)2)(2()1(12)4524(12.19222++=+-+⋅+-=-++-⋅+-=x x x x x x x x x x x x 解:原式 四.20.解(1)捐D 累书的人数为:8396430=---- 补图如上(2)众数为:6 中位数为:6 平均数为:6)3887966544(301=⨯+⨯+⨯+⨯+⨯=x 45006750:)3(=⨯21.(1)解:设甲种书柜单价为x 元,乙种书柜的单价为y 元,由题意得:⎩⎨⎧=+=+144034102023y x y x 解之得:⎩⎨⎧==240180y x 答:设甲种书柜单价为180元,乙种书柜的单价为240元.(2)设甲种书柜购买m 个,则乙种书柜购买(m -20)个;由题意得:⎩⎨⎧≤-+≥-4320)20(24018020m m m m 解之得:108≤≤m 因为m 取整数,所以m 可以取的值为:8,9,10 即:学校的购买方案有以下三种: 方案一:甲种书柜8个,乙种书柜12个, 方案二:甲种书柜9个,乙种书柜11个, 方案三:甲种书柜10个,乙种书柜10个. 五.22.解:过点C 作AB CD ⊥于点D ,由题意得: ,30 =∠BCD 设,x BC =则:x BC BD BCD Rt 2130sin ==∆ 中:在,x BC CD 2330cos == ; x AD 2130+=∴ 222t AC CD AD ACD R =+∆∴中,在,即:22270)23()230(=++x x解之得:)(80,5021舍去-==x x答:渔船此时与C 岛之间的距离为50海里. 23.(1)解:由题意得:3,124-=-=a a 即: )4,3(-∴B,4362⎩⎨⎧=+--=+∴b k b k 解之得:⎩⎨⎧-=-=22b k 所以一次函数的解析式为:22--=x y(2)直线AB 向上平移10个单位后得直线l 的解析式为:82+-=x y ;⎪⎩⎪⎨⎧=+-=x y x y 682联立:得:x x 682=+-; 解之得:3,121==x x由图可知:21y y <成立的x 的取值范围为:310><<x x 或24.(1)证明:AB 与o Θ相切与点D BDF BCD ∠=∠∴ (弦切角定理) 又AC 与o Θ相切与点C由切线长定理得:;,DAO CAO AD AC ∠=∠=AO CD ⊥∴,;BDF DAO DAO CAO BCD ∠=∠∴∠=∠=∠∴即:DF //AO(2):过点E 作OC EM ⊥与M88,622=-=∴==AC AB BC AB AC4,6=-=∴==AD AB BD AC AD∴由切割线定理得:BC BF BD ⋅=2,解得:;2=BF ;321,6===-=∴FC OC BF BC FC 5322=+=∴OC AC OA由射影定理得:553,2=⋅=OE OA OE OC 解之得:235;5366.3;518;56,53;51==∴===∴=+===∴===∴EM CG FC FM CG EM OM OF FM EM OM OA OE OC OM AC EM25.解(1)由题意得:设抛物线的解析式为:)4)(1(-+=x x a y ; 因为抛物线图像过点)2,0(C ,,24=-∴a 解得21-=a所以抛物线的解析式为:)4)(1(21-+-=x x y 即:223212++-=x x y (2)设BD 直线与y 轴的交点为),0(t M8,24;2tan tan ;,±==∴=∠=∠∴∠=∠∴∠=∠t t CAO MBA CAO MBA CAO DBA 即:当8=t 时,直线BD 解析式为:82+-=x y⎩⎨⎧==⎩⎨⎧==⎪⎩⎪⎨⎧++-=+-=23,04,223218222112y x y x x x y x y 解得:联立 所以,点)2,3(D当8-=t 时,直线BD 解析式为:82-=x y⎩⎨⎧-=-=⎩⎨⎧==⎪⎩⎪⎨⎧++-=-=185,04,223218222112y x y x x x y x y 解得:联立 所以,点)18,5(--D综上:满足条件的点D 有:),2,3(1D )18,5(2--D(3):过点P 作PH//y 轴交BC 直线于点H ,设)22321,(2++-y t t P BC 直线的解析式为221+-=x y 故:)221,(+-t t H ;2212t t y y PH H p +-=-=∴AP 直线的解析式为:;2120),1)(221(t y x x t y -==++-=得:取故:;21)212(2),212,0(t t CF t F =--=-;5,221)1)(22(t t x x y x t y E -=⎪⎩⎪⎨⎧+-=+-=解之得:联立)55)(221(21))((2121t t t t x x y y S E B H P --+-=--=∴;tt t S -⋅⋅=52212ttt t t t t S S ----+-=-∴5221)55)(221(21221即:;625)35(235232221+--=+-=-t t t S S 所以,当35=t 时,21S S -有最大值,最大值为:625.。
2017届中考数学复习专题练习13

知识改变命运课题 二次函数的定义一、基础过关题1、已知c bx ax y ++=2(其中a 、b 、c 为常数),当a_______时,是二次函数;当a______,b_______时,是一次函数;当a_______,b_______,c_______时是正比例函数。
2、4)1(22+-=x y 的一般式是_________,其中二次项系数是_________,常数项是_________.3、已知函数y=(k+2)24k k x +-是关于x 的二次函数,则k=________.4、若y=(2-m)22m x -是二次函数,则m 等于________.5、已知正方形的周长是Ccm,面积为Scm2,则S 与C 之间的函数关系式为_____.6、用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.7、在边长为4m 的正方形中间挖去一个长为xm 的小正方形, 剩下的四方框形的面积为y,则y 与x 间的函数关系式为_________.8、下列具有二次函数关系的是( )A.正方形周长与边长B.速度一定时,路程s 与时间tC .三角形的高一定时,面积与边长 D.正方形的面积与边长9、下列函数中,不是二次函数的是( ) A 、221x y -= B 、4)1(22+-=x y C 、)1)(1(21+-=x x y D 、22)2(x x y --=10、下列结论正确的是( )A.二次函数中两个变量的值是非零实数;B.二次函数中变量x 的值是所有实数;C.形如y=ax2+bx+c 的函数叫二次函数;D.二次函数y=ax2+bx+c 中a,b,c 的值均不能为零11、已知函数2222)(+-+=m m x m m y(1)、当函数是二次函数时,求m 的值。
(2)当函数是一次函数时求m 的值。
知识改变命运12、已知函数1)23()4(222--+-+-=m x m m x m y 。
(完整word版)2017年云南省中考数学试卷(含答案解析版),推荐文档

2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x +a +5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD+DE+AE AB+BC+AC= .4.(3分)使√9−x 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5x上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 .二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108 8.(4分)下面长方体的主视图(主视图也称正视图)是( )A .B .C .D .9.(4分)下列计算正确的是( )A .2a ×3a=5aB .(﹣2a )3=﹣6a 3C .6a ÷2a=3aD .(﹣a 3)2=a 610.(4分)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形11.(4分)sin60°的值为( )A .√3B .√32 C .√22 D .1212.(4分)下列说法正确的是( ) A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 13.(4分)正如我们小学学过的圆锥体积公式V=13πr 2h (π表示圆周率,r 表示圆锥的地面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习. 下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于( )A .5√3πB .5√3C .3√3πD .3√314.(4分)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2.【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC=13.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AD+DE+AE AB+BC+AC =13. 故答案为:13. 【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使√9−x 有意义的x 的取值范围为 x ≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x ≥0.【解答】解:依题意得:9﹣x ≥0.解得x ≤9.故答案是:x ≤9.【点评】考查了二次根式的意义和性质.概念:式子√a (a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC2+CF2=2√2则阴影部分面积=12S⊙O+S△HGF=12•π•22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x +5或y=﹣15x +1 . 【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a 、b 都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A (a ,b )在双曲线y=5x上, ∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y=mx +n .①当a=1,b=5时,由题意,得{m +n =0n =5,解得{m =−5n =5, ∴y=﹣5x +5;②当a=5,b=1时,由题意,得{5m +n =0n =1,解得{m =−15n =1, ∴y=﹣15x +1. 则所求解析式为y=﹣5x +5或y=﹣15x +1. 故答案为y=﹣5x +5或y=﹣15x +1. 【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a 、b 的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A )原式=6a 2,故A 错误;(B )原式=﹣8a 3,故B 错误;(C )原式=3,故C 错误;故选(D )【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n 边形,内角和是(n ﹣2)•180°,这样就得到一个关于n 的方程组,从而求出边数n 的值.【解答】解:设这个多边形是n 边形,则(n ﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C .【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为( )A .√3B .√32C .√22D .12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√32. 故选B .【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3πB.5√3 C.3√3πD.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180πR180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=√3r,∵圆锥的体积等于9√3π∴9√3π=13πr2h,∴r=3,∴h=3√3故选(D)【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A 交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=180°−40°2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF .【考点】KD :全等三角形的判定与性质.【分析】先证明△ABC ≌△DEF ,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF ,∴BE +EC=CF +EC ,∴BC=EF ,在△ABC 与△DEF 中,{AB =DE BC =EF AC =DF∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4; (2)第n 个等式是:(n+1)2−n 2−12=n ,证明:∵(n+1)2−n2−12=[(n+1)+n][(n+1)−n]−12=2n+1−12=2n 2=n,∴第n个等式是:(n+1)2−n2−12=n.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x +20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克, (1000x+2)×2x=2400 整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x +20×0.5x ≥1000+2400+950整理,可得:290x ≥4350解得x ≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P .【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=13. 【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC 是以BC 为底的等腰三角形,AD 是边BC 上的高,点E 、F 分别是AB 、AC 的中点.(1)求证:四边形AEDF 是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S .【考点】LA :菱形的判定与性质;KH :等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE ,DF=12AC=AF ,再根据AB=AC ,点E 、F 分别是AB 、AC 的中点,即可得到AE=AF=DE=DF ,进而判定四边形AEDF 是菱形;(2)设EF=x ,AD=y ,则x +y=7,进而得到x 2+2xy +y 2=49,再根据Rt △AOE 中,AO 2+EO 2=AE 2,得到x 2+y 2=36,据此可得xy=132,进而得到菱形AEDF 的面积S . 【解答】解:(1)∵AD ⊥BC ,点E 、F 分别是AB 、AC 的中点,∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵菱形AEDF 的周长为12,∴AE=3,设EF=x ,AD=y ,则x +y=7,∴x 2+2xy +y 2=49,①∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y )2+(12x )2=32, 即x 2+y 2=36,②把②代入①,可得2xy=13,∴xy=132, ∴菱形AEDF 的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.【考点】HA :抛物线与x 轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x ﹣3)2+8,由此求出b 、c 即可解决问题.(2)设M (m ,n ),由题意12•3•|n |=9,可得n=±6,分两种情形列出方程求出m 的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x ﹣3)2+8=﹣2x 2+12x ﹣10,∴b=12,c=﹣10,∴b +2c +8=12﹣20+8=0,∴不等式b +2c +8≥0成立.(2)设M (m ,n ),由题意12•3•|n |=9, ∴n=±6,①当n=6时,6=﹣2m 2+12m ﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m 2+12m ﹣10,解得m=3±√7,∴满足条件的点M 的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x 轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.【考点】MR :圆的综合题.【分析】(1)连接OC ,根据等腰三角形的性质得到∠A=∠OCA ,由平行线的性质得到∠A=∠BOP ,∠ACO=∠COP ,等量代换得到∠COP=∠BOP ,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O 作OD ⊥AC 于D ,根据相似三角形的性质得到CD•OP=OC 2,根据已知条件得到OC OP =√33,由三角函数的定义即可得到结论; (3)连接BC ,根据勾股定理得到BC=√AB 2−AC =12,当M 与A 重合时,得到d +f=12,当M 与B 重合时,得到d +f=9,于是得到结论.【解答】解:(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP ,。
2017年台湾中考数学试题含答案解析(Word版)

台湾省2017年中考数学试题(解析版)一、选择题(本大题共26小题)1.(2017•台湾)算式(﹣2)×|﹣5|﹣|﹣3|之值为何()A.13 B.7 C.﹣13 D.﹣7【分析】原式先计算绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣2×5﹣3=﹣10﹣3=﹣13,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(2017•台湾)下列哪一个选项中的等式成立()A.=2 B.=3 C.=4 D.=5【分析】根据二次根式的性质和化简方法,逐项判断即可.【解答】解:∵=2,∴选项A符合题意;∵=3,∴选项B不符合题意;∵=16,∴选项C不符合题意;∵=25,∴选项D不符合题意.故选:A.【点评】此题主要考查了二次根式的性质和化简,要熟练掌握,化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.(2017•台湾)计算6x•(3﹣2x)的结果,与下列哪一个式子相同()A.﹣12x2+18x B.﹣12x2+3 C.16x D.6x【分析】根据单项式乘以多项式法则可得.【解答】解:6x•(3﹣2x)=18x﹣12x2,故选:A.【点评】本题主要考查整式的乘法,熟练掌握单项式乘以多项式的法则是解题的关键.4.(2017•台湾)若阿光以四种不同的方式连接正六边形ABCDEF的两条对角线,连接后的情形如下列选项中的图形所示,则下列哪一个图形不是轴对称图形()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.5.(2017•台湾)已知坐标平面上有两直线相交于一点(2,a),且两直线的方程式分别为2x+3y=7,3x﹣2y=b,其中a,b为两数,求a+b之值为何()A.1 B.﹣1 C.5 D.﹣5【分析】把问题转化为关于a、b的方程组即可解决问题.【解答】解:由题意,解得,∴a+b=5,故选C.【点评】本题考查两条直线相交或平行的性质,二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题.6.(2017•台湾)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.【分析】根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.【解答】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是=;故选B.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.7.(2017•台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离【分析】根据圆和圆的位置与两圆的圆心距、半径的数量之间的关系,即可判定.【解答】解:∵AC=5>2+2,即AC>R A+R B,∴⊙A与⊙C外离,∵BC=4=2+2,即BC=R B+R C,∴⊙B与⊙C相切.故选C.【点评】本题考查圆与圆的位置关系,记住:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r)是解题的关键.8.(2017•台湾)下列选项中所表示的数,哪一个与252的最大公因数为42()A.2×3×52×72B.2×32×5×72C.22×3×52×7 D.22×32×5×7【分析】先将42与252分别分解质因数,再找到与252的最大公因数为42的数即可.【解答】解:∵42=2×3×7,252=22×32×7,∴2×3×52×72与252的最大公因数为42.故选:A.【点评】考查了有理数的乘方,有理数的乘法,关键是将42与252分解质因数.9.(2017•台湾)某高中的篮球队球员中,一、二年级的成员共有8人,三年级的成员有3人,一、二年级的成员身高(单位:公分)如下:172,172,174,174,176,176,178,178若队中所有成员的平均身高为178公分,则队中三年级成员的平均身高为几公分()A.178 B.181 C.183 D.186【分析】先求出一、二年级的成员的总共身高,再根据总数=平均数×数量可求一、二、三年级的成员的总共身高,依此可求三年级成员的总共身高,再除以3即可求解.【解答】解:172+172+174+174+176+176+178+178=1400(公分),(178×11﹣1400)÷3=(1958﹣1400)÷3=186(公分).答:队中三年级成员的平均身高为186公分.故选:D.【点评】考查了平均数问题,关键是熟练掌握平均数的计算公式.10.(2017•台湾)已知在卡乐芙超市内购物总金额超过190元时,购物总金额有打八折的优惠,安妮带200元到卡乐芙超市买棒棒糖.若棒棒糖每根9元,则她最多可买多少根棒棒糖()A.22 B.23 C.27 D.28【分析】设买x根棒棒糖,根据题意列出不等式,解不等式即可.【解答】解:设买x根棒棒糖,由题意得,9x×0.8≤200,解得,x≤,∴她最多可买27根棒棒糖,故选:C.【点评】本题考查的是一元一次不等式的应用,根据题意正确列出不等式、并正确解出不等式是解题的关键.11.(2017•台湾)如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC的面积比为()A.3:5 B.4:5 C.9:10 D.15:16【分析】根据三角形面积求法进而得出S△BDC :S△ADC=3:2,S△BDE:S△DCE=3:2,即可得出答案.【解答】解:∵AD:DB=CE:EB=2:3,∴S△BDC :S△ADC=3:2,S△BDE:S△DCE=3:2,∴设S△BDC =3x,则S△ADC=2x,S△BED=1.8x,S△DCE=1.2x,故△DBE与△ADC的面积比为:1.8x:2x=9:10.故选:C.【点评】此题主要考查了三角形面积求法,正确利用三角形边长关系得出面积比是解题关键.12.(2017•台湾)一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()A.20 B.12 C.﹣12 D.﹣20【分析】将一元二次方程式x2﹣8x=48配方,可求a、b,再代入代数式即可求解.【解答】解:x2﹣8x=48,x2﹣8x+16=48+16,(x﹣4)2=48+16,a=4,b=16,a+b=20.故选:A.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.(2017•台湾)已知坐标平面上有一长方形ABCD,其坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),今固定B点并将此长方形依顺时针方向旋转,如图所示.若旋转后C点的坐标为(3,0),则旋转后D点的坐标为何()A.(2,2) B.(2,3) C.(3,3) D.(3,2)【分析】先根据旋转后C点的坐标为(3,0),得出点C落在x轴上,再根据AC=3,DC=2,即可得到点D的坐标为(3,2).【解答】解:∵旋转后C点的坐标为(3,0),∴点C落在x轴上,∴此时AC=3,DC=2,∴点D的坐标为(3,2),故选:D.【点评】本题主要考查了旋转的性质以及矩形的性质的运用,解题时注意:矩形的四个角都是直角,对边相等.14.(2017•台湾)如图为平面上五条直线L1,L2,L3,L4,L5相交的情形,根据图中标示的角度,判断下列叙述何者正确()A.L1和L3平行,L2和L3平行B.L1和L3平行,L2和L3不平行C.L1和L3不平行,L2和L3平行D.L1和L3不平行,L2和L3不平行【分析】根据同旁内角不互补,可得两直线不平行;根据内错角相等,可得两直线平行.【解答】解:∵92°+92°≠180°,∴L1和L3不平行,∵88°=88°,∴L2和L3平行,故选:C.【点评】本题主要考查了平行线的判定,解题时注意:同旁内角互补,两直线平行;内错角相等,两直线平行.15.(2017•台湾)威立到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若威立先买了9粒虾仁水饺,则他身上剩下的钱恰好可买多少粒韭菜水饺()A.6 B.8 C.9 D.12【分析】可设1粒虾仁水饺为x元,1粒韭菜水饺为y元,由题意可得到y与x 之间的关系式,再利用整体思想可求得答案.【解答】解:设1粒虾仁水饺为x元,1粒韭菜水饺为y元,则由题意可得15x=20y,∴3x=4y,∴15x﹣9x=6x=2×3x=2×4y=8y,∴他身上剩下的钱恰好可买8粒韭菜水饺,故选B.【点评】本题主要考查方程的应用,利用条件找到1粒虾仁水饺和1粒韭菜水饺的价钱之间的关系是解题的关键,注意整体思想的应用.16.(2017•台湾)将图1中五边形纸片ABCDE的A点以BE为折线往下折,A点恰好落在CD上,如图2所示,再分别以图2的AB,AE为折线,将C,D两点往上折,使得A、B、C、D、E五点均在同一平面上,如图3所示,若图1中∠A=124°,则图3中∠CAD的度数为何()A.56 B.60 C.62 D.68【分析】根据三角形内角和定理和折叠的性质来解答即可.【解答】解:由图(2)知,∠BAC+∠EAD=180°﹣124°=56°,所以图(3)中∠CAD=180°﹣56°×2=68°.故选:D.【点评】本题考查了多边形内角与外角,结合图形解答,需要学生具备一定的读图能力和空间想象能力.17.(2017•台湾)若a,b为两质数且相差2,则ab+1之值可能为下列何者()A.392B.402C.412D.422【分析】根据选项的数值,得到ab+1的值,进一步根据平方差公式得到ab的乘积形式,再根据质数的定义即可求解.【解答】解:A、当ab+1=392时,ab=392﹣1=40×38,与a,b为两质数且相差2不符合,故本选项错误;B、当ab+1=402时,ab=402﹣1=41×39,与a,b为两质数且相差2不符合,故本选项错误;C、当ab+1=412时,ab=412﹣1=42×40,与a,b为两质数且相差2不符合,故本选项错误;D、当ab+1=422时,ab=422﹣1=43×41,正好与a,b为两质数且相差2符合,故本选项正确,故选:D.【点评】本题考查的是因式分解的应用,质数的定义,解答此类题目的关键是得到ab是哪两个相差为2的数的积.18.(2017•台湾)如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A.O是△AEB的外心,O是△AED的外心B.O是△AEB的外心,O不是△AED的外心C.O不是△AEB的外心,O是△AED的外心D.O不是△AEB的外心,O不是△AED的外心【分析】根据三角形的外心的性质,可以证明O是△ABE的外心,不是△AED的外心.【解答】解:如图,连接OA、OB、OD.∵O是△ABC的外心,∴OA=OB=OC,∵四边形OCDE是正方形,∴OA=OB=OE,∴O是△ABE的外心,∵OA=OE≠OD,∴O表示△AED的外心,故选B.【点评】本题考查三角形的外心的性质.正方形的性质等知识,解本题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2【分析】根据多边形的内角和与外角和即可判断.【解答】解:∵(180°﹣∠1)+∠2=360°﹣90°﹣90°=180°∴∠1=∠2∵(180°﹣∠2)+∠3=360°﹣85°﹣90°=185°∴∠3﹣∠2=5°,∴∠3>∠2∴∠3>∠1=∠2故选(D)【点评】本题考查多边形的内角与外角,解题的关键是熟练运用多边形的内角和与外角和,本题属于基础题型.20.(2017•台湾)如图的数轴上有O、A、B三点,其中O为原点,A点所表示的数为106,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近B点所表示的数()A.2×106B.4×106C.2×107D.4×108【分析】根据数轴上的数据求出OA的长度,从而估算出OB的长度,即可估算出点B表示的数,从而得解.【解答】解:由数轴的信息知:OA=106;∴B点表示的实数为:20=2×107;故选C.【点评】本题考查了数轴与有理数的加法运算,求出点D表示的数是解题的关键.21.(2017•台湾)如图,△ABC、△ADE中,C、E两点分别在AD、AB上,且BC 与DE相交于F点,若∠A=90°,∠B=∠D=30°,AC=AE=1,则四边形AEFC的周长为何()A.2 B.2 C.2+D.2+【分析】根据三角形的内角和得到∠AED=∠ACB=60°,根据三角形的外角的性质得到∠B=∠EFB=∠CFD=∠D,根据等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵∠A=90°,∠B=∠D=30°,∴∠AED=∠ACB=60°,∵∠AED=∠B+∠EFB=∠ACB=∠CFD+∠D=60°,∴∠EFB=∠CFD=30°,∴∠B=∠EFB=∠CFD=∠D,∴BE=EF=CF=CD,∴四边形AEFC的周长=AB+AC,∵∠A=90°,AE=AC=1,∴AB=AD=,∴四边形AEFC的周长=2.故选B.【点评】本题考查了等腰三角形的性质,解直角三角形,三角形的外角的性质,熟练掌握等腰三角形的判定与性质是解题的关键.22.(2017•台湾)已知坐标平面上有两个二次函数y=a(x+1)(x﹣7),y=b(x+1)(x﹣15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移4单位 B.向右平移4单位C.向左平移8单位 D.向右平移8单位【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【解答】解:∵y=a(x+1)(x﹣7)=ax2﹣6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx ﹣15b,∴二次函数y=a(x+1)(x﹣7)的对称轴为直线x=3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵3﹣7=﹣4,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移4个单位,两图形的对称轴重叠.故选A.【点评】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.23.(2017•台湾)如图为阿辉,小燕一起到商店分别买了数杯饮料与在家分饮料的经过.若每杯饮料的价格均相同,则根据图中的对话,判断阿辉买了多少杯饮料()A.22 B.25 C.47 D.50【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[(1000+120)﹣(2000﹣1120)]÷6=40,880÷40=22(杯),则阿辉买了22杯饮料,故选A【点评】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.24.(2017•台湾)如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分()A.43 B.44 C.45 D.46【分析】设长方形的宽为x公分,抽出隔板后之水面高度为h公分,根据题意列出方程,求出方程的解即可.【解答】解:设长方形的宽为x公分,抽出隔板后之水面高度为h公分,长方形的长为130+70=200(公分)×40+×50=200•x•h,解得:h=44,故选B.【点评】本题考查了一元一次方程的应用,能根据题意列出方程是解此题的关键.25.(2017•台湾)如图,某计算机中有、、三个按键,以下是这三个按键的功能.1.:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成7.2.:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.04.3.:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成36.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.100【分析】根据题中的按键顺序确定出显示的数即可.【解答】解:根据题意得:=10,=0.1,0.12=0.01,=0.1,=10,102=100,100÷6=16…4,则第100次为0.1.故选B【点评】此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.26.(2017•台湾)如图为两正方形ABCD,BPQR重叠的情形,其中R点在AD上,CD与QR相交于S点.若两正方形ABCD、BPQR的面积分别为16、25,则四边形RBCS的面积为何()A.8 B.C.D.【分析】根据正方形的边长,根据勾股定理求出AR ,求出△ABR ∽△DRS ,求出DS ,根据面积公式求出即可.【解答】解:∵正方形ABCD 的面积为16,正方形BPQR 面积为25, ∴正方形ABCD 的边长为4,正方形BPQR 的边长为5, 在Rt △ABR 中,AB=4,BR=5,由勾股定理得:AR=3, ∵四边形ABCD 是正方形, ∴∠A=∠D=∠BRQ=90°,∴∠ABR +∠ARB=90°,∠ARB +∠DRS=90°, ∴∠ABR=∠DRS , ∵∠A=∠D , ∴△ABR ∽△DRS , ∴=, ∴=,∴DS=,∴阴影部分的面积S=S 正方形ABCD ﹣S △ABR ﹣S △RDS =4×4﹣﹣1××=,故选D .【点评】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR 和△RDS 的面积是解此题的关键.二、解答题(本大题共2小题)27.(2017•台湾)今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人之得票数内,全村设有四个投开票所,目前第一、第二、第三投开票所已开完所有选票,剩下第四投开票所尚未开票,结果如表所示:投开票所候选人废票合计甲乙丙一20021114712570二2868524415630三97412057350四250(单位:票)请回答下列问题:(1)请分别写出目前甲、乙、丙三名候选人的得票数;(2)承(1),请分别判断甲、乙两名候选人是否还有机会当选村长,并详细解释或完整写出你的解题过程.【分析】(1)直接根据题意将三个投票所得所有票数相加得出答案;(2)利用(1)中所求,进而分别分析得票的张数得出答案.【解答】解:(1)由图表可得:甲得票数为:200+286+97=583;乙得票数为:211+85+41=337;丙得票数为:147+244+205=596;(2)由(1)得:596﹣583=13,即丙目前领先甲13票,所以第四投票所甲赢丙14票以上,则甲当选,故甲可能当选;596﹣337=259>250,若第四投票所250票皆给乙,乙的总票数仍然比丙低,故乙不可能当选.【点评】此题主要考查了推理与论证,正确利用表格中数据分析得票情况是解题关键.28.(2017•台湾)如图,在坐标平面上,O为原点,另有A(0,3),B(﹣5,0),C(6,0)三点,直线L通过C点且与y轴相交于D点,请回答下列问题:(1)已知直线L的方程为5x﹣3y=k,求k的值.(2)承(1),请完整说明△AOB与△COD相似的理由.【分析】(1)利用函数图象上的点的特点,即可求出k的值;(2)先求出OA,OB,OC,OD,即可得出,即可得出结论.【解答】解:(1)∵直线L:5x﹣3y=k过点C(6,0),∴5×6﹣3×0=k,∴k=30,(2)由(1)知,直线L:5x﹣3y=30,∵直线L与y轴的交点为D,令x=0,∴﹣3y=30,∴y=﹣10,∴D(0,﹣10),∴OD=10,∵A(0,3),B(﹣5,0),C(6,0),∴OA=3,OB=5,OC=6,∴=,=,∴,∵∠AOB=∠COD=90°,∴△AOB∽△COD.【点评】此题是一次函数综合题,主要考查了函数图象上点的特点,相似三角形的判定,解本题的根据是求出点D的坐标.。
2017年山东省日照市中考数学试题及答案(word版)

2017年山东省日照市中考数学试卷、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分) 1. - 3的绝对值是( ) A - 3B 3C + 3D 丄. . .+.'2. 剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的 是( )A . 120°B . 30 °C . 40 °D . 60 °6.式子 有意义,a^2则实数a 的取值范围是( )A . a >- 1B . a z 2C . a 》—1 且 a z 2D . a > 27.下列说法正确的是()A .圆内接正六边形的边长与该圆的半径相等B .在平面直角坐标系中,不同的坐标可以表示同一点2C . 一元二次方程 ax+bx+c=0 (a z 0) 一定有实数根用科学记数法表示为( )5A . 4.64 X 10 6B . 4.64X 10C .4.64 X 107 D . 4.64 X 10 4.在 Rt △ ABC 中,/C=90° AB=13 ,AC=5,贝U sinA 的值为( )A 5r12C .512 A .B .12D .:3.铁路部门消息:2017年 端午节”小长假期间,全国铁路客流量达到 5 .如图,AB // CD ,直线I 交AB 于点E ,交CD 于点F ,若/仁60 °则/ 2等于4640万人次.4640万A .B . D .。
山东潍坊2017中考试题数学卷(word版含解析)
注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I 卷为选择题,36分;第Ⅱ卷为非选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列计算,正确的是( ).A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)(【答案】D考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、幂的乘方与积的乘方 2. 如图所示的几何体,其俯视图是( ).A .B .C .D .【答案】D 【解析】试题分析:根据从上边看得到的图形是俯视图,可得从上边看是一个同心圆,內圆是虚线, 故选:D .考点:简单几何体的三视图3. 可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ).A.3101⨯B.8101000⨯C.11101⨯D.14101⨯ 【答案】C 【解析】考点:科学记数法—表示较大的数4. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ).A.()1,2-B.()1,1-C.()2,1-D.()2,1--【答案】B 【解析】试题分析:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x 轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y 轴,则当放的位置是(﹣1,1)时构成轴对称图形. 故选:B .考点:1、坐标与图形变化﹣对称;2、坐标确定位置5. 用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A.B 与CB.C 与D C 、E 与F D 、A 与B 【答案】A 【解析】考点:1、计算器—数的开方;2、实数与数轴6. 如图,︒=∠90BCD ,DE AB //,则α∠与β∠满足( )A. ︒=∠+∠180βα B.︒=∠-∠90αβ C.αβ∠=∠3 D.︒=∠+∠90βα【答案】B 【解析】试题分析:过C 作CF ∥AB ,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到∠1+∠2=∠α+180°﹣∠β=90°,即∠β﹣∠α=90°, 故选:B .考点:平行线的性质7. 甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ). 甲 乙 平均数 9 8 方差11A.甲B. 乙C. 丙D. 丁 【答案】C考点:1、方差;2、折线统计图;3、加权平均数 8. 一次函数b ax y +=与反比例函数xba y -=,其中0<ab ,b a 、为常数,它们在同一坐标系中的图象可以是( ).A.B.C.D.【答案】C【解析】∴a﹣b<0,∴反比例函数的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选:C.考点:1、反比例函数的图象;2、一次函数的图象9.若代数式12--xx有意义,则实数x的取值范围是().A.1≥x B.2≥x C.1>x D.2>x【答案】B【解析】试题分析:根据二次根式有意义的条件可知:2010xx-⎧⎨-⎩≥>,解得:x≥2.故选:B考点:二次根式有意义的条件10. 如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,CDAO⊥,垂足为E,连接BD,︒=∠50GBC,则DBC∠的度数为().A.50°B.60°C.80°D.85°【答案】C故选:C.考点:圆内接四边形的性质11. 定义[]x 表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程[]221x x =的解为( ). A.0或2 B.0或2 C.1或2- D.2或2-【答案】B故选:B考点:1、解一元二次方程﹣因式分解法;2、实数大小比较;3、函数的图象12. 点C A 、为半径是3的圆周上两点,点B 为»AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ). A.5或22 B.5或32 C.6或22 D.6或32 【答案】D 【解析】试题分析:过B 作直径,连接AC 交AO 于E , ∵点B 为»AC 的中点, ∴BD ⊥AC ,∵CE=22OC OE -=5, ∴边CD=22DE CE +=6;如图②,BD=23×2×3=4, 同理可得,OD=1,OE=1,DE=2,连接OD ,∵CE=22OC OE -=8=22,∴边CD=22DE CE +=22(22)2+=23, 故选:D .考点:1、圆心角、弧、弦的关系;2、菱形的性质第Ⅱ卷(非选择题 共84分)说明:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13. 计算:212(1)11x x x --÷-- = .【答案】x+1考点:分式的混合运算14. 因式分解:=-+-)2(22x x x .【答案】(x+1)(x ﹣2) 【解析】试题分析:通过两次提取公因式来进行因式分解:原式=x (x ﹣2)+(x ﹣2)=(x+1)(x ﹣2). 故答案是:(x+1)(x ﹣2). 考点:因式分解﹣提公因式法15. 如图,在ABC ∆中,AC AB ≠,E D 、分别为边AB 、AC 上的点,AD AC 3=,AE AB 3=,点F 为BC 边上一点,添加一个条件: ,可以使得FDB ∆与ADE ∆相似.(只需写出一个)【答案】DF ∥AC ,或∠BFD=∠A考点:相似三角形的判定16已知关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是 . 【答案】k ≤1且k ≠0 【解析】试题分析:根据方程根的情况:关于x 的一元二次方程kx 2﹣2x+1=0有实数根,可以判定其根的判别式的取值范围△=b 2﹣4ac ≥0,即:4﹣4k ≥0,解得:k ≤1,然后根据关于x 的一元二次方程kx 2﹣2x+1=0中k ≠0,故答案为:k ≤1且k ≠0. 考点:根的判别式17. 如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.【答案】9n+3∴第n 个图中正方形和等边三角形的个数之和=9n+3. 故答案为:9n+3.考点:规律型:图形的变化类18. 如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在D 上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在C B '上,记为D ',折痕为CG ,2=''D B ,BC BE 31=.则矩形纸片ABCD 的面积为 .【答案】15 【解析】试题分析:根据翻折变化的性质和勾股定理设BE=a ,则BC=3a ,由题意可得,CB=CB′,CD=CD′,BE=B′E=a, ∵B′D′=2, ∴CD′=3a﹣2, ∴CD=3a ﹣2,∴AE=3a ﹣2﹣a=2a ﹣2, ∴DB′=2222'(3)(32)CB CD a a -=--=124a -=231a -,∴AB′=3a﹣231a -,考点:1、翻折变换(折叠问题);2、矩形的性质三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?【答案】(1)图形见解析(2)180名(3)1 3【解析】抽取的学生中合格的人数:40﹣12﹣16﹣2=10,合格所占百分比:10÷40=25%,优秀人数:12÷40=30%,如图所示:;(2)成绩未达到良好的男生所占比例为:25%+5%=30%, 所以600名九年级男生中有600×30%=180(名); (3)如图:,可得一共有9种可能,甲、乙两人恰好分在同一组的有3种, 所以甲、乙两人恰好分在同一组的概率P=39=13. 考点:1、列表法与树状图法;2、用样本估计总体;3、扇形统计图;4、条形统计图 20. (本题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为︒60,在B 处测得四楼顶部点E 的仰角为︒30,14=AB 米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73).【答案】18.4米 【解析】∴C′A′='3tan 60DC =o(5x+1),在Rt△EC′B′中,∠EB′C′=30°,∴C′B′='=3tan30ECo(4x+1),∵A′B′=C′B′﹣C′A′=AB,∴3(4x+1)﹣33(5x+1)=14,解得:x≈3.17,则居民楼高为5×3.17+2.5≈18.4米.考点:解直角三角形的应用﹣仰角俯角问题21. (本题满分8分)某蔬菜加工公司先后两批次收购蒜薹(tai)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【答案】(1)第一批购进蒜薹20吨,第二批购进蒜薹80吨(2)m=75时,w有最大值为85000元【解析】解得2080 xy=⎧⎨=⎩,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m吨,总利润为w元,则粗加工吨.由m≤3,解得m≤75,利润w=1000m+400=600m+40000, ∵600>0,∴w 随m 的增大而增大,∴m=75时,w 有最大值为85000元.考点:1、一次函数的应用;2、二元一次方程组的应用22. (本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为»BC的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA .(1)求证:EF 为半圆O 的切线;(2)若36==DF DA ,求阴影区域的面积.(结果保留根号和π)【答案】(1)证明见解析(2)2732-6π∵OA=OD , ∴∠BAD=∠ADO , ∴∠CAD=∠ADO , ∵DE ⊥AC , ∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD ⊥EF ,∴EF 为半圆O 的切线;(2)连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=63,考点:1、切线的判定与性质;2、扇形面积的计算23. (本题满分9分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?【答案】(1)裁掉的正方形的边长为2dm,底面积为12dm2(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x ≤2.5时,w 随x 的增大而减小, ∴当x=2.5时,w 有最小值,最小值为25元,答:当裁掉边长为2.5dm 的正方形时,总费用最低,最低费用为25元. 考点:1、二次函数的应用;2、一元二次方程的应用24. (本题满分12分)边长为6的等边ABC ∆中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l )如图1,将DEC ∆沿射线EC 方向平移,得到C E D '''∆,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的角平分线交于点N .当C C '多大时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ∆绕点C 旋转α(︒<<︒3600α),得到C E D ''∆,连接D A '、E B ',边E D ''的中点为P .①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最大时,求D A '的值.(结果保留根号)【答案】(1)当3MCND'是菱形(2)①AD'=BE'②21 【解析】∴∠B=∠ACB=60°,∴∠ACC'=180°﹣∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=12∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵E'C'=23,∵四边形MCND'是菱形,∴CN=CM,∴CC'=12E'C'=3;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',在△ACP 中,由三角形三边关系得,AP <AC+CP ,∴当点A ,C ,P 三点共线时,AP 最大,如图1,在△D'CE'中,由P 为D'E 的中点,得AP ⊥D'E',PD'=3,∴CP=3,∴AP=6+3=9,在Rt △APD'中,由勾股定理得,AD'=22'AP PD +=221.考点:四边形综合题25. (本题满分13分)如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=1310时,△PEF的面积最大,其最大值为289100×1710,最大值的立方根为32891710010⨯=1710;(3)存在满足条件的点P,t的值为1或1+52【解析】试题解析:(1)由题意可得3423ca b ca b c=⎧⎪-+=⎨⎪++=⎩,解得123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得13 22 30k mk m⎧+=⎪⎨⎪+=⎩,解得3595km⎧=-⎪⎪⎨⎪=⎪⎩,∴直线l的解析式为y=﹣35x+95,联立直线l和抛物线解析式可得2395523y xy x x⎧=-+⎪⎨⎪=-++⎩,解得3xy=⎧⎨=⎩或255125xy⎧=-⎪⎪⎨⎪=⎪⎩,∴F(﹣25,5125),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣35t+95),∴PM=﹣t2+2t+3﹣(﹣35t+95)=﹣t2+135t+65,∴S△PEF=S△PFM+S△PEM=12PM•FN+12PM•EH=12PM•(FN+EH)=12(﹣t2+135t+65)(3+25)=﹣1710(t ﹣1310)+289100×1710,∴当t=1310时,△PEF的面积最大,其最大值为289100×1710,∴最大值的立方根为328917 10010⨯=1710;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴PK KEAQ PQ=,即222332t t tt t t-++-=-+,即t2﹣t﹣1=0,解得1+5或15-5(舍去),2 Array综上可知存在满足条件的点P,t的值为1考点:二次函数综合题。
中考数学专题复习 操作性问题试题(无答案)
操作性问题一、选择题1.(2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④2. (2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .73.(2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE (0.5DE BC ==米,,,A B C 三点共线),把一面镜子水平放置在平台上的点G 处,测得15CG =米,然后沿直线CG 后退到点E 处,这时恰好在镜子里看到凉亭的顶端A ,测得3CG =米,小明身高 1.6EF =米,则凉亭的高度AB 约为( )A.8.5米B.9米C.9.5米D.10米4.(2017浙江嘉兴第9题)一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( ).A B.C.1D.2二、填空题1. (2017浙江衢州第14题)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.2. (2017浙江衢州第16题)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限。
△ABO 沿x轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是__________;翻滚2017次后AB中点M经过的路径长为__________3.(2017贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为.4.(2017山东烟台第15题)运行程序如图所示,从“输入实数x ”到“结果是否18<”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .5. (2017山东烟台第18题)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB .已知6=OA ,取OA 的中点C ,过点C 作OA CD ⊥交弧AB 于点D ,点F 是弧AB 上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段FA DF BD ,,依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .6.(2017江苏徐州第18题)如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A AO ,如此下去,则线段n OA 的长度为 .7.(2017浙江嘉兴第15题)如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BAC ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠= ,……按此规律,写出tan n BA C ∠=(用含n 的代数式表示).三、解答题1.(2017浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE =∠ABF =∠BCG =∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。
2017年湖南省湘西州中考数学试题及参考答案(word解析版)
2017年湖南省湘西州中考数学试题及参考答案与解析一、选择题(本大题共8个小题,每小题4分,共32分)1.2017的相反数是.2.如图所示,直线a,b被直线c所截,且a∥b,∠1=130°,则∠2=.3.分解因式:a2﹣3a=.4.2016年12月18日张吉怀高铁开工,全程约246000m,高铁开通后,将进一步加快三地之间的交流,促进经济发展.其中246000用科学记数法表示为.5.如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=有意义的x的取值范围是.67.掷两枚质地均匀的相同硬币,出现两枚都是正面朝上的概率为.8.用科学计算器按如图所示的操作步骤,若输入的数值是3,则输出的值为(精确到0.1)二、选择题(本大题共10小题,每小题4分,共40分,将每个小题所给四个选项中唯一正确选项的字母填在括号里)9.下列运算中错误的是()A.3x2﹣2x2=x2B.a2•a3=a5C=D.(a+b)(a﹣b)=a2﹣b210.习总书记提出“足球进校园”后,我们湘西自治州积极响应号召,把颠足球纳入了九年级体育达标测试.在今年5月份体育达标测试中,某小组7名同学的颠足球个数如下:60,57,102,75,36,60,42,这组数据的众数和中位数分别是()A.60,57 B.57,60 C.60,75 D.60,6011.已知点P(2,3),则点P关于x轴的对称点的坐标为()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)D.(﹣3,2)12.下列四个图形中,不是中心对称图形的是()A.B.C.D.13.已知三角形的两边长分别为4和6,则第三边可能是()A.2 B.7 C.10 D.1214.下列方程中,有两个不相等的实数根的方程是()A.x2﹣4x+3=0 B.x2+2x+1=0 C.x2+4=0 D.3x2﹣5x+8=015.反比例函数kyx=(k>0),当x<0时,图象在()A.第一象限B.第二象限C.第三象限D.第四象限16.一个正方体的平面展开图如图所示,则原正方体上,与“爱”相对面上的汉字是()A.美B.丽C.湘D.西17.如图所示,在▱ABCD中,AC,BD相交于点O,则下列结论中错误的是()A.OA=OC B.∠ABC=∠ADC C.AB=CD D.AC=BD18.已知抛物线y=ax2+bx+c(a≠0)如图所示,则下列6个代数式:ac,abc,2a+b,a+b+c,4a﹣2b+c,b2﹣4ac,其中值大于0的个数为()A.2 B.3 C.4 D.5三、解答题(本大题共8小题,共78分)19.(6分)计算:(﹣1)2017+(π﹣3.14)0﹣2cos60°20.(6分)解不等式组()21253x xx x-+⎧⎪⎨-⎪⎩≤>2,并把解集在数轴上表示出来.21.(8分)如图所示,在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE=CF ,BE=DF .求证:(1)△ABE ≌△CDF ;(2)四边形ABCD 是平行四边形.22.(8分)如图所示,一次函数y 1=x+b (b 为常数)的图象与反比例函数22y x=的图象都经过点A (2,m ).(1)求点A 的坐标及一次函数的解析式;(2)根据图象直接回答:在第一象限内,当x 取何值时y 1<y 2.23.(8分)为了深化教育改革,某校计划开设四个课外兴趣活动小组:音乐、体育、美术、舞蹈,学校要求每名学生都自主选择其中一个兴趣活动小组,为此学校采取随机抽样的方式进行了问卷调查,对调查结果进行统计并绘制了如下统计表. 选择课程 音乐 体育 美术 舞蹈 所占百分比a30%bc根据以上统计图表中的信息,解答下列问题:(1)本次调查的总人数为 人;其中a= %;b= %;c= %; (2)请把条形图补充完整;(3)若该校共有学生1000名,请估计该校选择“美术”的学生有多少人.24.(8分)某校为创建“书香校园”,现有图书5600册,计划创建大小图书角共30个.其中每个小图书角需图书160册,大图书角所需图书比小图书角的2倍少80册.问该校创建的大小图书角各多少个?25.(12分)如图,已知抛物线2y x bx =++x 轴交于A ,B 两点,与y 轴交于点C ,其中点A 的坐标为(﹣3,0) (1)求b 的值及点B 的坐标;(2)试判断△ABC 的形状,并说明理由;(3)一动点P 从点A 出发,以每秒2个单位的速度向点B 运动,同时动点Q 从点B 出发,以每秒1个单位的速度向点C 运动(当点P 运动到点B 时,点Q 随之停止运动),设运动时间为t 秒,当t 为何值时△PBQ 与△ABC 相似?26.(22分)如图所示,AB 是⊙O 的直径,P 为AB 延长线上的一点,PC 切⊙O 于点C ,AD ⊥PC ,垂足为D ,弦CE 平分∠ACB ,交AB 于点F ,连接AE . (1)求证:∠CAB=∠CAD ; (2)求证:PC=PF ;(3)若tan ∠ABC=32,AE=PC 的长.参考答案与解析一、选择题(本大题共8个小题,每小题4分,共32分) 1.2017的相反数是 . 【知识考点】相反数.【思路分析】根据相反数的意义求解即可. 【解答过程】解:2017的相反数是﹣2017, 故答案为:﹣2017.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.。
2017年浙江省各市中考数学试题汇编(含参考答案与解析)
2017年浙江省各市中考数学试题汇编(含参考答案)(word 10份)目录1.浙江省杭州市中考数学试题及参考答案 (2)2.浙江省衢州市中考数学试题及参考答案 (18)3.浙江省丽水市中考数学试题及参考答案 (39)4.浙江省湖州市中考数学试题及参考答案 (54)5.浙江省台州市中考数学试题及参考答案 (64)6.浙江省宁波市中考数学试题及参考答案 (73)7.浙江省温州市中考数学试题及参考答案 (90)8.浙江省金华市中考数学试题及参考答案 (103)9.浙江省舟山市嘉兴市中考数学试题及参考答案 (112)10.浙江省绍兴市义乌市中考数学试题及参考答案 (121)2017年浙江省杭州市中考数学试题及参考答案一.选择题(本大题共10个小题,每小题3分,共30分)1.﹣22=()A.﹣2 B.﹣4 C.2 D.42.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.|1+|+|1﹣|=()A.1 B.C.2 D.25.设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y6.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<010.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题(本大题共6个小题,每小题4分,共24分)11.数据2,2,3,4,5的中位数是.12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.若•|m|=,则m=.15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.参考答案与解析一.选择题1.﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关.6.若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0 D.若m<1,则(m﹣1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a当m<1时,(m﹣3)a>0,故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM 中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.数据2,2,3,4,5的中位数是.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BA T=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠A TB=90°,本题属于基础题型.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.若•|m|=,则m=.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 A1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,﹣2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC 中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN= x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题;【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a=﹣2,a=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,y1的图象与x轴的交点是(﹣1,0)(2,0),当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a;(3)当P在对称轴的左侧时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得x0<0;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得x0>1,综上所述:m<n,求x0的取值范围x0<0或x0>1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.2017年浙江省衢州市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,满分30分) 1.﹣2的倒数是( ) A .12-B .12C .﹣2D .2 2.如图是由四个相同的小立方体搭成的几何体,它的主视图是( )A .B .C .D .3.下列计算正确的是( ) A .2a+b=2ab B .(﹣a )2=a 2 C .a 6÷a 2=a 3 D .a 3•a 2=a 6 4.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是( )尺码(码)34 35 36 37 38 人数2 5 10 2 1 A .35码,35码 B .35码,36码 C .36码,35码 D .36码,36码 5.如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )A .30°B .40°C .60°D .70° 6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是( )A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x 7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④8.如图,在直角坐标系中,点A 在函数y=4x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y=4x(x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于( )A .2B .C .4D .9.如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.53 B. 35 C. 37 D. 45 10.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )A.252π B .10π C .24+4π D .24+5π二、填空题(本大题共有6小题,每小题4分,共24分)11中字母a 的取值范围是 . 12.化简:2111x xx x -+=++ . 13.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是 .14.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .15.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 为直线334y x =-+上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 .16.如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方形作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是 ,翻滚2017次后AB 中点M 经过的路径长为 .三、解答题(本题共有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分) 170(1)2tan 60π-⨯--︒.18.解下列一元一次不等式组:12232x x x⎧≤⎪⎨⎪+>⎩.19.如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D ,连接OD .作BE ⊥CD于点E ,交半圆O 于点F .已知CE=12,BE=9. (1)求证:△COD ∽△CBE . (2)求半圆O 的半径r 的长.20.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求2016年第一产业生产总值(精确到1亿元)(2)2016年比2015年的国民生产总值增加了百分之几?(精确到1%)(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到1%)21.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1C的勾股点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB 的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.参考答案与解析一、选择题(共10小题,每小题3分,满分30分)1.﹣2的倒数是()A.12- B.12C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是12 -.故选:A.2.如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图是从正面看所得到的图形,从左往右分2列,正方形的个数分别是:2,1;依此即可求解.【解答】解:如图是由四个相同的小立方体搭成的几何体,它的主视图是.故选:D.3.下列计算正确的是()A.2a+b=2ab B.(﹣a)2=a2C.a6÷a2=a3D.a3•a2=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)2a与b不是同类项,故不能合并,故A不正确;(C)原式=a4,故C不正确;(D)原式=a5,故D不正确;故选(B)4.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)34 35 36 37 38人数 2 5 10 2 1 A.35码,35码B.35码,36码C.36码,35码D.36码,36码【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36. 故选D .5.如图,直线AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于( )A .30°B .40°C .60°D .70°【考点】三角形的外角性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E 的度数.【解答】解:如图,∵AB ∥CD ,∠A=70°, ∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°. 故选:A .6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是( )A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x 【考点】解二元一次方程组.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42x y =⎧⎨=⎩,故选B .7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④ 【考点】作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案. 【解答】解:①作一个角等于已知角的方法正确; ②作一个角的平分线的作法正确;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 专题内容:操作性问题(第3部分) 一、选择题 1.(2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是( )
A.① B.② C.③ D.④ 2. (2017湖北武汉第10题)如图,在RtABC中,90C,以ABC的一边为边画等腰三角形,使得它的第三个顶点在ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A.4 B.5 C. 6 D.7 3.(2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(0.5DEBC==米,,,ABC三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3CG=米,小明身高1.6EF=米,则凉亭的高度AB约为( )
A.8.5米 B.9米 C.9.5米 D.10米 4.(2017浙江嘉兴第9题)一张矩形纸片ABCD,已知3AB,2AD,小明按所给图步骤折叠纸片,则线段DG长为( )
A.2 B.22 C.1 D.2 2
二、填空题 1. (2017浙江衢州第14题)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是 .
2. (2017浙江衢州第16题)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限。△ABO沿x轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是__________;翻滚2017次后AB中点M经过的路径长为__________
3.(2017贵州黔东南州第16题)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标
系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为 .
4.(2017山东烟台第15题)运行程序如图所示,从“输入实数x”到“结果是否18”为一次程序操作, 若输入x后程序操作仅进行了一次就停止,则x的取值范围是 . 3
5. (2017山东烟台第18题)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知6OA,取OA的中点C,过点C作OACD交弧AB于点D,点F是弧AB上一点,若将
扇形BOD沿OD翻折,点B恰好与点F重合.用剪刀沿着线段FADFBD,,依次剪下,则剪下的纸片(形状同阴影图形)面积之和为 .
6.(2017江苏徐州第18题)如图,已知1OB,以OB为直角边作等腰直角三角形1ABO.再以1OA
为直角边作等腰直角三角形21AAO,如此下去,则线段nOA的长度为 .
7.(2017浙江嘉兴第15题)如图,把n个边长为1的正方形拼接成一排,求得1tan1BAC,21tan3BAC,31tan7BAC,计算4tanBAC ,……按此规律,写出
tannBAC (用含n的代数式表示).
三、解答题 1.(2017浙江衢州第23题)问题背景 如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。 类比研究 如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点4
(D,E,F三点不重合)。 (1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明; (2)△DEF是否为正三角形?请说明理由; (3)进一步探究发现,△ABD的三边存在一定的等量关系,设aBD,bAD,cAB,请探索a,b,c满足的等量关系。
2.(2017浙江宁波第20题)在44´的方格纸中,ABC△的三个顶点都在格点上. (1)在图1中画出与ABC△成轴对称且与ABC△有公共边的格点三角形(画出一个即可); (2)将图2中的ABC△绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.
3.(2017甘肃庆阳第21题)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).
4.(2017广西贵港第20题)尺规作图(不写作法,保留作图痕迹): 已知线段a和AOB,点M 在OB上(如图所示).
(1)在OA边上作点P,使2OPa ; (2)作AOB的平分线; (3)过点M作OB的垂线. 5.(2017江苏无锡第24题)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹): 5
(1)作△ABC的外心O; (2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.
6. (2017江苏无锡第25题)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.
(1)点P(a,b)经过T变换后得到的点Q的坐标为 ;若点M经过T变换后得到点N(6,﹣3),则点M的坐标为 .
(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B. ①求经过点O,点B的直线的函数表达式; ②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比. 7.(2017江苏盐城第24题)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部. (1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹) (2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长. 6
8.(2017江苏盐城第26题)【探索发现】 如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
【拓展应用】 如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示) 【灵活应用】 如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积. 【实际应用】 如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=
43,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的
面积. 9.(2017甘肃兰州第22题)在数学课上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l和l外一点P
求作:直线l的垂线,使它经过点P. 做法:如图:(1)在直线l上任取两点A、B; (2)分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q; (3)作直线PQ. 参考以上材料作图的方法,解决以下问题: (1)以上材料作图的依据是 . (3)已知:直线l和l外一点P, 求作:P⊙,使它与直线l相切。(尺规作图,不写做法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑) 7
10.(2017山东烟台第23题)【操作发现】 (1)如图1,ABC为等边三角形,先将三角板中的060角与ACB重合,再将三角板绕点C按
顺时针方向旋转(旋转角大于00且小于030).旋转后三角板的一直角边与AB交于点D.在三角板斜边上取一点F,使CDCF,线段AB上取点E,使030DCE,连接AF,EF. ①求EAF的度数; ②DE与EF相等吗?请说明理由; 【类比探究】
(2)如图2,ABC为等腰直角三角形,090ACB,先将三角板的090角与ACB重合,再
将三角板绕点C按顺时针方向旋转(旋转角大于00且小于045).旋转后三角板的一直角边与AB交于点D.在三角板另一直角边上取一点F,使CDCF,线段AB上取点E,使045DCE,连接AF,EF.请直接写出探究结果: ①EAF的度数;
②线段DBEDAE,,之间的数量关系.
11.(2017四川自贡第18题)如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形.