CPU常识。让你看懂CPU-Z

CPU常识。让你看懂CPU-Z
CPU常识。让你看懂CPU-Z

CPU常识。让你看懂CPU-Z.txt18拥有诚实,就舍弃了虚伪;拥有诚实,就舍弃了无聊;拥有踏实,就舍弃了浮躁,不论是有意的丢弃,还是意外的失去,只要曾经真实拥有,在一些时候,大度舍弃也是一种境界。CPU常识。让你看懂CPU-Z

很多人都曾经问我的CPU是不是64位的,怎么看!下面我们就来介绍下,什么是64位,怎么查看自己的CPU是不是64位的。当然,你需要先有CPU-Z这个软件。需要的朋友可以去下载下来看看。

下面的文章是我从网上转的。

一:什么是酷睿:“酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。早期的酷睿是基于笔记本处理器的。酷睿2:英文Core 2 Duo,是英特尔推出的新一代基于Core微架构的产品体系统称。于2006年7月27日发布。酷睿2,是一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Conroe,移动版的开发代号为Merom。特性:全新的Core架构,彻底抛弃了Netburst架构全部采用65nm制造工艺全线产品均为双核心,L2缓存容量提升到4MB 晶体管数量达到2.91 亿个,核心尺寸为143平方毫米性能提升40% 能耗降低40%,主流产品的平均能耗为65瓦特,顶级的X6800也仅为75瓦特前端总线提升至1066Mhz(Conroe),1333Mhz(Woodcrest),667Mhz(Merom)服务器类Woodcrest为开发代号,实际的产品名称为Xeon 5100系列。采用LGA771接口。 Xeon 5100系列包含两种FSB的产品规格(5110采用1066 MHz,5130采用1333 MHz)。拥有两个处理核心和4MB共享式二级缓存,平均功耗为65W,最大仅为80W,较AMD的Opteron的95W 功耗很具优势。台式机类Conroe处理器分为普通版和至尊版两种,产品线包括E6000系列和E4000系列,两者的主要差别为FSB频率不同。普通版E6000系列处理器主频从1.8GHz 到2.67GHz,频率虽低,但由于优秀的核心架构,Conroe处理器的性能表现优秀。此外,Conroe 处理器还支持Intel的VT、EIST、EM64T和XD技术,并加入了SSE4指令集。由于Core的高效架构,Conroe不再提供对HT的支持。

二:什么是双核处理器双核与双芯(Dual Core Vs. Dual CPU): AMD和Intel的双核技术在物理结构上也有很大不同之处。AMD将两个内核做在一个Die(晶元)上,通过直连架构连接起来,集成度更高。Intel则是将放在不同Die(晶元)上的两个内核封装在一起,因此有人将Intel的方案称为“双芯”,认为AMD的方案才是真正的“双核”。从用户端的角度来看,AMD的方案能够使双核CPU的管脚、功耗等指标跟单核CPU保持一致,从单核升级到双核,不需要更换电源、芯片组、散热系统和主板,只需要刷新BIOS软件即可,这对于主板厂商、计算机厂商和最终用户的投资保护是非常有利的。客户可以利用其现有的90纳米基础设施,通过BIOS更改移植到基于双核心的系统。计算机厂商可以轻松地提供同一硬件的单核心与双核心版本,使那些既想提高性能又想保持IT环境稳定性的客户能够在不中断业务的情况下升级到双核心。在一个机架密度较高的环境中,通过在保持电源与基础设施投资不变的情况下移植到双核心,客户的系统性能将得到巨大的提升。在同样的系统占地空间上,通过使用双核心处理器,客户将获得更高水平的计算能力和性能。双核处理器(Dual Core Processor):双核处理器是指在一个处理器上集成两个运算核心,从而提高计算能力。“双核”的概念最早是由IBM、HP、Sun等支持RISC架构的高端服务器厂商提出的,不过由于RISC架构的服务器价格高、应用面窄,没有引起广泛的注意。最近逐渐热起来的“双核”概念,主要是指基于X86开放架构的双核技术。在这方面,起领导地位的厂商主要有AMD和Intel两家。其中,两家的思路又有不同。AMD从一开始设计时就考虑到了对多核心的支持。所有组件都直接连接到CPU,消除系统架构方面的挑战和瓶颈。两个处理器核心直接连接到同一个内核上,核

心之间以芯片速度通信,进一步降低了处理器之间的延迟。而Intel采用多个核心共享前端总线的方式。专家认为,AMD的架构对于更容易实现双核以至多核,Intel的架构会遇到多个内核争用总线资源的瓶颈问题。目前Intel推出的台式机双核心处理器有Pentium D、Pentium EE(Pentium Extreme Edition)和Core Duo三种类型,三者的工作原理有很大不同。

一、Pentium D和Pentium EE Pentium D和Pentium EE分别面向主流市场以及高端市场,其每个核心采用独立式缓存设计,在处理器内部两个核心之间是互相隔绝的,通过处理器外部(主板北桥芯片)的仲裁器负责两个核心之间的任务分配以及缓存数据的同步等协调工作。两个核心共享前端总线,并依靠前端总线在两个核心之间传输缓存同步数据。从架构上来看,这种类型是基于独立缓存的松散型双核心处理器耦合方案,其优点是技术简单,只需要将两个相同的处理器内核封装在同一块基板上即可;缺点是数据延迟问题比较严重,性能并不尽如人意。另外,Pentium D和Pentium EE的最大区别就是Pentium EE支持超线程技术而Pentium D则不支持,Pentium EE在打开超线程技术之后会被操作系统识别为四个逻辑处理器。 AMD 双核处理器 AMD推出的双核心处理器分别是双核心的Opteron系列和全新的Athlon 64 X2系列处理器。其中Athlon 64 X2是用以抗衡Pentium D和Pentium Extreme Edition的桌面双核心处理器系列。 AMD推出的Athlon 64 X2是由两个Athlon 64处理器上采用的Venice 核心组合而成,每个核心拥有独立的512KB(1MB) L2缓存及执行单元。除了多出一个核芯之外,从架构上相对于目前Athlon 64在架构上并没有任何重大的改变。双核心Athlon 64 X2的大部分规格、功能与我们熟悉的Athlon 64架构没有任何区别,也就是说新推出的Athlon 64 X2双核心处理器仍然支持1GHz规格的HyperTransport总线,并且内建了支持双通道设置的DDR内存控制器。与Intel双核心处理器不同的是,Athlon 64 X2的两个内核并不需要经过MCH进行相互之间的协调。AMD在Athlon 64 X2双核心处理器的内部提供了一个称为System Request Queue(系统请求队列)的技术,在工作的时候每一个核心都将其请求放在SRQ 中,当获得资源之后请求将会被送往相应的执行核心,也就是说所有的处理过程都在CPU核心范围之内完成,并不需要借助外部设备。对于双核心架构,AMD的做法是将两个核心整合在同一片硅晶内核之中,而Intel的双核心处理方式则更像是简单的将两个核心做到一起而已。与Intel的双核心架构相比,AMD双核心处理器系统不会在两个核心之间存在传输瓶颈的问题。因此从这个方面来说,Athlon 64 X2的架构要明显优于Pentium D架构。虽然与Intel相比,AMD并不用担心Prescott核心这样的功耗和发热大户,但是同样需要为双核心处理器考虑降低功耗的方式。为此AMD并没有采用降低主频的办法,而是在其使用90nm工艺生产的Athlon 64 X2处理器中采用了所谓的Dual Stress Liner应变硅技术,与SOI技术配合使用,能够生产出性能更高、耗电更低的晶体管。 AMD推出的Athlon 64 X2处理器给用户带来最实惠的好处就是,不需要更换平台就能使用新推出的双核心处理器,只要对老主板升级一下BIOS就可以了,这与Intel双核心处理器必须更换新平台才能支持的做法相比,升级双核心系统会节省不少费用。

三:什么是CPU主频:在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1GHz=1000MHz,1MHz=1000kHz,1kHz=1000Hz。计算脉冲信号周期的时间单位及相应的换算关系是:s(秒)、ms(毫秒)、μs (微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这

个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU 实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能已较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。CPU 的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的。举个例子来说,假设某个CPU在一个时钟周期内执行一条运算指令,那么当CPU运行在100MHz主频时,将比它运行在50MHz主频时速度快一倍。因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高。提高CPU工作主频主要受到生产工艺的限制。由于CPU是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证CPU运算正确。因此制造工艺的限制,是CPU主频发展的最大障碍之一。

四:什么是前端总线微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。什么是前端总线:“前端总线”这个名称是由AMD在推出K7 CPU时提出的概念,但是一直以来都被大家误认为这个名词不过是外频的另一个名称。我们所说的外频指的是CPU与主板连接的速度,这个概念是建立在数字脉冲信号震荡速度基础之上的,而前端总线的速度指的是数据传输的速度,由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz、1333MHz几种,前端总线频率越大,代表着CPU 与内存之间的数据传输量越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU。较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。前端总线的英文名字是Front Side Bus,通常用FSB表示,是将CPU连接到北桥芯片的总线。选购主板和CPU时,要注意两者搭配问题,一般来说,如果CPU不超频,那么前端总线是由CPU决定的,如果主板不支持CPU所需要的前端总线,系统就无法工作。也就是说,需要主板和CPU 都支持某个前端总线,系统才能工作,只不过一个CPU默认的前端总线是唯一的,因此看一个系统的前端总线主要看CPU就可以。北桥芯片负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是CPU和外界交换数据的最主要通道,因此前端总线的数据传输能力对计算机整体性能作用很大,如果没足够快的前端总线,再强的CPU也不能明显提高计算机整体速度。数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU与北桥芯片之间的

数据传输能力越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。显然同等条件下,前端总线越快,系统性能越好。外频与前端总线频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz ×64bit=6400Mbits=800MBytes(1Byte=8bit)。

五:多媒体指令集: CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、SSE2(Streaming-Single instruction multiple data-Extensions 2)和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把CPU的扩展指令集称为CPU的指令集。 1、精简指令集的运用在最初发明计算机的数十年里,随着计算机功能日趋增大,性能日趋变强,内部元器件也越来越多,指令集日趋复杂,过于冗杂的指令严重的影响了计算机的工作效率。后来经过研究发现,在计算机中,80%程序只用到了20%的指令集,基于这一发现,RISC精简指令集被提了出来,这是计算机系统架构的一次深刻革命。RISC体系结构的基本思路是:抓住CISC指令系统指令种类太多、指令格式不规范、寻址方式太多的缺点,通过减少指令种类、规范指令格式和简化寻址方式,方便处理器内部的并行处理,提高VLSI器件的使用效率,从而大幅度地提高处理器的性能。RISC指令集有许多特征,其中最重要的有:指令种类少,指令格式规范:RISC指令集通常只使用一种或少数几种格式。指令长度单一(一般4个字节),并且在字边界上对齐,字段位置、特别是操作码的位置是固定的。寻址方式简化:几乎所有指令都使用寄存器寻址方式,寻址方式总数一般不超过5个。其他更为复杂的寻址方式,如间接寻址等则由软件利用简单的寻址方式来合成。大量利用寄存器间操作:RISC指令集中大多数操作都是寄存器到寄存器操作,只以简单的Load和Store操作访问内存。因此,每条指令中访问的内存地址不会超过1个,访问内存的操作不会与算术操作混在一起。简化处理器结构:使用RISC指令集,可以大大简化处理器的控制器和其他功能单元的设计,不必使用大量专用寄存器,特别是允许以硬件线路来实现指令操作,而不必像CISC处理器那样使用微程序来实现指令操作。因此RISC处理器不必像CISC处理器那样设置微程序控制存储器,就能够快速地直接执行指令。便于使用VLSI技术:随着LSI和VLSI技术的发展,整个处理器(甚至多个处理器)都可以放在一个芯片上。RISC体系结构可以给设计单芯片处理器带来很多好处,有利于提高性能,简化VLSI芯片的设计和实现。基于VLSI技术,制造RISC处理器要比CISC处理器工作量小得多,成本也低得多。加强了处理器并行能力:RISC指令集能够非常有效地适合于采用流水线、超流水线和超标量技术,从而实现指令级并行操作,提高处理器的性能。目前常用的处理器内部并行操作技术基本上是基于RISC体系结构发展和走向成熟的。正由于RISC体系所具有的优势,它在高端系统得到了广泛的应用,而CISC体系则在桌面系统中占据统治地位。而在如今,在桌面领域,RISC也不断渗透,预计未来,RISC将要一统江湖。 2、CPU的扩展指令集对于CPU来说,在基本功能方面,它们的差别并不太大,基本的指令集也都差不多,但是许多厂家为了提升某一方面性能,又开发了扩展指令集,扩展指令集定义了新的数据和指令,能够大大提高某方面数据处理能力,但必需要有软件支持。 MMX 指令集MMX(Multi Media eXtension,多媒体扩展指令集)指令集是Intel公司于1996年推出的一项多媒体指令增强技术。MMX指令集中包括有57条多媒体指令,通过这些指令可以一次处理

多个数据,在处理结果超过实际处理能力的时候也能进行正常处理,这样在软件的配合下,就可以得到更高的性能。MMX的益处在于,当时存在的操作系统不必为此而做出任何修改便可以轻松地执行MMX程序。但是,问题也比较明显,那就是MMX指令集与x87浮点运算指令不能够同时执行,必须做密集式的交错切换才可以正常执行,这种情况就势必造成整个系统运行质量的下降。 SSE指令集SSE(Streaming SIMD Extensions,单指令多数据流扩展)指令集是Intel在Pentium III处理器中率先推出的。其实,早在PIII正式推出之前,Intel 公司就曾经通过各种渠道公布过所谓的KNI(Katmai New Instruction)指令集,这个指令集也就是SSE指令集的前身,并一度被很多传媒称之为MMX指令集的下一个版本,即MMX2指令集。究其背景,原来KNI指令集是Intel公司最早为其下一代芯片命名的指令集名称,而所谓的MMX2则完全是硬件评论家们和媒体凭感觉和印象对KNI的评价,Intel公司从未正式发布过关于MMX2的消息。而最终推出的SSE指令集也就是所谓胜出的互联网SSE 指令集。SSE指令集包括了70条指令,其中包含提高3D图形运算效率的50条SIMD(单指令多数据技术)浮点运算指令、12条MMX 整数运算增强指令、8条优化内存中连续数据块传输指令。理论上这些指令对目前流行的图像处理、浮点运算、3D运算、视频处理、音频处理等诸多多媒体应用起到全面强化的作用。SSE指令与3DNow!指令彼此互不兼容,但SSE包含了3DNow!技术的绝大部分功能,只是实现的方法不同。SSE兼容MMX指令,它可以通过SIMD和单时钟周期并行处理多个浮点数据来有效地提高浮点运算速度。SSE2指令集SSE2(Streaming SIMD Extensions 2,Intel官方称为SIMD 流技术扩展 2或数据流单指令多数据扩展指令集 2)指令集是Intel公司在SSE指令集的基础上发展起来的。相比于SSE,SSE2使用了144个新增指令,扩展了MMX技术和SSE技术,这些指令提高了广大应用程序的运行性能。随MMX技术引进的SIMD整数指令从64位扩展到了128 位,使SIMD整数类型操作的有效执行率成倍提高。双倍精度浮点SIMD指令允许以 SIMD格式同时执行两个浮点操作,提供双倍精度操作支持有助于加速内容创建、财务、工程和科学应用。除SSE2指令之外,最初的SSE指令也得到增强,通过支持多种数据类型(例如,双字和四字)的算术运算,支持灵活并且动态范围更广的计算功能。SSE2指令可让软件开发员极其灵活的实施算法,并在运行诸如MPEG-2、MP3、3D图形等之类的软件时增强性能。Intel是从Willamette核心的Pentium 4开始支持SSE2指令集的,而AMD则是从K8架构的SledgeHammer核心的Opteron开始才支持SSE2指令集的。 SSE3指令集 SSE3(Streaming SIMD Extensions 3,Intel官方称为SIMD 流技术扩展 3或数据流单指令多数据扩展指令集 3)指令集是Intel公司在SSE2指令集的基础上发展起来的。相比于SSE2,SSE3在SSE2的基础上又增加了13个额外的SIMD指令。SSE3 中13个新指令的主要目的是改进线程同步和特定应用程序领域,例如媒体和游戏。这些新增指令强化了处理器在浮点转换至整数、复杂算法、视频编码、SIMD浮点寄存器操作以及线程同步等五个方面的表现,最终达到提升多媒体和游戏性能的目的。Intel是从Prescott核心的Pentium 4开始支持SSE3指令集的,而AMD则是从2005年下半年Troy核心的Opteron 开始才支持SSE3的。但是需要注意的是,AMD所支持的SSE3与Intel的SSE3并不完全相同,主要是删除了针对Intel超线程技术优化的部分指令。 3D Now!(3D no waiting)指令集3DNow!是AMD公司开发的SIMD指令集,可以增强浮点和多媒体运算的速度,并被AMD广泛应用于其K6-2 、K6-3以及Athlon(K7)处理器上。3DNow!指令集技术其实就是21条机器码的扩展指令集。与Intel公司的MMX技术侧重于整数运算有所不同,3DNow!指令集主要针对三维建模、坐标变换和效果渲染等三维应用场合,在软件的配合下,可以大幅度提高3D处理性能。后来在Athlon上开发了Enhanced 3DNow!。这些AMD标准的SIMD指令和Intel 的SSE具有相同效能。因为受到Intel在商业上以及Pentium III成功的影响,软件在支持SSE上比起3DNow!更为普遍。Enhanced 3DNow!AMD公司继续增加至52个指令,包含了一些SSE码,因而在针对SSE做最佳化的软件中能获得更好的效能。

六:什么是64位技术:这里的64位技术是相对于32位而言的,这个位数指的是CPU GPRs (General-Purpose Registers,通用寄存器)的数据宽度为64位,64位指令集就是运行64位数据的指令,也就是说处理器一次可以运行64bit数据。64bit处理器并非现在才有的,在高端的RISC(Reduced Instruction Set Computing,精简指令集计算机)很早就有64bit 处理器了,比如SUN公司的UltraSparc Ⅲ、IBM公司的POWER5、HP公司的Alpha等。 64bit 计算主要有两大优点:可以进行更大范围的整数运算;可以支持更大的内存。不能因为数字上的变化,而简单的认为64bit处理器的性能是32bit处理器性能的两倍。实际上在32bit 应用下,32bit处理器的性能甚至会更强,即使是64bit处理器,目前情况下也是在32bit 应用下性能更强。所以要认清64bit处理器的优势,但不可迷信64bit。要实现真正意义上的64位计算,光有64位的处理器是不行的,还必须得有64位的操作系统以及64位的应用软件才行,三者缺一不可,缺少其中任何一种要素都是无法实现64位计算的。目前,在64位处理器方面,Intel和AMD两大处理器厂商都发布了多个系列多种规格的64位处理器;而在操作系统和应用软件方面,目前的情况不容乐观。因为真正适合于个人使用的64位操作系统现在就只有Windows XP X64,而Windows XP X64本身也只是一个过渡性质的64位操作系统,在Windows vista发布以后就将被淘汰,而且Windows XP X64本身也不太完善,易用性不高,一个明显的例子就是各种硬件设备的驱动程序很不完善,而且现在64位的应用软件还基本上没有,确实硬件厂商和软件厂商也不愿意去为一个过渡性质的操作系统编写驱动程序和应用软件。所以要想实现真正的64位计算,恐怕还得等到Windows Vista普及一段时间之后才行。目前主流CPU使用的64位技术主要有AMD公司的AMD64位技术、Intel公司的EM64T 技术、和Intel公司的IA-64技术。其中IA-64是Intel独立开发,不兼容现在的传统的32位计算机,仅用于Itanium(安腾)以及后续产品Itanium 2,一般用户不会涉及到,因此这里仅对AMD64位技术和Intel的EM64T技术做一下简单介绍。 AMD64位技术X86-64: AMD64的位技术是在原始32位X86指令集的基础上加入了X86-64扩展64位X86指令集,使这款芯片在硬件上兼容原来的32位X86软件,并同时支持X86-64的扩展64位计算,使得这款芯片成为真正的64位X86芯片。这是一个真正的64位的标准,X86-64具有64位的寻址能力。X86-64新增的几组CPU寄存器将提供更快的执行效率。寄存器是CPU内部用来创建和储存CPU 运算结果和其它运算结果的地方。标准的32-bit x86架构包括8个通用寄存器(GPR),AMD 在X86-64中又增加了8组(R8-R9),将寄存器的数目提高到了16组。X86-64寄存器默认位64-bit。还增加了8组128-bit XMM寄存器(也叫SSE寄存器,XMM8-XMM15),将能给单指令多数据流技术(SIMD)运算提供更多的空间,这些128位的寄存器将提供在矢量和标量计算模式下进行128位双精度处理,为3D建模、矢量分析和虚拟现实的实现提供了硬件基础。通过提供了更多的寄存器,按照X86-64标准生产的CPU可以更有效的处理数据,可以在一个时钟周期中传输更多的信息。 EM64T技术 Intel官方是给EM64T这样定义的:EM64T全称Extended Memory 64 Technology,即扩展64bit内存技术。EM64T是Intel IA-32架构的扩展,即IA-32e(Intel Architectur-32 extension)。IA-32处理器通过附加EM64T技术,便可在兼容IA-32软件的情况下,允许软件利用更多的内存地址空间,并且允许软件进行32 bit 线性地址写入。EM64T特别强调的是对32 bit和64 bit的兼容性。Intel为新核心增加了8个64 bit GPRs(R8-R15),并且把原有GRPs全部扩展为64 bit,这样可以提高整数运算能力。增加8个128bit SSE寄存器(XMM8-XMM15),是为了增强多媒体性能,包括对SSE、SSE2和SSE3的支持。 Intel为支持EM64T技术的处理器设计了两大模式:传统IA-32模式(legacy IA-32 mode)和IA-32e扩展模式(IA-32e mode)。在支持EM64T技术的处理器内有一个称之为扩展功能激活寄存器(extended feature enable register,IA32_EFER)的部件,其中的Bit10控制着EM64T是否激活。Bit10被称作IA-32e模式有效(IA-32e mode active)或长

模式有效(long mode active,LMA)。当LMA=0时,处理器便作为一颗标准的32 bit(IA32)处理器运行在传统IA-32模式;当LMA=1时,EM64T便被激活,处理器会运行在IA-32e扩展模式下。目前AMD方面支持64位技术的CPU有Athlon 64系列、Athlon FX系列和Opteron 系列。Intel方面支持64位技术的CPU有使用Nocona核心的Xeon系列、使用Prescott 2M 核心的Pentium 4 6系列和使用Prescott 2M核心的P4 EE系列。浅谈 EM64T技术和AMD64区别X86-64 (AMD64 EM64T): AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位定址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。 x86-64(AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。 AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上 AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T 之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。 Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel 的Pentium 4E处理器也支持64位技术。应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供

管理体系过程方法的概念和使用指南

最新国际质量管理文件 管理体系过程方法的概念和使用指南 1 引言 本文件为理解“过程方法”的概念、意图及其在ISO9000族质量管理体系标准中的应用提供指南。本指南也可用于其他管理体系采用过程方法,不论组织的类型和规模如何。 本指南的目的是推动描述过程的方法的一致性,并使用与过程有关的术语。 过程方法的目的是提高组织在实现规定的目标方面的有效性和效率。 过程方法的好处有: ?对过程进行排列和整合,使策划的结果得以实现; ?能够在过程的有效性和效率上下功夫; ?向顾客和其他相关方提供组织一致性业绩方面的信任; ?组织内运作的透明性; ?通过有效使用资源,降低费用,缩短周期; ?获得不断改进的、一致的和可预料的结果; ?为受关注的和需优先安排的改进活动提供机会; ?鼓励人员参与,并说明其职责。 2 什么是过程? “过程”可以定义为“将输入转化为输出的一组相互关联、相互作用的活动”。这些活动需要配置资源,如人员和材料。图1所示为通用的过程。

与其他方法相比,过程方法的主要优点是对这些过程间的相互作用和组织的职能层次间的接口进行管理和控制(在第4章中详细说明)。 输入和预期的输出可以是有形的(如设备、材料和元器件)或无形的(如能量或信息)。输出也可能是非预期的,如废料或污染。 每一个过程都有顾客和受过程影响的其他相关方(他们可以是组织内部的,也可以是外部的),他们根据其需求和期望规定所需要的输出。 应通过系统进行收集数据、分析数据,以提供有关过程业绩的信息,并确定纠正措施或改进的需求。 所有过程都应与组织的目标相一致,要规定所有过程都增值,与组织的规模和复杂程度相适应。 过程的有效性和效率可通过内部和外部评审过程予以评审。 3 过程的类型 可规定以下类型的过程 ——组织的管理过程。包括与战略策划、制定方针、建立目标、提供沟通、确保获得所需的资源和管理评审有关的过程。 ——资源管理过程。包括为组织的管理、实现、测量过程提供所需资源的所有过程。 ——实现过程。包括提供组织预期输出的所有过程。 ——测量、分析和改进过程。包括测量和收集业绩分析及提高有效性和效率的数据的那些过程,如测量、监视和审核过程,纠正和预防措施,它们是管理、资源管理和实现过程不可缺少的一部分。 4 过程方法的理解 过程方法是一种对如何使活动为顾客和其他相关方创造价值进行组织和管理的有力方法。

intel i3i5i7系列cpu超频详细教程

Intel i3、i5、i7系列CPU超频详细教程 摘要: 最近大家在我们的微信平台提了很多关于CPU、SSD、主板方面的问题,昨天一位名叫“天梭”的网友提到了CPU超频的问题,关于这个问题今天就来給大家一个详细的教程,不过超出厂商出厂设定的频率还是有一定风险的。超频 ...最近大家在我们的微信平台提了很多关于CPU、SSD、主板方面的问题,昨天一位名叫“天梭”的网友提到了CPU超频的问题,关于这个问题今天就来給大家一个详细的教程,不过超出厂商出厂设定的频率还是有一定风险的。超频的关键是自己反复测试,过程中参考一下别人的经验是可行的,但是不要迷信。比如说什么默认电压,安全电压,这些江湖传言的东西还是远离的好,呵呵。此文参照主板BIOS设置为ASUS的p7p55d,其他主板或许有些许不同,但是大方向是相同的。BIOS中只解释跟超频相关的内容,请谅解。超频分为三大步:一,CPU超频二,内存设置三,VTT电压设置以上3步请保证单独执行。意思就是,在对CPU进行超频时内存不作调整,保证最稳定状态,VTT电压不作调整,保证最稳定状态。这样可以避免出错的多方向性,多可能性。接下来将采取图文并茂的方式来讲解:以下这是超频模式的选择,请选择manual手动设置CPU倍频,按需要选择这个是INTEL的睿频技术,超频时请关闭CPU的外频,

按需要设置PCIE总线频率,请锁定为100,目前主板都为自动锁定100,不过还是确认一下比较好内存比例设置,又叫内存分频设置,决定着内存运行频率,在对CPU进行超频调试结束之前请选择最低频率以确保内存和内存控制器 稳定。QPI频率,超频时选择较低频率,对稳定性有很大帮助。这里注意一点就是,X58主板设置不能选择SLOW MODE,会拖慢显卡。还有一个uncore的频率,i5 750 最高上限锁定为3200,所以不需要调整,bios里面也没有选项。但是i7 920以上的CPU uncore频率是需要调整的,同理对CPU进行超频时选择较低频率,以确保稳定性。从此处可以进入内存时序调整页面,对内存时序进行调整,同样在CPU超频时,时序使用自动确保稳定性。CPU电压设置,模式选择manual后可以手动进行操作。CPU电压一直有个安全电压的传言,有的说1.3V,有的说1.33V。这到底是怎么来的呢?我在此为大家解释一下--在65nm工艺时代,intelCPU包装上有明文标示安全电压为1.35V以下。但是45nm工艺开始,并没有明文标示安全电压为多少,32nm 也没有。大家才开始猜测,会不会是1.33呢?会不会是1.3呢,那32nm的安全电压不是更低?所以,关于安全电压没有准确性,不用纠结了。接下来IMC 电压,又叫VTT,QPI DRM之类的,都是同一个电压,叫法不同而已。此电压关乎cpu核心以外的稳定性,同样决定整个CPU的稳定性,

半天工程序操作指南

一.实名登记完整流程 二.半天工程序操作指南 (一)主页(功能简介) 半天工程序了实现工地现场的务工人员实名登记管理、实名考勤管理、工资发放信息公示和其他系统管理功能。 (二)专户信息登记 1.管理工程 左键单击【专户信息登记】→【管理工程】,点击项目名称左边的图标,可查看项目专户信息,该信息不可更改,如需更改请联系半天工客服人员。

2.基本信息 左键单击【专户信息登记】→【基本信息】,可填写项目的基本信息。 注意:请程序操作人员(劳资专管员)正确填写本人身份证号,同时关注半天工微信公众号,在微信号内绑定个人身份证号码即可接收工人登记信息提醒。 3.微信用户管理 左键单击【专户信息登记】→【微信用户管理】,填写人员身份证信息,添加多个微信用户,关注微信公众号并绑定后即可接收工人登记信息提醒。 (三)实名登记管理 注意:务工人员实名制登记时,请严格按照【用工单位登记】→【务工班组登记】→【务工人员实名制进场登记】的顺序来操作。 1. 用工单位管理

左键单击【实名登记管理】→【用工单位管理】,填写用工单位信息。 2. 务工班组登记 左键单击【实名登记管理】→【务工班组登记】,添加务工班组信息(请准确选择务工班组所属企业)。如需删除或修改务工班组信息,请点击班组名称左边图标进行编辑操作。 3. 务工人员实名制进场登记 注意:务工人员实名制登记进场有两种操作方法,一是在【实名登记管理】→【务工人员实名制进场登记】界面进行人员进场登记,二是在【实名登记管理】→【工人花名册】界面进行人员进场登记。这里先介绍第一种方法,第二种方法在下面会介绍。 (1)左键单击【实名登记管理】→【务工人员实名制进场登记】,点击左侧的[全部班组] →[xxx单位] →[xxx班组],然后点击右侧的[进场登记],开始进场登记操作。

科普:关于ES版的CPU(正显、不显、QS等)

关于ES版的CPU(正显、不显、QS等) 作者:帝古、绝殇2016-08-27 11:36:47 科普:关于ES版的CPU(正显、不显、QS等) 网上版本太多,不知道出处是哪里的,本帝自己做了一些细微的调整修改添加等。 @面码什么的最喜欢了 2016.7.1 CPU的推出过程大概分这几个步骤: ES1:测试架构和工艺制程 ES2:修正大量BUG 这个时候的U已经能用了,但还存在隐患 ES3(QS):质量认证样品型号确定,在电脑上能显示型号和规格可能存在或不存在轻微隐患 正式版:大量出货 ES版,全称Engineering Sample(工程样板)。 简单说,ES的U是还没正式推出前的工程U即测试U。 每款正版CPU推出前,和很多软件一样,早期存在许多bug(问题),需要修改,因此ES版CPU 就是担当经受严格的测试考验,用来做各种超频和热功耗等的极限测试用的,从而发现问题、修正问题。当测试到后期,产品才逐步成熟。 QS,全称QualificationSample(质量认证样品)。 也叫ES正显版或带显版,是为了区别ES的一种叫法,实际上,QS版也是ES版的一种,但QS版应该算是最好的ES版了,一般是在正式版推出前的最终样品版本,无限接近于正式版,或与之后发布的正式版并无区别。但其货源也不像ES那样是免费供应,而是INTEL向工厂收取少量费用卖出的,价格仍低于正式版不少,稳定性各方面和正式版一样,主用来给OEM等厂商测试之用。 由于ES版CPU在修改过程中,会出现各种版本,用CPU_Z或系统中的电脑属性检测,就可分为“不显”和“正显”以及各种不同的步进修订号。 不显(ES):就是系统上、CPU-Z上不能识别cpu名称或虽能显示名称却不显示正确规格型号,在CPU-Z上看CPU规格上面显示0000。 正显(QS):就是系统上、CPU-Z上能正确显示CPU的名称和版本型号。 步进和修订:所谓步进就是每次更新的版本,步进越靠后越好,比如,步进1步进0就是最初的,后来步进3啊5啊,修订B几C几D几,代表后面修改的版本。 Intel CPU的步进排序(左旧右新): B2

电脑硬件检测

1、EVEREST Home 2.00.327 Beta 说明:EVEREST(原名AIDA32)一个测试软硬件系统信息的工具,它可以详细的显示出PC每一个方面的信息。支持上千种(3400+)主板,支持上百种(360+)显卡,支持对并口/串口/USB这些PNP设备的检测,支持对各式各样的处理器的侦测。新版增加查看远程系统信息和管理,结果导出为HTML、XML功能。官方主页:https://www.360docs.net/doc/e46108209.html, 下载(3.02 MB): https://www.360docs.net/doc/e46108209.html,/pub/download/200505/everesthome_build_0327.zip 2、DisplayX 1.0(一款显示器测试工具,尤其适合于LCD测试。) 说明:一个小巧、强悍的LCD/CRT测试软件,包括色彩、灰度、对比度、几何形状、呼吸效应(主要针对CRT)、聚焦(主要针对CRT)、交错(测试显示器抗干扰)、延时(主要针对LCD)等等。 官方主页:https://www.360docs.net/doc/e46108209.html,/cn/displayx/index.htm 下载(18 KB):https://www.360docs.net/doc/e46108209.html,/pub/download/200502/DisplayX.zip 3、Nokia Monitor Test 1.0.0.1 汉化版(经典的一款显示器测试工具) 说明:不少朋友买了显示器就直接接上去使用了,从未做过任何调试,也不知道自己的显示器是好是坏,现在我们可以用NOKIA Monitor Test这个程序来测试并调整你的显示器。这是一款Nokia公司出品的显示器测试软件,界面新颖、独特功能齐全。 官方主页:https://www.360docs.net/doc/e46108209.html, 下载(374 KB):https://www.360docs.net/doc/e46108209.html,/bbs/usr/30/30_1816.zip 4、CPU-Z(常用来检测CPU和内存) 说明:是一个监视CPU 信息的软件,这些信息包括:CPU 名称、厂商;内核进程;内部和外部始终;局部时钟监测等。 官方主页:https://www.360docs.net/doc/e46108209.html,/cpuz.php 下载1.28.4(238 KB):https://www.360docs.net/doc/e46108209.html,/tools/cpu/cpu-z-128.zip 下载1.28.2汉化版(238 KB): https://www.360docs.net/doc/e46108209.html,/pub/download/200504/ha-CPUZ1282-sy.rar 5、WCPUID 3.3 Build 1092 汉化版 说明:除了检测CPU 的普通ID 信息、内/外部频率、倍频数等基本信息外,还可以检测出CPU 是否支持MMX、KNI 以及3Dnow!指令。 下载(178 KB): https://www.360docs.net/doc/e46108209.html,/pub/download/200411/ha-wcpuid33b1092_sy.rar 6、AMD处理器识别工具Central Brain Identifier 7.5.0.2 Build 0424 R2 说明:Central Braind Identifier 是一个免费的AMD处理器测试辨别工具包,程序采用直观的界面,为你提供所有的AMD处理器相关资讯,支持所有版本的AMD处理器!

小程序使用说明文档

小程序使用说明文档 1.登录角色: 本次小程序主要支持的登录角色有:代理商、业务员两种角色 2.功能模块: 本次一期小程序主要实现的功能有三个,第一个商户经营状况查询;第二个商户预警提醒功能;第三个数据罗盘。 (1)商户经营状况 商户经营状况中,可以查看到所登录角色下属的所有活跃商户的交易状况(如果某个商户某一天一条交易记录都没有,那么它不会出现在当天的经营状况列表里面) 商户经营状况可以按照商户名查询某一个商户的经营状况;也可以按照具体某一天,或者按月来查询下属商户的交易状况;当然,这两个条件是可以组合使用的,你可以查询下属商户某一天或者某一个月份的经营情况! (2)商户预警 预警提醒功能分两个页签:“预警信息”和“等待确认”,都可支持按照商户名进行搜索 预警提醒中会显示登录角色下属的所有昨天交易量相对前天有所下降的商户,并且会按照下降比例从高到低的顺序进行排序。在预警提醒中,可以预警商户进行操作。 对于处于正常波动范围内的商户,点击长按,在弹出框中点击“忽略”,即可从预警信息列表中清楚该数据。

对于下降比例不正常的商户,点击长按,在弹出框中选择“等待确认”,即可把该条记录添加到等待确认列表中(预警列表中的数据每天都会刷新,所以请务必记得把异常商户及时添加到等待确认列表!)。 等待确认列表列表中显示当前登录角色从预警信息列表中添加过来的所有商户数据,在改列表中可以对商户进行处理。 对于不小心误操作过来的商户,可以点击长按,选择“正常”,从该列表中清楚该条数据。 对于无法挽回的商户,点击长按,在弹出框中选择“确认流失”,填写流失原因说明(必填!)后可从该列表中移出该条数据。 对于已经做出处理并挽回的商户,点击长按,在弹出框中选择“确认处理”,填写处理方法(必填)后,可从该列表中移出该记录。 对于所有添加到等待确认列表中的商户,具体的处理方法和处理说明记录,都有在数据库做记录。 (3)数据罗盘 数据罗盘主要是展示当前登录角色下的所有商户的交易情况的一些汇总信息。如:昨日交易总金额、较上周昨日同比增长或下降比例,昨日交易总笔数、较上周昨日同比增长或下降比例,累计开户数、本月新开户数;以及下属商户的星级占比饼图。 昨日交易总金额、较上周昨日同比增长或下降比例:昨日交易金额是指当前登录角色昨天的首款总额;较上周昨日同比增长或下降比例是指,昨天的交易总额和上周的同一天(如昨天是周二,就和上周二进行比较)的交易总额的上浮或下降比例[(昨天交易金额-上周昨日交易金额)/上周昨日交易金额] 昨日交易总笔数、较上周昨日同比增长或下降比例:比较方式与昨日交易总金额一样,只是以笔数为统计单位。 累计开户数和本月新开户数:累计开户数是当前登录角色下属所有的商户个数;本月新开是指进件日期为当前月份的商户个数。 星级排行:即后台的商户星级排行功能以饼图形式的展现,类别“其它”是指暂时没有星级的

CPU-Z 参数解读

CPU-Z怎么看参数利用CPU-Z检测电脑CPU型号方法全面图解 16-07-18 16:28作者:脚本之家 写这篇文章的目的很简单,教大家怎么看CPU-Z软件的显示结果,鉴于不少电脑爱好者新人朋友对CPU-Z检测出来的结果不太了解或者存在一些疑问,比如CPU-Z检测结果是否准确、能否作为鉴别真假处理器的依据等等,下面本文将统一解答。 CPU-Z的处理器选项卡下显示的参数就是处理器的核心参数知识,下面我们具体来解读看。

图为Intel六代I5-6600K的CPU-Z检测结果 ①名字 CPU-Z检测结果出来之后,第一栏叫“名字”,但是这个“名字”只具有参考价值,如果你看CPU-Z检测的处理器型号是看“名字”这一栏,只能说明你并不会用这款软件。

CPU-Z经常会出现这样的检测结果,名字和规格显示的结果并不一样,这是为什么呢?我之前已经说了,名字栏可以理解为这是CPU-Z拿到处理器后与自身数据库比对后第一反应的结果,这个结果对检测ES型号不显的处理器有一定的帮助,而对于我们正式版或者正显型号的产品,只会多几分误导,所以小白们,千万不要去看【名字】这一栏参数! ②代号 即为核心代号,用于区分处理的核心架构,比如Skylake就是我们常说的进入酷睿I时代的第六代处理器核心代号,第五代是Broadwell,而第四代则是Haswell。 ③TDP热设计功耗 这个参数非常难解释!绝大部分人都不懂什么是TDP,小白们以为TDP越大功耗越大,但并非如此!现阶段最通俗的解释就是:同一系列处理器,TDP越大,性能越强。TDP是一个可以修改的参数,并不是实际功耗,而至于怎么修改,英特尔以及OEM制造商可以根据

软件使用说明书模板

(仅供内部使用) 文档作者:_____________________ 日期:___/___/___ 说明书校对:_____________________ 日期:___/___/___ 产品经理:_____________________ 日期:___/___/___ 请在这里输入公司名称 版权所有不得复制

软件使用说明书模板 1引言 1 .1编写目的 编写本使用说明的目的是充分叙述本软件所能实现的功能及其运行环境,以便使用者了解本软件的使用范围和使用方法,并为软件的维护和更新提供必要的信息。 1 .2参考资料 略 1 .3术语和缩写词 略 2 软件概述 2 .1软件用途 本软件的开发是为具有电能质量仪表,可以获取电能数据的技术人员提供一个有利的分析工具。 2 .2软件运行 本软件运行在PC 及其兼容机上,使用WINDOWS 操作系统,在软件安装后,直接点击相应图标,就可以显示出软件的主菜单,进行需要的软件操作。 2 .3系统配置 本软件要求在PC 及其兼容机上运行,要求奔腾II以上CPU,64兆以上内存,10G 以上硬盘。软件需要有WINDOWS 98 操作系统环境。 2 .4软件结构 略 2 .5软件性能 略 2 .6输入、处理、输出 2 .6.1输入 略 2 .6.2处理 略 2 .6.3输出 分析数据为: 略

图表有: 略 3 软件使用过程 3 .1软件安装 直接点击软件的安装软件SETUP.EXE ;然后按照软件的提示进行。 3 .2运行表 略 3 .3运行步骤 略 3 .4运行说明 略 3 .4.1控制输入 按照软件的说明,将测试数据加入到软件中;具体过程如下: 略 3 .4.2管理信息 软件运行过程中的密码键入: 略 3 .4.3输入输出文件 略 3 .4.4输出报告 略 3 .4.5输出报告复制 略 3 .4.6再启动及恢复过程 略 3 .5出错处理 软件运行过程中可能雏形的出物及处理如下: 略 3 .6非常规过程 如果出现不可能处理的问题,可以直接与公司的技术支持人员联系:略

[概述]cpuz

[ 概述]cpuz cpuz CPU-Z 版本 1.50 处理器映射 中央处理器个数 1 线程数 4 处理器 0 -- 核心 0 -- 线程 0 -- 线程 1 -- 核心 1 -- 线程 0 -- 线程 1 处理器信息 处理器 1 (ID = 0) 核心数 2 ( 最大 8) 线程数 4 ( 最大 16) 名称英特尔处理器核心代号规格 Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz 接口

CPUID 6.A.7 扩展 CPUID 6.2A 核心步进核心速度 2195.0 MHz 指令集 MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, EM64T 一级数据缓存 2 x 32 KBytes, 8- 路设置关联 , 64- 字节行大小一级指令缓存2 x 32 KBytes, 8- 路设置关联 , 64- 字节行大小二级缓存 2 x 256 KBytes, 8- 路设置关联 , 64- 字节行大小三级缓存 3 MBytes, 12- 路设置关联 , 64- 字节行大小 FID/VID 控制否特征 XD, VT 线程转储 CPU线程0 APIC ID 0 布局处理器 ID 0, 核心 ID 0, 线程 ID 0 类型 01000000h 最大 CPUID 指标 0000000Dh 最大 CPUID 扩展指标 80000008h 函数 eax ebx ecx edx 0x00000000 0x0000000D 0x756E6547 0x6C65746E 0x49656E69 0x00000001 0x000206A7 0x00100800 0x1DBAE3BF 0xBFEBFBFF 0x00000002 0x76035A01 0x00F0B2FF 0x00000000 0x00CA0000 0x00000003 0x00000000 0x00000000 0x00000000 0x00000000 0x00000004 0x1C004121 0x01C0003F 0x0000003F

常用电脑检测软件列表

常用电脑检测软件列表 ------------------ 一、综合性检测分析 ------------------ 1、EVEREST Home Edition 2.50说明:EVEREST(原名AIDA32)一个测试软硬件系统信息的工具,它可以详细的显示出PC每一个方面的信息。支持上千种(3400+)主板,支持上百种(360+)显卡,支持对并口/串口/USB这些PNP设备的检测,支持对各式各样的处理器的侦测。新版增加查看远程系统信息和管理,结果导出为HTML、XML功能。 下载:2.50 Ultimate( 5.78 MB):https://www.360docs.net/doc/e46108209.html,/pub/download/200512/everestultimate250_PConline.zip 下载:2.50 Corporate( 6.31 MB):https://www.360docs.net/doc/e46108209.html,/pub/download/200512/everestcorporate250_PConline.zip 2、SiSoftware Sandra 2005 SR3 Build 1069 说明:这是一套功能强大的系统分析评比工具,拥有超过30 种以上的分析与测试模组,主要包括有CPU、Drives、CD-ROM/DVD、Memory、SCSI、APM/ACPI、鼠标、键盘、网络、主板、打印机等,还有CPU、Drives、CD-ROM/DVD、Memory 的Benchmark 工具,它还可将分析结果报告列表存盘。 下载(9.67 MB):https://www.360docs.net/doc/e46108209.html,/pub/download/200510/sanpro2005.SR3-1069-JOK_PConline.exe SN:22C6CWHL2NDX4DHN6GTP6N9LNNGL96 3、HWiNFO 32 1.57 说明:HWINFO32 是电脑硬件检测软件。它主要可以显示出处理器、主板及芯片组、PCMCIA接口、BIOS版本、内存等信息,另外HWiNFO还提供了对处理器、内存、硬盘(WIN9X 里不可用)以及CD-ROM 的性能测试功能。 下载(1.57 MB):https://www.360docs.net/doc/e46108209.html,/pub/download/200511/hw32_157_PConline.exe 4、PCMark 04 1.3.0 说明:这是由鼎鼎大名的Futuremark推出的另一款硬件测试工具,软件的风格和3DMark03如出一辙。整合的在线结果浏览器可以将你的测试结果与世界上最大的性能数据库进行对比。PCmark 04集易用性和专业性为一身,甚至适合刚刚上手的PC用户使用。PCMark04免费版只能运行系统测试组,显示出综合成绩。注册版用户可运行中央处理器测试组、内存测试组、图形芯片测试组、硬盘测试组,并且可以显示出单独的测试成绩。 官方主页:https://www.360docs.net/doc/e46108209.html,/ 下载(35.3 MB):https://www.360docs.net/doc/e46108209.html,/pub/driver/200501/PCMark04_v130_installer.exe 5、一分钟测试1.56 说明:《一分钟测试》的设计目标是快速、直观、准确的评价用户计算机的效能。其设计目的在于克服现存评测软件测试时间过长,测试项目太多、测试结果过分理论化,测试成绩波动大,适用平台范围狭窄等不足,且致力于不再让用户去记忆那些奇怪的得分。

Win32程序快速入门指南

Win32程序快速入门指南 1.程序说明 示例程序放在Win32ShapeOrg中 1.1_tWinMain _tWinMain是程序入口。 while (GetMessage(&msg, NULL, 0, 0))开始为消息处理循环。 如果程序运行到此处将进入一个消息响应过程,即如果有消息就会进入消息响应函数 LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 1.2全局初始化 如果要做全局初始化可以在tWinMain函数中while (GetMessage(&msg, NULL, 0, 0))前1.3消息响应机制 win32程序是基于消息响应的,最核心的模块是消息响应函数 LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 消息是依附在某个窗口的。其中hWnd是窗口句柄,windows程序里,每一个窗口都有一个HWND类型的句柄用于标识这个窗口。 message是UINT类型的消息,实质上整数,消息的其它信息包含在wParam和lParam中 1.4绘制函数 WM_PAINT是绘制消息,所有和绘制相关的代码都放在WM_PAINT消息响应部分(具体在hdc = BeginPaint(hWnd, &ps);和EndPaint(hWnd, &ps);之间),win32所有绘制函数都带有一个HDC类型设备上下文句柄的参数。 InvalidateRect(hWnd, NULL, true);语句会发出绘制消息。如果需要更新绘制画面,就可以调用此语句。 Windows绘制机制的基础是图像设备交互(GDI,Graphics Device Interface)。 Brush是用来填充的刷子,绘制的东西是实心的。Pen相当于画笔,用来描述绘制直线曲线时的颜色粗细样式等等。如果不做设置,系统会提供默认的设置。 直线和曲线函数在这里,这是一个直线段的例子。 //显示文字 char cMessage[128]; sprintf(cMessage, "%d, %d", g_xPos, g_yPos); SetBkMode(hdc, TRANSPARENT); //设置背景透明显示模式 TextOut(hdc, g_xPos+10, g_yPos-10, cMessage, strlen(cMessage)); //实心椭圆 int r = 9; Ellipse(hdc, g_xPos-r, g_yPos-r, g_xPos+r, g_yPos+r); //当前位置坐标&位置+直径: //空心椭圆 MoveToEx(hdc, g_xPos+r, g_yPos, 0); AngleArc(hdc, g_xPos, g_yPos, r, 0, 360); //画线

关于UEFI启动

B: UEFI模块包含的文件逐个分析及其引导流程 ★ -----------------对于UEFI启动本身来说,这些文件是必需的 ▲----------------- 对于传统BIOS引导光盘来说,这些文件是制作时必需的 ▲----------------- 对于传统BIOS引导光盘来说,这些文件是引导时必需的 ◆-----------------对于UEFI引导光盘来说,这些文件是制作时必需的 ◆-----------------对于UEFI引导光盘来说,这些文件是引导时必需的 UEFI_MSPE-------------在磁盘介质上,通过UEFI启动 Windows PE 系统,这些文件是必需的UEFI_MSHD-------------在磁盘介质上,通过UEFI启动 Windows 硬盘系统,这些文件是必需的 ================================================== UEFI 全中文版支持模块UEFI_Support.PMF到D部分下载 ================================================== UEFI_Support.PMF用Diskgenius 4.20及以上恢复到磁盘时,这些文件意义和用途:

(本说明用法:你需要查询某个文件的用处,直接找那个文件;或者你需要做什么,从上方认识标示,从本说明标示入手) 根目录 ├─boot --------------------------------启动文件目录UEFI_MSPE +▲(BIOS引导必需) │ │ BCD --------------------------------传统BIOS启动所需BCD菜单文件▲(BIOS引导必需) │ │ boot.sdi --------------------------------UEFI/BIOS启动都需要UEFI_MSPE + ▲(BIOS引导必需)+ ◆(UEFI光盘引导需)│ ├─fonts --------------------------------传统BIOS启动字体文件目录(不影响启动) │ │ chs_boot.ttf │ │ wgl4_boot.ttf │ └─zh-cn --------------------------------传统BIOS启动中文显示用的目录(不影响启动) │ bootmgr.exe.mui ├─efi--------------------------------UEFI启动目录★(UEFI引导必需)+ UEFI_MSPE + UEFI_MSHD + ◆(UEFI光盘引导需)│ ├─zh-cn --------------------------------UEFI启动中文显示用的目录(不影响启动) │ │ bootia32.efi.mui │ │ bootx64.efi.mui │ ├─boot--------------------------------UEFI启动文件目录★(UEFI引导必需)+ UEFI_MSPE + UEFI_MSHD + ◆(UEFI光盘)│ │ bootia32.efi--------------------------------IA32构架的启动文件★(UEFI引导必需)+ UEFI_MSPE + UEFI_MSHD + ◆│ │ bootx64.efi--------------------------------X64构架的启动文件★(UEFI引导必需)+ UEFI_MSPE + UEFI_MSHD + ◆ │ └─microsoft-------------------------------UEFI启动目录UEFI_MSPE + UEFI_MSHD + ◆(UEFI光盘引导必需) │ ├─fonts --------------------------------UEFI启动中文字体文件目录(不影响启动) │ │ chs_boot.ttf │ │ wgl4_boot.ttf │ └─boot---------------------------------UEFI启动菜单目录 UEFI_MSPE + UEFI_MSHD + ◆(UEFI光盘引导必需) │ BCD-------------------------------UEFI启动菜单UEFI_MSPE + UEFI_MSHD + ◆(UEFI光盘引导必需) │

软件使用指南

MATLAB 软件使用指南 2009年3月 中国科学院计算机网络信息中心超级计算中心

目录 MATLAB 软件使用指南 (1) 目录 (2) 1. 软件介绍 (3) 2. 软件的安装与测试 (4) 2.1 安装目录及安装信息 (4) 2.2 测试结果 (5) 3. 软件的运行使用方法 (13)

1. 软件介绍 MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。使用 MATLAB,您可以较使用传统的编程语言(如C、C++ 和 Fortran)更快地解决技术计算问题。 MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用MATLAB 函数集)扩展了 MATLAB 环境,以解决这些应用领域内特定类型的问题。 MATLAB 提供了很多用于记录和分享工作成果的功能。可以将您的 MATLAB 代码与其他语言和应用程序集成,来分发您的 MATLAB 算法和应用。 主要功能 此高级语言可用于技术计算 此开发环境可对代码、文件和数据进行管理 交互式工具可以按迭代的方式探查、设计及求解问题 数学函数可用于线性代数、统计、傅立叶分析、筛选、优化以及数值积分等 二维和三维图形函数可用于可视化数据 各种工具可用于构建自定义的图形用户界面 各种函数可将基于 MATLAB 的算法与外部应用程序和语言(如C、C++、Fortran、Java、COM 以及 Microsoft Excel)集成 更多详细信息,请参考以下网页: https://www.360docs.net/doc/e46108209.html,/products/matlab/description1.html

HPDS2017教程程序使用说明

公路路面设计程序系统(HPDS2017)使用说明 本说明由十一个部分和四个附件组成,它们是: 一、系统总说明 ----------------------------------------------------------------------- 1 二、系统主菜单窗口使用说明 ----------------------------------------------------------- 5 三、改建路段留用路面结构顶面当量回弹模量计算程序(HOC)使用说明----------------------- 6 四、沥青路面设计与验算程序(HAPDS)使用说明 ------------------------------------------ 8 五、路基验收时路段内实测路基顶面弯沉代表值计算程序(HOCG)使用说明-------------------- 15 六、路面交工验收时路段内实测路表弯沉代表值计算程序(HOCA)使用说明-------------------- 17 七、改建路段原路面当量回弹模量计算程序(HOC1)使用说明-------------------------------- 19 八、新建单层水泥混凝土路面设计程序(HCPD1)使用说明 ---------------------------------- 21 九、新建复合式水泥混凝土路面设计程序(HCPD2)使用说明 -------------------------------- 28 十、旧混凝土路面上加铺层设计程序(HCPD3)使用说明 ------------------------------------ 33 十一、基(垫)层或加铺层及新建路基交工验收弯沉值计算程序(HCPC)使用说明 ------------- 38 附件一、沥青路面材料代码与材料名称对照表 --------------------------------------------- 40 附件二、水泥混凝土路面基(垫)层材料代码与材料名称对照表 ----------------------------- 43 附件三、版权声明 --------------------------------------------------------------------- 44 附件四、作者简介 --------------------------------------------------------------------- 44 现分别叙述如下: 一、系统总说明 1.本系统是根据新发行的《公路沥青路面设计规范》JTG D50-2017和已发行的《公路水泥混凝土路面设计 规范》JTG D40-2011的有关内容编制的,共包括如下九个程序: (1)改建路段留用路面结构顶面当量回弹模量计算程序HOC (2)沥青路面设计与验算程序HAPDS (3)路基验收时路段内实测路基顶面弯沉代表值计算程序HOCG (4)路面交工验收时路段内实测路表弯沉代表值计算程序HOCA (5)改建路段原路面当量回弹模量计算程序HOC1 (6)新建单层水泥混凝土路面设计程序HCPD1 (7)新建复合式水泥混凝土路面设计程序HCPD2 (8)旧混凝土路面上加铺层设计程序HCPD3 (9)基(垫)层或加铺层及新建路基交工验收弯沉值计算程序HCPC 2.系统的特点 (1)采用Visual Basic 6.0 for Windows 语言编程,在Windows系统下运行,有良好的用户界面; (2)功能齐全,凡公路路面设计与计算所需的程序应有尽有; (3)计算速度快,精度高;

SetFSB之具体使用方法图文篇

接触到超频的玩家们,总会听到这么一种说法:“软超频”,“硬超频”。所谓的“硬超频”,即是到BIOS里面进行各种设置来达到超频目的,里面的各种选项,参数让很多初上手的ocer不知道从哪下手,忙得不亦乐乎。故名思议“软超频”就是再系统里边用软件提升频率,达到超频效果。 到了今天,超频已经不再是一件神秘而复杂的事了,超频也没有很严格的“软硬”分别,大多情况下我们需要“软硬兼施”。 如今在超频越来越火的现在,主板行业都已拿超频当做噱头,自然超频的功能必不可少,无论BIOS内,还是自主开发的超频软件。我们软件超频用到的软件,除了各家主板提供的软件外,还有比较通用的有SETFSB,以前经常见到的CLOCKGEN等。 ClockGen和CPU-Z同出一门,都是来自https://www.360docs.net/doc/e46108209.html,。SetFSB也是历史比较悠久的超频软件,它支持的主板的数目也要比ClockGen多,但我到觉得各有千秋,只可惜CPUID官方已不对ClockGen做跟更新。SetFSB的主页在http://www13.plala.or.jp/setfsb/,从这里我们可以下载到软件最新的版本,目前最新版本是Version 2.2.130.96,不过作者因为某些原因开始对setfsb收费,因此大家可以去搜索一些“特殊”的版本,我用的版本为Version 2.2.105.78 SetFSB不能更改CPU电压值,分频比例,内存的CL值等,因此用SetFSB之前最好要在BIOS里面设定好电压和分频,内存CL值,以免因为CPU电压或内存频率限制造成超频瓶颈。当然,即使这些数值不去人为改动采取默认的时候,也是可以实现一定范围的超频幅度的。最后还有一点就是使用SetFSB实现的超频不会保留进BIOS 内,重启之后便回复超频之前的状态。因为,不会有什么“错误残留”,当然使用SetFSB做超频测试也可以作为修改BIOS超频前的测试数据参考。 SetFSB超频的原理和在BIOS里修改参数的原理其实是一样的,都是通过向PLL芯片发送指令来改变系统总线的频率。PLL芯片一般可以在主板的PCI-E或PCI插槽附近找到,标注有如 "ICS9*****"“RTM****”“SLG****”“CV1****”等型号字样。 如下图七彩虹战旗C.P45 X5 D3超频版V2.1中的这颗Realtek的RTM875T-531

GRRM 程序指南

GRRM 1.00
Chemistry is a wonderful world with lots of unexplored materials, which is producible from ca. one hundred kinds of chemical elements. More than thirty millions of compounds have already been known, and now two millions of new chemical compounds are produced annually. Invention and discovery of chemical reactions among compounds have extensively been made by chemists. Eighty years ago, when quantum mechanics was discovered, all problems in chemistry seemed to be insolvable. Equations for chemical problems are so complex that many theoreticians had abandoned to solve the problems at that time. However, some theoretical chemists had continually made efforts to improve approximation techniques solving chemical problems until many problems could have been solved effectively by means of electronic computers and computational techniques. By virtue of recent developments, the range of quantum chemical treatments has rapidly been widened so that we are now able to apply them to various chemical problems. A theoretical technique based on quantum chemical calculations has made it possible to determine a stable geometrical structure and its energy in good accuracy for a chemical system without experiments. This is called “structure-optimization”, which can be used by anyone in nowadays. However, it requires an initial guess, which should be made on the basis of our experience or chemical intuition. Since no general method exists to find out suitable initial guesses, one cannot avoid try-and-errors before one finally obtains some valuable conclusions such as new compounds or new chemical reaction pathways. It follows that a global search of isomers and reaction pathways among them has never been accomplished except for very small systems not larger than a four atom system. It has been an unexplored summit to perform a global search of isomers and inter-conversion reaction pathways among them for a chemical system composed of more than four atoms. 1 GRRM 1.00 / Ohno&Maeda

相关主题
相关文档
最新文档