冰蓄冷自动控制系统设备及功能说明讲解

冰蓄冷自动控制系统设备及功能说明讲解
冰蓄冷自动控制系统设备及功能说明讲解

第三章机房自动控制系统

一、冰蓄冷自动控制系统综述

工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。

上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,

确保实现系统的参数化,实现系统的智能化运行。

本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。

蓄能系统控制具体功能如下:

⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调

节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。

⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。

⑶控制、监测范围:

a、制冷主机、泵、冷却塔启停、状态、故障报警;

b、总供/回水管温度显示与控制;

c、蓄冰装置及蓄热水箱进出口温度、显示与控制;

d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的

显示;

e、电动阀开关、调节显示;

f、备用水泵选择功能;

g、各时段用电量及电费自动记录;

h、空调冷负荷以及室外温湿度监测;

i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。

⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

析,而且所有的监测数据可进行打印。

⑸控制系统配置灵活的手动/自动转换功能。现场控制柜可手动控制所有设备的启停。

⑹可根据负荷变化情况调整运行策略,进行系统的优化控制,最大限度发挥蓄冷系统转移高峰负荷的能力,以最大限度节省运行费用。

⑺具备无人值守功能、节假日特别控制功能。

⑻系统可通过电话线或局域网络,对本工程的蓄冷、蓄热与生活热水系统进行远程监控(可选的功能)。

二、蓄冷系统运转模式

蓄冷系统按空调供回水温度7℃/12℃设计,可以通过不同阀门的开、关或调节来实现以下4种不同的运行模式:

A、常规主机供冷+双工况主机制冰模式

B、常规主机供冷+双工况主机+蓄冰装置联合供冷模式

C、常规主机供冷+蓄冰装置联合供冷模式

D、融冰单独供冷模式

其运行原理见冰蓄冷空调系统原理图。(见本报价书第七部分)

各个流程简化的具体控制及运行情况说明如下:

1、双工况主机制冰+(基载主机供冷)

该时段为电力低谷期,根据蓄冰系统的优化原理,双工况主机在电力低谷时段充分利用当地的低价电运行制冰。在该时段内双工况主机满负荷运行,通过低温的乙二醇溶液使蓄冰槽内的冰球蓄冰。双工况主机在蓄冰工况下运行时,制冷主机的效率有相应的降低,乙二醇溶液仅在双工况主机和蓄冰槽之间循环,随着蓄冰量的增加和时间的推移,双工况主机的出口温度逐步降低。当蓄冰槽的名义蓄冰量达到要求时,双工况主机自动停止蓄冰工况运行,过渡为常规工况运行。系统循环示意图如下:(注:相同功能设备均用一个符号表示,以便于理解,详细情况参阅系统原理图,彩色线条表示不同用途循环液体的循环,下同)

如此时基载主机停机,即为双工况主机单独制冰模式。

2、双工况主机 + 融冰联合供冷

该时段为空调冷负荷较大时段,为了满足空调负荷要求同时尽量减少系统的电力运

行费用,冷负荷由基载和双工况制冷机联合蓄冰槽供冷。在该时段内制冷主机处于空调工况,蓄冰主机出口的乙二醇溶液和冰槽融冰后的乙二醇溶液混合进入板式换热器。在非标准设计日内,空调冷负荷有相当减小,通过优化控制实现蓄冰槽的有效融冰并保证

系统内的冷负荷需求。系统运行原理示意图如下:

3、蓄冰槽单独供冷

如电价政策有利,在过渡季节,为了避免在电力高峰期内开启冷机以及冷机的低效

运行,该时段内蓄冰槽的总融冰供冷量为空调系统负荷的全部。根据优化控制原理,为了减小运行电费,该时段的冷负荷由蓄冰槽单独提供,制冷机白天停止运行,只在电力低谷段运行蓄冰。系统运行原理示意图如下:

4、制冷机单独供冷

根据当前的电价政策,根据不利于使用低谷电所蓄冷量时,空调冷负荷结构改变

时,为了将蓄冰槽的冷量尽量用于高峰时段,在平时段内的冷负荷可以适当由制冷机单

独提供。这时蓄冰槽与系统隔离开,蓄冰主机在空调工况运行,通过板式换热器向空调系统提供冷冻水。系统运行原理示意图如下:

三、下位机PLC监控方案

3.1 手动/自动选择功能

·系统可以根据用户的需要,选择手动或者自动运行模式;

·当系统选择手动运行模式时,系统还可以根据用户的需要进行硬手动和软手动的

运行方式;

·通过对触摸屏控制键操作,根据需求选择供冷或采暖及生活热水方式,在软手动

操作功能,通过触摸按钮,可手动进行制冷主机的开/停、冷冻水泵、冷却水泵、风机、乙二醇溶液泵操作;

·通过对控制柜上的相关按钮进行操作,可进入硬手动操作功能,通过按钮,可手

动进行制冷主机的开/停、冷冻水泵、冷却水泵、风机、乙二醇溶液泵控制。

·在取得相关的授权后,可以通过人机对话界面对控制系统进行自动操作,根据所

设定好的运行参数对系统的不同运行模式的自动运行及模式转换;

3.2 系统运行模式选择功能

·系统可以根据历史记录、负荷数据、用户预先设定(含日期、时间、和其它约束条件等)等自动选择系统的工作模式;

·系统也可以接受用户的手动运行模式;

·下位机中提供的主要四种运行模式为:

a.主机制冷模式

b.主机与蓄冰装置联合供冷模式

c.融冰单独供冷模式

d.主机单独供冷模式

·在双工况制冷主机单独制冰运行模式中,制冷主机为满负荷工作,系统并且能够

根据其采集的温度参数自动判断过程蓄冰的完成。

·制冷主机供冷与制冰装置联合供冷运行模式下,一方面要确保制冷主机的正常供

冷,另一方面也要确保制冰装置供冷的正常运行,以达到系统设计标准要求;

·系统单独融冰供冷模式下运行时,系统能够根据所采集的温度参数准确调节放冷

速度,并且在确保系统正常运行的前提下,尽量满足系统的负荷变化,

·制冷主机单独供冷模式运行时,与常规空调的控制完全一样。

3.3 全自动运行功能

·本系统可以通过定时功能设置,使系统完全按照用户设定的参数进行运行;

·系统可以按照设定系统参数和控制模式自动运行,从而实现系统的无人值守;

·系统在选择参数后将完全由下位机进行控制;

3.4实时数据显示以及历史趋势图形

·重要运行参数系统负荷、储冰量、融冰量可以在触摸屏上生成历史趋势图形进行

显示;

·所有的监测、控制数据可以进行打印;

·实时显示所有的当前数据。

3.5 节假日节能运行模式

·系统可以通过下位机触摸屏进行节假日、特别工作日的预先设定;

·在节假日系统可以根据时间安排,自动选择节能运行模式,以最大限度实现冰蓄

冷的优越性;

·系统也可以根据特别工作日的用冷需求,预先设计好运行模式,尽最大能力满足

系统的最大用冷要求,并且实现节能的目的;

·用户可以根据需要和安排,进行运行模式设定;

·系统可以根据气候的变化,提前或者推迟运行系统,以达到最佳的运行效果和最

经济的运行方式。

3.6 系统故障诊断与处理

·系统具备全面的故障自诊断能力;

·系统能够对出现的运行故障进行自动处理能力;

·系统的主要故障诊断功能有:

各种传感器(温度、流量、液位等)运行故障;所有电机、水泵(冷却水、冷冻水、乙二醇溶液)的运行故障;风机、冷却塔运行故障;蓄冰装置的运行故障;制冷主机的超温、超压、润滑等故障;缺相报警。

·计算机屏幕显示故障区域流程图,事故设备图形变色或闪烁,屏幕上方用汉字显

示故障性质及发生时间,该监控系统同时具有对运行过程重要参数进行声、光报警功

能。所有报警显示有关报警监控点的详细资料,包括发生的时间及日期。

3.7 蓄能系统的负荷管理

·蓄冷系统同样可以通过蓄冷罐的溶液的流量和温度变化对系统的蓄冷量、放冷量、蓄冷负荷、放冷负荷进行记录、显示;

3.8 多级安全模式

·系统为了确保安全、稳定、正常运行,控制系统设有多级安全保护,工作人员必

须具备有授权的安全密码后,才能进入相应层段进行操作;

·系统设有一般观察员、现场操作员、信息管理员、系统管理员四级安全模式;

·一般观察员只能通过上位计算机对话窗口对系统的运行状况、工作模式、故障报

警等一些完全开放性的过程进行操作与查询;

·现场可通过上位机对控制系统的相关参数进行设定、修改和手动控制操作;

·系统管理员可以对控制系统的一些非常重要的参数进行设定、修改和操作,同时

系统管理员还可以对控制程序进行修改,或者添加一些控制功能等;

* 附2:下位机触摸屏组态画面简介

整个冰蓄冷控制系统的下位机操作界面采用德国西门子公司新推出的装载了易观

察及高画质新显示器件的全中文触摸屏操作界面TP270-10(本工程未要求提供触摸屏控制,现场直接采用上位机控制),可实时地触摸屏幕上按钮,进行人机对话,并能设置、改变系统的各种参数,以适应不同的工况要求。该系统强大的中文帮助系统、专家

诊断系统和智能故障识别功能能有效地指导用户进行各种操作及故障的排除,真正地做到,一见就懂!一触即会!开机显示:

●在开机画面中,按下屏幕中央的空余部位,即可进入系统菜单画面

1、系统菜单:

●按下相应的功能按钮时,即可进入相应的系统菜单画面。

2、自动运行模式

●按下相应的功能按钮时,即实现四种运行模式功能。

3、节假日运行时间设定画面

●根据本地的电价情况,合理的选择相应的时段运行某一种工作模式。

4、参数设定画面

●触摸相应的数值输入区域,从弹出的键盘中输入所需的参数。

5、温度曲线显示画面

●通过曲线方式,可以了解系统在一段时间内的运行情况。

6、历史报警记录画面

●查看历史报警记录,可以了解系统所发生的故障情况。

四、上位机远程监控方案

1、上位机系统结构

控制系统的物理模型如下图所示,对于控制系统中上位机的具体组成以及说明如下:

2、上位机监控软件组态王6.5(监控中心)

组态王6.5是基于Windows下操作系统,采用Microsoft

技术开发,支持ANSIC,Visual Basic,

COM/DCOM

SQL,和OPC

组态王6.5用户归档功能支持组态王 6.5内置的SYBASE SQL Anywhere数据库与管理系统相集成。

利用集成的报表系统生成各种形式的报表及历史数据库编程接口和时 DDE数据交换生成Excel报表。

采用组态王 6.5作为系统组态软件和运行平台,人机界面友好,操作简单易学,

可以实现多种功能;

具有强大的先进的安全管理系统,组态王彩分级和分区的双重保护策略,应用系统中的第一个可操作元素都可以被指定级别和安全区,在系统运行时,若操作者

权限小于可操作元素的访问权限,或者工作安全区不可操作元素的安全区时,可

操作规元素是不可访问或操作的。

上位机监控软件可以脱离下位机而不会影响下位的工作,这可以保证由于通讯等干扰原因而使整个系统的安全运行;

具有PPI、MPI、Profibus等多种通讯协议,与下位机和其它系统通讯简单;

系统可以利用INTERNET实现远程监控,并且可以与调度大楼的MIS系统进行数据交换和共享,而且能够很好地进入BAS系统;

3、优化控制软件

优化控制软件是为了保证蓄冰(蓄热)系统有计划可靠的进行,根据室外温度、天气预报、天气变化趋势及以前的历史记录数据,通过优化软件计算出设计日逐时

负荷,自动选择主机优先还是融冰(水箱供热)优先。对制冷机或锅炉的供冷(热)量和蓄冷(热)量进行调节,因此它要求进行实时负荷预测和优化,根据系统分析

推算出最优化控制模式,以最大限度的节约费用。

优化控制软件它负责系统的在线预测及负荷的优化分配,把所分析出的控制结果实时的送给前台的控制程序,以决定运行模式的自动投入及开机的控制。

优化控制软件的算法

3、最优化控制组成

蓄能系统的最优化控制系统主要包括三个部分:上位机监控软件、上位机后台优化控制软件、现场级控制。它们与自动控制相连接,实现对整个蓄能系统的自动控制。实现各种工况的自动转换,达到机房运行无人值守。同时上位机的监控软件还可以实时监测系统的运行情况。其三者的关系如下图所示:

4、上位机监控系统的前台监控软件:

上位机监控软

现场级控制系统

上位机后台优化

控制软件

负荷预测系统的最优化控制

数学模型

室外的温、湿度

天气预报等外部数据

通过比较前面的运行数

据与预测值,逐时类推

计算出最优化控制

策略

上位机中央监控软件负责整个蓄能系统的图形界面的显示。如下图1冰蓄冷所示:该界面友好、直观、中文操作环境、方便的参数设定与控制、故障报警、打印报表、历史数据查寻等多种功能。在前台监控界面上,还能够对温度、模式、开机台数进行设定。

上位机监控系统主要有以下功能

4.1、手动/自动选择功能

·系统可以根据用户的需要,选择手动或者自动运行模式;

·在取得上位机的授权后,可以通过上位机的人机对话界面对控制系统进行软手动

操作,可手动控制制冷系统中的主机开/停、冷冻水泵、冷却水泵、风机、乙二醇溶液泵或供暖系统中的锅炉、水泵、电动阀门以及系统的不同运行模式的选择;

4.2、系统运行模式选择功能

·系统可以根据历史记录、负荷预测数据、用户预先设定(含日期、时间、和其它约束条件等)等自动选择系统的工作模式;

·同样系统也可以接受用户的手动运行模式;

·系统提供以下几种运行模式为:

蓄冷系统中:

双工况制冷主机单独制冰运行模式;

制冷主机与制冰装置联合供冷运行模式;

融冰单独供冷模式;

制冷主机单独供冷模式;

·系统可以根据实际的负荷预测进行控制制冷量或蓄热量;

·联合运行模式下工作时,系统能够根据上位机的优化软件对负荷预测数据、操作人员预先设定的相关数据、系统自动采集的参数等自动选择采用主机(锅炉)优先、或者融冰(蓄热装置)优先。

4.3、全自动运行功能

·本系统可以通过定时功能设置,使系统完全按照用户设定的参数进行运行;

·系统可以按照上位机控制中心对已设定的系统参数和控制模式自动运行,从而实现系统的完全无人值守;

·系统在选择参数后将完全由下位机进行控制;

·系统在已经设定好参数的情况下,上位机可以脱离系统而完全由下位进行全自动

运行与控制。

4.4、实时数据记录以及历史查询

·上位机可以将实时控制和监测数据进行自动保存;

·各个监测点的数据可以保存一年以上;

·所有监测数据可以根据时间的先后生成图形曲线;

·用户可以根据需要在上位机上查询系统的历史运行曲线,最长可以达到一年,部分重要数据以及查询多年的数据;

·所有的监测、控制数据可以按照用户要求进行打印、统计和报表等;

·所有数据查询可以在控制中心(上位机)进行,少量重要数据可以通过触摸屏进

行查询。

4.5、节假日节能运行模式

·系统可以通过上位机进行节假日、特别工作日等预先设定;

·同样系统也可以通过下位机的触摸屏进行节假日、特别工作日的预先设定;

·在节假日系统可以根据时间安排,自动选择节能运行模式,以最大限度实现电蓄能的优越性;

·系统也可以根据特别工作日的用负荷需求,预先设计好运行模式,尽最大能力满足系统的最大负荷要求,并且实现节能的目的;

4.6、用户定时开机运行

·用户可以根据需要和安排,进行运行模式设定;

·系统可以根据气候的变化,提前或者推迟运行系统,以达到最佳的运行效果和最经济的运行方式。

4.7、系统故障诊断与处理

·CRT屏幕显示故障区域流程图,事故设备图形变色或闪烁,屏幕上方用汉字显示故障性质及发生时间,该监控系统同时具有对运行过程重要参数进行声、光报警功能。

4.8、蓄能系统的负荷管理和能量分配

·系统可以根据冷冻水(采暖热水)的流量和温度变化,计算过程的实时负荷,以及过程的负荷分布;

·系统可以根据供水管路的压降,自动调节管路中冷冻水(采暖热水)的流量,如果用户需要可以调节各支管路系统的能量负荷(需另加配置);

·蓄能系统同样可以流过蓄冰罐(蓄热水箱)溶液的流量和温度变化对系统的蓄能

量、放能量、蓄能负荷分布、放能负荷分布进行记录、显示和分析;

4.9、多级安全模式

·系统为了确保安全、稳定、正常运行,控制系统设有多级安全保护,工作人员必

须具备有授权的安全密码后,才能进入相应层段进行操作;

·系统设有一般观察员、现场操作员、信息管理员、系统管理员四级安全模式;

·一般观察员只能通过上位机人机对话窗口对系统的运行状况、工作模式、故障报

警等一些完全开放性的过程进行操作与查询;

·现场操作员可以通过上位机或者触摸屏对控制系统的相关参数进行设定、修改和

手动控制等操作;

·信息管理员可以对系统的重要信息数据进行管理、统计以及操作;

·系统管理员可以对控制系统的一些非常重要的参数进行设定、修改和操作,同时

系统管理员还可以对控制程序进行修改,或者添加一些控制功能等;

4.10、系统的远程监测功能

·系统设有远程监控接口和有限开放协议;

·用户在取得授权的情况下,可以通过INTERNET对系统进行监测、控制;

·远程监测功能均在上位机实现

4.11、楼宇自动化功能

·在系统的上位机设有BAS(Building automation system)系统接口和有限开放的通讯协议;

·楼宇控制系统可以根据采用RS232/485,或者其它的通讯方式与控制中心进行通讯;

·同样系统也可以根据用户的要求,在系统的下位机和触摸屏预留BAS接口和通讯协议;所有的通讯必须得到系统的授权才能进行。

4.12、冰蓄冷系统负荷预测功能

系统可以根据历史数据、系统实时采集的室外气温、湿度等参数,采用先进的

算法,自动预测未来大厦的能量需求分布,为系统优先选择合适的运行方式提供

较为可靠的参考。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

浅谈流态冰蓄冷系统设计

浅谈 流态冰蓄冷系统设计 (第三代)

目录 说明 (3) 产品特点 (3) 安装事项 (3) 项目经济性分析表 (4) 一、峰谷电价政策 (5) 1、国家电力现状及电力优惠政策 (5) 二、冰蓄冷空调系统简介 (5) 1、冰蓄冷空调原理 (5) 2、实施目的 (6) 3、直接接触式的主要特点 (6) 三、直接接触式设计方案 (6) 1、贵项目基本情况 (6) 2、建设冰蓄冷系统的可行性...................................................................................错误!未定义书签。 3、设计计算依据 (7) 4、冰蓄冷空调系统运行费用表 (8) 5、实施费用................................................................................................................错误!未定义书签。 1﹑冰蓄冷冷站增加设备及工程费用...................................................................错误!未定义书签。 6、结论 (15) 四、直接接触式控制以及主机群控系统 (16) 1、冰蓄冷控制系统 (16) 2、控制功能 (16) 3、主机群控系统 (17)

说明 通过“移峰填谷”,可使*******公司整个空调系统每年节省运行电费109.35万元。 不改动系统和空调主机,冰蓄冷与现有空调系统并联运行,安全可靠。 产品特点 冰蓄冷系统是通过制冰方式,以冰的相变潜热为主蓄存冷量的蓄冰系统,利用夜间电网低价电力运转制冷机制冷并以冰的形式储存起来,在白天用电高峰时(高峰电价约为低谷电价的3~5倍)将冰融化供冷,以达到降低运行费用的目的。我司自主研发的独特冰蓄冷技术,突破了传统冰蓄冷的概念,效益更高。 ⑴.自主设计定指标生产的高效二次蓄冰主机,蓄冰COP可达到10; ⑵.直接蒸发式的蓄冰方式,蒸发温度可控制在-1℃; ⑶.外融冰设计,采用冷水直灌,融冰效率极高。 安装事项 ⑴.安装过程简单快捷、占地面积小,可利用建筑物外绿化带面积等,蓄冰罐可以放置室外。 ⑵.不改动原有空调系统,安装过程基本不影响生产; ⑶.安装调试共需约4个星期。

冰蓄冷自动控制系统设备及功能说明教学内容

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数 的显示; e、电动阀开关、调节显示;

f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分析,而且所有的监测数据可进行打印。 ⑸控制系统配置灵活的手动/自动转换功能。现场控制柜可手动控制所有设备的启停。 ⑹可根据负荷变化情况调整运行策略,进行系统的优化控制,最大限度发挥蓄冷系统转移高峰负荷的能力,以最大限度节省运行费用。 ⑺具备无人值守功能、节假日特别控制功能。 ⑻系统可通过电话线或局域网络,对本工程的蓄冷、蓄热与生活热水系统进行远程监控(可选的功能)。 二、蓄冷系统运转模式 蓄冷系统按空调供回水温度7℃/12℃设计,可以通过不同阀门的开、关或调节来实现以下4种不同的运行模式: A、常规主机供冷+双工况主机制冰模式 B、常规主机供冷+双工况主机+蓄冰装置联合供冷模式 C、常规主机供冷+蓄冰装置联合供冷模式 D、融冰单独供冷模式 其运行原理见冰蓄冷空调系统原理图。(见本报价书第七部分)

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的 显示; e、电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

冰蓄冷设备

冰蓄冷设备 一、分类 美国制冷工业协会(ARI)1994年出版的《蓄冷设备热性能指南》将蓄冷设备广义地分为显热式蓄冷和潜热式蓄冷,见表2-1。 表2-1 *注:载冷剂一般为乙烯乙二醇水溶液。

最常用的蓄冷介质是水、冰和其他相变材料,不同蓄冷介质具有不同的单位体积蓄冷能力和不同的蓄冷温度。 二、冰盘管式(ICE-ON-COIL) 冷媒盘管式(REFRIGERANT ICE-ON COIL) 外融冰系统(EXTERNAL MELT ICE-ON COIL STORAGE SYSTEMS) 该系统也称直接蒸发式蓄冷系统,其制冷系统的蒸发器直接放入蓄冷槽内,冰结在蒸发器盘管上。 此种形式的冰蓄冷盘管以美国BAC公司为代表。盘管为钢制,连续卷焊而成,外表面为热镀锌。管外径为1.05"(26.67mm),冰层最大厚度为1.4"(35.56mm),因此盘和换热表面积为5.2ft2/RTH(0.137m2/KWH),冰表面积为19.0ft2/RTH(0.502m2/KWH),制冰率IPF约为40-60%。 融冰过程中,冰由外向内融化,温度较高的冷冻水回水与冰直接接触,可以在较短的时间内制出大量的低温冷冻水,出水温度与要求的融冰时间长短有关(参见图2-1、2-2、2-3)。这种系统特别适合于短时间内要求冷量大、温度低的场所,如一些工业加工过程及低温送风空调系统使用。 (1)10小时放热特性(图2-1)

该蓄冷方式是由食品冷冻行业中应用多年的乳品冷却设备改制发展而成。由此在乳品行业中经常采用。最近天津雀巢咖啡生产厂,工艺要求所供应的冷冻水温在全过程中要求保证稳定在+1°C,采用BAC外融冰装置,冰盘管表面冰层厚度大约为2-3MM,冷冻机24小时连续运行。 在使用冷媒盘管式蓄冷槽时,有几点需注意:(1)当结冰厚度在1"-3.5"之间,若冷冻系统设计不当,制冰时冷冻蒸发温度较低,压缩机所需功率大,耗电率大,并且制冷时间长,用电量多;(2)若贮存的冰设有完全用掉而制冷时间已到,需要开始制冰,则必需隔着一层冰来制冰,由于冰是一种优良热阻,这将使制冷设备耗电率与用电量增加;(3)蓄冰槽内应保持约50%以上的水不冻成冰,否则无法正常抽取冷水使用进行融冰,故最好使用厚度控制器或增加盘管中心距,以避免冰桥产出;(4)在开放式系统中,蓄冰槽的进出口处(即水系统进出口管路上)应加装止回阀和稳压阀等近期制设备,以免仃泵时系统中的水回流,使蓄冰槽中水外溢。 三、完全冻结式(TOTAL FREEZE-UP) 卤水静态储冰(GLYCOL STATIC ICE) 内融冰式(INTERNAL MELT ICE-ON-COIL STORAGE) 该系统是将冷水机组制出的低温乙二醇水溶液(二次冷媒)送入蓄冰槽(桶)中的塑料管或金属管内,使管外的水结成冰。蓄冰槽可以将90%以上的水冻结成冰,融冰时从空调负荷端流回的温度较高的乙二醇水溶液进

上海某酒店地源热泵 冰蓄冷设计方案

XX公寓式酒店地源热泵+冰蓄冷设计方案工程概况 XX公寓式酒店位于上海浦东,总占地面积34988 平方米,总建筑面积88375平方米,框架结构。由3幢11层~14层公寓式酒店,1组2层商业裙房及其附属配套设施组成。商业裙房部分夏季空调负荷为2227KW,冬季空调负荷为1486KW;公寓式酒店夏季生活热水负荷为925KW,冬季生活热水负荷为1272kW。 设计方案 本项目商业裙房设计采用中央空调系统,为节约能源采用地源热泵系统,降低建筑能耗,并同时向公寓式酒店供应生活热水。由于商业部分主要为9:00~22:00 营业,故采用冰蓄冷技术进行移峰填谷。采用三台地源热泵机组,其中两台为空调用三工况机组,一台为生活热水用地源热泵机组。地源热泵系统地下换热器采用垂直埋管,并联双U型连接,共计打孔480口。 冰蓄冷部分采用部分负荷蓄冰技术,制冷设备和蓄冰设备并联连接,供应7℃冷冻水,载冷剂采用25%乙二醇溶液。冰蓄冷系统可按以下四种模式运行:主机制冰、主机供冷、融冰供冷、主机与融冰同时供冷。夜间电价低谷时段制冰系统将冰蓄满,白天电价高峰时段融冰供冷,电价平峰时段制冷系统补充供冷,各工况转换通过电动阀门开关自动切换。空调水系统采用二管制,夏季冷冻水供回水温度分别为7℃/12℃,冬季热水供回水温度分别为45℃/40℃。空调末端系统采用风机盘管加新风的形式,便于室温独立控制,气流组织上送上回。 系统运行策略 由于本项目的中央空调系统为多种节能技术综合而成的复合系统,为了有效的实现设计的初衷,真正达到节能环保的要求,需制定专门的地源热泵冰蓄冷空调系统年运行方案,以中央空调能源管理系统的形式实施,实现长期有效稳定的节能运行。 秋、冬、春三季运行策略 XX公寓式酒店项目要求冬季可满足商业部分的供热需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制热模式满足商业部分的空调采暖需求,而由生活热水地源热泵机组满足生活热水的需求。在春秋季,项目要求满足公寓式酒店的生活热水供应,商业部分没有空调需求。此时生活热水需求由生活热水地源热泵机组满足。以上两种运行模式为较为普遍的热泵机组运行模式,故在此不再赘述。 夏季运行策略 XX公寓式酒店项目要求夏季可满足商业部分的供冷需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制冷模式,同时能源管理系统切换至冰蓄冷供冷运行模式。根据冰蓄冷运行的特点,有以下四种运行模式: 三工况地源热泵机组制冰模式 利用夜间低电费和商业部分无空调供冷需求的因素,三工况地源热泵机组切换为制冰模式,全力制冰蓄冷,此时公寓式酒店的生活热水需求通过三工况地源热泵机组的热回收模块免费制取。

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

冰蓄冷系统的设计与施工

冰蓄冷系统的设计与施工 一、工程概述 XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全 国最大的冰蓄冷工程项目。该项目由XXXX安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑 面积1200m2蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 二、设备配置 (一)冷源 1. 双工况螺 杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载 离心式冷水机组2台(YKFBEBH55CPE勺克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。(见表1) (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB

冷却水循环泵选用卧式离心泵4台,其中1台备用 三、运行策略: (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为 11428KW(3250RT。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2) 蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负 荷:11428KW( 3250RT 设计日冷负荷:151705KWH( 43144RTH 最大小时基载冷负荷:2286KW( 650RT 扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT 扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀 CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

冰蓄冷工程设计经验总结

冰蓄冷工程设计经验总结 1.蓄冰槽容量不宜过大,会使蓄冰槽因自重变形,必须增加槽的壁厚以及进行加固,还会给制作安装和运输带来困难,同时也增加了费用。在蓄冰槽的扩散管的排布上,会因扩散管的排布过密而浪费大量的空间,还会影响冻冰及融冰的效果。 2.冷冻站通常位于大厦的地下部分,而地下部分又往往是停车库、站房、办公集中的部位;使用面积非常紧张、造价昂贵;在蓄冰槽的设置及排布上应尽量使用可利用的空间位置。 3.乙二醇溶液100%的价格大约是7100元/吨,价格昂贵。在系统中,如果因为检修或系统渗漏会造成很大的不必要的经济损失,同时对环境造成污染。在施工中,管道及设备用设立牢固的支、吊架,同时系统应进行严格的严密性试验。如果有可能在乙二醇溶液充注前进行水溶液的试运转,观察整个系统的运转情况;及自控系统的测点及电动阀门的动作配合。 4.蓄冰槽在安装过程中,槽与下面的支撑必须进行隔冷处理,以免局部形成冷桥,槽的本体必须进行绝热保温设计以减少冷损失。乙二醇溶液在蓄冰过程中通常在-2.19℃/- 5.56℃范围内,与周围环境的温差大;如果隔热效果不好,在平时的运行中会造成非常大的浪费。所以蓄冰槽的本体的保温厚度应大于标准工况的冷冻水的保温厚度,保温层应严密尽量减少冷损失。 5.蓄冰槽无论是立槽还是卧槽在设计中必须考虑载冷剂(即25%的乙二醇溶液)的分配均匀性。在槽的入口和出口设均流管。本工程采用了DN200扩散管,均流管供、回各一根,在系统冻冰及融冰过程中流向相反。将载冷溶液均匀有效地传给槽内蓄冰球。 6.在蓄冰槽的设计中还考虑人孔以便填充球,在填充蓄冰球时,对高于2M的卧槽或立槽,应预先在槽中充入1/3槽的水以减少填球时的冲击使球均匀地填充(由于冰球的密度比水小,冰球浮于水面有利于冰球的扩散);同时水不宜过多,不利于冰球填满整个冰槽(造成冰槽底部无冰球);槽的底部设卸球孔,也可作排污用。 7.在冰蓄冷系统流程中系统与用户的联接方式有直接连接(即整个系统全部充满乙二醇溶液)和间接连接(即乙二醇溶液系统仅限于一定范围内,通过板式换热器与二次水进行热交换)。本工程在设计中采用了间接连接,乙二醇溶液仅限于在制冷机房内循环;外部空调水系统仍是水系统。这种做法有两个好处: A、乙二醇溶液仅限于制冷机房用,用量少; B、减少在大楼内部存在因检修和维护造成乙二醇溶液泄漏的问题。 C、尤其是高层建筑能起到隔断高层建筑冷水系统静压以保护空调制冷主机;提高蓄冰系统安全系数,减少乙二醇溶液泄漏概率;减少设备及阀部件承压稀疏的作用。其代价仅仅是增加了一台热交换器。 8.本工程采用了部分蓄冰的控制策略而且是制冷机优先,这样制冷主机的容量可以大大减少,同时也减少了电力增容费,在负荷较低时尽量利用所蓄的冰。 9.在系统设计中还应考虑到:乙二醇溶液受球内介质相变时的影响而体积膨胀,在系统中他的相变膨胀量是2%~9%。为此系统应设置膨胀水箱,而且还设置了溶液补给箱作为膨胀水箱外的溢流箱。在系统亏液或浓度降低时进行补液。 设置溶液补给箱有以下作用:

冰蓄冷自动控制系统设备及功能说明

技术标 主要设备的选用及技术描述与响应说明 第二章机房自动控制系统 一、冰蓄冷自动控制系统综述 件、系统配电柜、系统软件等部分组成。系统结构图如下所示: 小央空调蓄能系统原理图 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器 肝2網通讯

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/ (GEMINI )公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的显示; e电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表 或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分 析,而且所有的监测数据可进行打印。

冰雪世界会议中心冰蓄冷空调设计

冰雪世界会议中心冰蓄冷空调设计 工程概况 冰雪世界会议中心位于北京市潮白河畔,为滑雪馆的配套设施,其主体建筑在滑雪馆的雪道正下方,总建筑面积为26700平方米。主要由客房及群房两部分组成,客房面积为13679平方米;群房的功能有会议、餐厅、厨房、多功能厅、体检中心、设备用房等,面积为13021平方米。地下二层,地上十层,建筑高度为43.35米。图1为该会议中心的正立面图。原滑雪馆已于2005年已建成,多种原因使得该滑雪馆制冷机未设置备用机组,此次会议中心制冷系统的设计需要考虑到为滑雪馆制冷系统提供备用的可能。 设计基本数据 电价政策及电价结构 冰蓄冷空调系统对电网移峰的意义在此不再赘述,影响冰蓄冷项目经济性的一个重要原因,是当地的电价政策及电价结构。项目所在地北京市顺义区的峰谷电时段及相应商业用电 电价如表1:

从表1可看出,尖峰电价与低谷电价的比为4:1,高峰电价与低谷电价的比为3.83:1,这对该建筑采用冰蓄冷空调系统提供了很好的电价基础。 设计日逐时冷负荷 经逐时冷负荷计算,设计日总冷负荷为36423kW,最大小时冷负荷(峰值)为3400kW,作为宾馆,其夜间也有一部分冷负荷。设计日的冷负荷曲线见图2。 对照表1和图2,可以看出,该建筑在电价的尖峰和高峰时段逐时冷负荷较大,在平电及低谷电时段有较低的连续的负荷,其负荷特点决定了该系统设置基载主机更为合理。 冰蓄冷系统设计 概述 冰蓄冷系统的设计应综合考虑多方面的因素,如建筑的规模、使用性质、设计日的冷负荷曲线以及所能采用的蓄冷装置的特性等等。建筑有可能提供的使用空间对蓄冷装置的选择有很大的限制。就本建筑而言,采用导热塑料(聚乙烯)蓄冰盘管,该盘管一般做成整体式的 蓄冰桶,为内融冰方式。 蓄冷系统的确定及主要设备 该建筑采用部分蓄冷的方式,在电网的尖峰及高峰时段,蓄冷设备提供部分空调负荷。双工况主机位于蓄冰设备的上游,为串联方式。同时考虑到连续空调负荷的比例设置基载主机一台。从系统运行的安全性及经济性的角度出发,设置了板式换热器,由乙二醇换取冷冻水(供回水温度为7℃/12℃)向空调系统供冷。蓄冷系统流程见图3。表2是蓄冷系统的主要 设备。

冰蓄冷系统的设计与施工方案

01工程概述 北京国际金融中心位于月坛北桥东侧,建设单位是首创集团融金房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全国最大的冰蓄冷工程项目。该项目由北京建工总机电设备安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑面积1200m2(蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 02设备配置 (一)冷源 1.双工况螺杆式冷水机组3台(YSFAFAS55CNES)约克(合资) 2.基载离心式冷水机组2台(YKFBEBH55CPE)约克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFWS两台,CTA-450UFWS三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185MGS16/16。 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT)。 (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB 冷却水循环泵选用卧式离心泵4台,其中1台备用。 03运行策略 (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为11428KW(3250RT)。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,计算出100%负荷情况逐时空调负荷:

目前蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负荷:11428KW(3250RT) 设计日冷负荷:151705KWH(43144RTH) 最大小时基载冷负荷:2286KW(650RT) 扣除设计日基载冷负荷后冷荷:96852.4KWH(27544RTH) (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW(1126RT),用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9,根据冷负荷变化,通过电动调节阀CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀 CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷冻水回路采用的是二级泵系统,节省运行费用。 本工程最大蓄冰容量31787.2KW(9040RT),分6个冰槽,槽内净高2.35米。为了尽量减少冰槽的占地面积,我们将蓄冰槽作成非标准型的,尽量利用建筑空间,顶板上方预留设备入口兼检查孔,供设备及检修人员出入。冰槽结构为外保温。自蓄冰槽向外的结构组成分为:防水涂刷层,橡塑保冷层。为满足电力部门削峰填谷的需求,电力高峰段,双工况冷水机组,基载冷水机组满负荷运行,不足冷量由融冰输出供给。系统设计中同时考虑备用问题,当任意一台机组发生故障时,开启备用基载冷水机组满足空调供冷的需求。当任意一台双工况冷水机组发生故障时,开启备用基载冷水机组,满足第二

冰蓄冷空调系统

冰蓄冷空调系统 一.简介 夏季,普遍使用的空调系统已成为建筑物高峰用电的大户,由于电力用户的用电性质不同,各类用户最大负荷出现的时间不同,这样负荷的累加就形成了用电的高峰和低谷负荷,高峰负荷的大小决定了电网必须投入的发电设备容量(包括发电机组和输配电设备等的容量),如果各类用户最大负荷出现的时间过分集中,为了满足高峰期用户电力需求,电力部门一方面必须建设新电站增加电网容量,一方面必须提高电网的调峰能力,适应用户的负荷变化,用户方面也需采取节电和调荷措施,否则,只能通过拉闸限电的方法减轻电站运行压力。 昼夜蓄冷调荷技术就是针对这种局面提出并得以运用的。它是让制冷机组在夜间电力负荷低谷时运行,并将产生的冷量储存起来,在次日需要时再将冷量释放出来满足用冷负荷,以实现用户侧冷复合用电的移峰调谷,达到均衡电网负荷的目的。 简单地说,蓄冷调荷技术有以下三方面的社会效益: 1)通过移峰调谷,达到均衡电网负荷的目的。减少国家对新增电站和电网的投资,同时减少调峰调荷的工作,避免限电拉闸。 2)稳定电厂机组负荷水平,改善机组运行效率。 3)减少CO2和烟尘排放量,从而保护环境,减轻温室效应(火力发电机组负荷率低 时,CO2和烟尘排放量大)。 4)对用户来说,利用夜间电价低廉时段制冰,在电价高峰时段使用,能大大减少

空调 系统运行费用。 对用户的作用: 1)减少制冷机容量,提高制冷系统运行的可靠性。 2)减少水泵,冷却塔的装机容量 3)减少配电容量,从而减少部分投资 4)减少运行费用 5)可采用低温送风系统,提高工作空间的环境质量 6)可作紧急冷源使用 7)将计算机控制结合进蓄冰系统中,实现运行模式的优化 冰蓄冷中央空调已逐渐成为移峰填谷,均衡电网用电,提高电网经济运行水平的有力手段,它代表了集中空调设计的发展方向。 二.蓄冷技术的分类: 1 水蓄冷 水蓄冷是利用水的显热()进行蓄冷,即夜间制出2-5度的低温水供白 天使用,供回水温差一般8度。 2 冰蓄冷 冰蓄冷是利用冰的熔解热(335KJ/KG)进行蓄冷,由于水的熔解热远大于水的显热,故蓄冰槽容积远小于蓄水槽容积。 常用冰蓄冷系统有: 1)冰盘管式(外融冰方式) 冰直接冻结在蒸发盘管上,融冰是使空调回水通过冰与冰之间形成自然通道,与

相关文档
最新文档