八年级数学下册第一次月考试卷北师大版
北师大数学八年级下第一次月考试卷

A.x< B.x>-
C.x<3
D.x≥
2、使不等式2x>x+1成立的值中,最小的整数是( )
A.0
B.1 C.2
D.3
3、在数轴上表示不等式≥-2的解集,正确的是( )
A.
B.
C. D
4、要使代数式有意义,则的取值范围是(
)
A、
B、
C、
D、
5、如右图,当时,自变量 的取值范围是(
)
A、
班级 一、填空
八年级数学月考试卷
姓名
考场
考号
1、用不等式表示:m的2倍与n的差是非负数:
2、当
时,代数式 x-5 的值是非负数。
3、不等式5x≥-10的解是
.
4、不等式x-1<2的正整数解是
5、不等式的解集是,则a的取值范围是
。
6、不等式组 的解集是
;
7、点A(-5,)、B(-2,)都在直线上,则与的关系是
(B)(a-2)(
m2-m)
(C)m(a-2)(m-1)
(D)m(a-2)(m+1)
8、若>,则下列不等式中正确的是:( )
A、-<0 B、 C、+8< -8 D、
9、下列多项式中,能用公式进行因式分解的是( )
A. B. C. D.
10、如果不等式组的解集是,则n的取值范围是( )
A、
B、
C、
D、
11、下列各分式中,最简分式是( )
A、
B、 C、
D、
12、=成立的条件是(
)
A、x≠0 B、x≠1 C、x≠0且x≠1 D、x为任意实数
13、若,则分式( )
北师大版八年级数学下册第一次月考测试卷

八年级数学第二学期第一次月考测试卷一.选择题(每小题3分,共30分)一、选择题(每小题3分,共30分)A. B.1.、下列各组图形中,图形甲变成图形乙,既能用平移,又能用旋转的是()C. D.2.、若a b<,则下列不等式中不成立的是()A. 55a b+<+ B. 55a b< C. 0a b-< D. 55a b-<-3、下列从左到右的变形中,是分解因式的是()A.a2–4a+5=a(a–4)+5 B.(x+3)(x+2)=x2+5x+6C.a2–9b2=(a+3b)(a–3b) D.(x+3)(x–1)+1=x2+2x+24、不等式1+x<0的解集在数轴上表示正确的是()A.B.C.D.5、如图,在四边形中,对角线AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对6、已知不等式组3xx m>⎧⎨>⎩的解集为3x> ,则m的取值范围是()A.3m=B.3m>C.3m≥D.3m≤7、函数y=kx+b(k、b为常数,k≠0)的图象如图所示,则关于x的不等式kx+b>0的解集为().A.x>0 B.x<0 C.x<2 D.x>28、如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了().A.75° B.60° C.45° D.15°9、如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A. ED=CDB. ∠DAC=∠BC. ∠C>2∠BD. ∠B+∠ADE=90°10、如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M,以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD。
八年级数学下册第一次月考试卷北师大版

八年级数学下册第一次月考试卷北师大版班级————————姓名__________一、选择题(共20分)1.用不等式表示“x2是非负数”正确的是()A.x2<0B.x2﹥0C.x2 ≤0D.x2≥0 2.下列各式是不等式的有()个。
①—3<0②4x+3y>0 ③x=4 ④x+y ⑤x≠5 ⑥x+2>y+3 A.1 B.2 C.3 D.43.已知x>y,下列不等式一定成立的是()A.x—6<y—6B.3x<3yC. —2x>—2yD.2x+1>2y+14.不等式组25xx>-⎧⎨⎩≤的解集在数轴上可表示为A B C D5. 下列各等式从左到右的变形是因式分解的是()A.6a2b=3a2·2b B.mx+nxy-xy=mx+xy(n-1) C.am-a=a(m-1) D.(x+1)(x-1)=x2-16.()是不等式x—4≥0的解。
A. 1B.2C.3D.47.长度为3,7,x的三条线段可以围成一个三角形,则x可以是()。
A. 3B.4C.5D.108.不等式x+3≥0,有()个负整数解。
A. 1B.2C.3D.49.19992+1999能被()整除。
A. 1995B.1996C.2000D.200110.已知ab=7,a+b=6,则多项式a2b+ab2的值是()。
A. 13B.1C.42D.14二.填空题。
(共20分)11.用不等式表示“x+1是负数”:___________。
12.已知a<b,则a—3______b—3.13. 不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。
14.将不等式x+3﹤—1化成“x>a”或“x<a”的形式:_____________。
15.不等式2x—3≤0的解集为_____________。
16.不等式4(x+1)≤64的正整数为_____________。
17.已知y1= —x+3,y2=3x—4,当x______时,y1>y2.18.多项式2x2+x3—x中各项的公因式是_____________。
【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。
北师大版八年级数学(下册)第一次月考试卷

北师大版八年级〔下〕第一次月考数学试卷班级一、选择题〔每题4分,共40分〕1.假设x>y,则以下式子错误的选项是〔〕A.x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.2.把不等式组的解集表示在数轴上,正确的选项是〔〕A.B.C.D.3.一个等腰三角形的顶角是100°,则它的底角度数是〔〕A .30°B.60°C.40°D.不能确定4.不等式x﹣4<0的正整数有〔〕A.1个B.2个C.3个D.无数多个5.如图,假设要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件〔〕A.∠BAC=∠BAD B.AC=AD或BC=BD C.AC=AD且BC=BD D.以上都不正确6.在数轴上与原点的距离小于5的点对应的x满足〔〕A.﹣5<x<5 B.x<5 C.x<﹣5或x>5 D.x>57.如图,当y<0时,自变量x的范围是〔〕A.x<﹣2 B.x>﹣2 C.x<2 D.x>28.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为〔〕A.30°B.36°C.45°D.70°9.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打〔〕A.6折B.7折C.8折D .9折10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,假设BM+CN=9,则线段MN的长为〔〕A.6 B.7 C.8 D.9二、填空题:〔每题4分,共20分〕11.不等式组的解集是x>2,那么m的取值范围.12.等腰三角形ABC中∠A=40°,则∠B=.13.直角三角形中,两直角边长分别为12和5,则斜边中线长是.14.不等式组的整数解是.15.不等式组的解集是x<m﹣2,则m的取值应为.三、画图题〔5分〕16.在角AOB内部求作一点P,使PC=PD,并且点P到角AOB两边的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八十六中学八年级下学期第一次月考数学试卷
(时间:60分钟 总分100分)
班级________ 姓名________ 座号________ 成绩________
一、选择题(每小题4分,共32分)
1、如果a>b,那么下列各式中正确的是( )
A、ba22 B、22ba C、ba2121 D、ba
2、19992+1999能被( )整除。
A. 1995 B.1996 C.2000 D.2001
3.不等式组的解集在数轴上表示正确的是( )
4、下列多项式中,含有因式)1(y的多项式是 ( )
A、2232xxyy B、22)1()1(yy
C、)1()1(22yy D、1)1(2)1(2yy
5、若ba,则不等式组bxax的解集是( )
A、ax B、bx C、bxa D、无解
6、一次函数323xy的图象如图所示,当-3
的取值范围是( )
A、x>4 B、0
A、4n B、4n C、4n D、4n
8、下列各式中从左到右的变形,是因式分解的是( )
(A)(a+3)(a-3)= x2-9 (B) x2+x-5=(x-2)(x+3)+1
(C) a2b+a b2=ab(a+b) (D) x2+1=x(x+x1)
二、填空题(每小4题分,共20分)
9. 用不等式表示“x+1是非负数”:___________
10.分解因式:33abba_________________
11、不等式538xx的最大整数解是_______________
12、如果。则22,7,0xyyxxyyx
13、若22416xmxx,那么m=_______________
三、解答题
14、解不等式(组),并把解集表示在数轴上(共12分)
(1))1(251)1(2xx
(2)
1
2123
1)2(53)3(2xx
xx
15、分解因式(共12分)
(1)23)(12)(6nmnm
(2)222224)(yxyx
16、(8分)已知:9)66()2(2012201122baabba,,ba求的值
四、列不等式组解应用题:(16分)
17、(8分)一群女生住若干间宿舍,每间住4人,剩19人无人住;
每间住6人,有一间宿舍住不满,可能有多少间宿舍,多少名学生?
18、( 8分)暑假期间,两名家长计划带领若干名学生去旅游,他们
联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优
惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠
条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅
游,他们应该选择哪家旅行社?