2011中考数学真题解析26_分式方程的应用(含答案)

合集下载

山东省临沂市2011年中考数学试卷(含解析)

山东省临沂市2011年中考数学试卷(含解析)

2011年山东省临沂市中考数学试卷一、选择题(本大题共14小题,毎小题3分,共42分)在每小题所给的四个选项中.只有一项是符合题目要求的。

1、(2011•临沂)下列各数中,比﹣1小的数是()A、0B、1C、﹣2D、2考点:有理数大小比较。

专题:探究型。

分析:根据有理数比较大小的法则进行比较即可.解答:解:∵﹣1是负数,∴﹣1<0,故A错误;∵2>1>0,∴2>1>0>﹣1,故B、D错误;∵|﹣2|>|﹣1|,∴﹣2<﹣1,故C正确.故选C.点评:本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、(2011•临沂)下列运算中正确的是()A、(﹣ab)2=2a2b2B、(a+b)2=a2+1C、a6÷a2=a3D、2a3+a3=3a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

分析:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式:两数和的平方等于它们的平方和加上它们积的2倍;同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;根据法则一个个筛选.解答:解:A、(﹣ab)2=(﹣1)2a2b2=a2b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a6÷a2=a6﹣2=a4,故此选项错误;D、2a3+a3=(2+1)a3=3a3,故此选项正确.故选D.点评:此题主要考查了积的乘方,完全平方公式,同底数幂的除法,合并同类项的计算,一定要记准法则才能做题.3、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是()A、60°B、70°C、80°D、110考点:平行线的性质。

分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.解答:解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选D.点评:此题考查了平行线的性质.注意数形结合思想的应用.4、(2011•临沂)计算﹣6+的结果是()A、3﹣2B、5﹣C、5﹣D、2考点:二次根式的加减法。

山西中考数学计算真题汇总(历年)

山西中考数学计算真题汇总(历年)

山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。

分式与分式方程(34题)(解析版)—2024年中考数学真题分类汇编(全国通用)

分式与分式方程(34题)(解析版)—2024年中考数学真题分类汇编(全国通用)

分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是( )A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是( )A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为( )A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.4.(2024·四川雅安·中考真题)已知()2110a b a b+=+¹.则a aba b +=+( )A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是 .6.(2024·辽宁·中考真题)方程512x =+的解为 .解得:3x =,经检验:3x =是原方程的解,∴原方程的解为:3x =,故答案为:3x =.7.(2024·重庆·中考真题)计算:011(3)(2p --+= .8.(2024·重庆·中考真题)计算:023-+= .【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是 .【答案】4x ¹【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解:Q 分式有意义的条件是分母不能等于0,\40x -¹\4x ¹.故答案为:4x ¹.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是 .【答案】3x ¹【分析】本题主要考查了分式有意义的条件,分式有意义的条件是分母不等于零.根据分式有意义的条件列不等式解答即可.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为 .12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为 .î13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x æö--¸-=ç÷èø.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是 .【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1. 故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是 .17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++ .19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为 .三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a aa a++æö+¸ç÷+,其中4a=.21.(2024·四川资阳·中考真题)先化简,再求值:221412x xx x x+-æö-¸ç÷+,其中3x=.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -æö+¸ç÷--+,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -æö-¸ç÷--+èø,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x26.(2024·青海·中考真题)先化简,再求值:11x y y x y x æöæö-¸-ç÷ç÷èøèø,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +æö-¸ç÷.28.(2024·四川雅安·中考真题)(1()111525-æö-+-´-ç÷èø;(2)先化简,再求值:2221211a a a a a -+æö-¸ç÷-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?【答案】(1)原计划与实际每天铺设管道各为40米,50米(2)该公司原计划最多应安排8名工人施工【分析】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ´,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,32.(2024·四川达州·中考真题)先化简:22224x x x x x x x +æö-¸ç÷-+-èø,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -æö+¸ç÷+èø.【答案】(1)222x y +;34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xxx x-æö+-¸+ç÷+-,其中72x=-.。

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)

中考二次函数应用题(含答案解析)二次函数应用题1.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x(元/件)(10x≥的整数),每天销售利润为y(元).(1)求y与x的函数关系式,并写出x的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y的取值范围.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.北京冬奥会上,由于中国冰雪健儿们的发挥出色,中国金牌总数位列第三,向世界证明了中国是冰雪运动强国!青蛙公主谷爱凌发挥出色一人斩获两金一银.在数学上,我们不妨约定:在平面直角坐标系中,将点()2,1P 称为“爱凌点”,经过点()2,1P 的函数,称为“爱凌函数”.(1)若点()34,r s r s ++是“爱凌点”,关于x 的数2y x x t =-+都是“爱凌函数”,则r =_____,s =_____,t =_____.(2)若关于x 的函数y kx b =+和my x=都是“爱凌函数”,且两个函数图象有且只有一个交点,求k 的值.(3)如图,点()11,C x y 、()22,D x y 是抛物线232y x x =-+上两点,其中D 在第四象限,C 在第一象限对称轴右侧,直线AC 、AD 分别交y 轴于F 、E 两点: ①求点E ,F 的坐标;(用含1x ,2x 的代数式表示);②若1OE OF ⋅=,试判断经过C 、D 两点的一次函数()0y kx b k =+≠是否为“爱凌函数”,并说明理由.5.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同. (1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少6.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x (元)的关系数据如下: x 30 32 34 36 y40363228(1)已知y 与x 满足一次函数关系,根据上表,求出y 与x 之间的关系式(不写出自变量x 的取值范围);(2)设该商店每天销售这种商品所获利润为w (元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大?7.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 8.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?9.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?10.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S 与x 的函数关系式; (2)若菜园的面积为96平方米,求x 的值;(3)若在墙的对面再开一个宽为a (0<a <3)米的门,且面积S 的最大值为124平方米,直接写出a 的值.【参考答案】二次函数应用题1.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥, ∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数 (2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数 (3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =. z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小,10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)2;-1;-1;(2)12k =-;(3)①()20,2E x -+;()10,2F x -+;②经过C 、D 两点的一次函数y =kx +b (k ≠0)是“爱凌函数”;理由见解析 【解析】 【分析】(1)根据已知条件,代入求解即可;(2)首先用待定系数法求出反比例函数解析式,然后应用一元二次方程根的判别式求出k 的值;(3)首先根据前提条件推出x 1与x 2的关系,然后利用C ,D 坐标用x 1和x 2表示出直线斜率kCD ,进一步代入点C 或者点D 的坐标,表示出截距b ,然后将坐标(2,1)代入一次函数,和前面的结论比较是否符合条件. (1)解:∵(3r +4s ,r +s )为“爱凌点”,∴3421r s r s ⎧⎨⎩+=+=, 解得:21r s ⎧⎨-⎩==,将(2,1)代入y =x 2−x +t 得:2122t =-+,解得t =−1. 故答案为:2;-1;-1. (2)将(2,1)分别代入y =kx +b 与y =mx中, 得1212k bm =+⎧⎪⎨=⎪⎩,即122b k m =-⎧⎨=⎩,∵两个函数图象有且只有一个交点,∴kx +1−2k =2x只有一个根,即:kx 2+(1−2k )x −2=0, Δ=(1−2k )2+8k =0, ∴k =−12. (3)①令x 2−3x +2=0,得:11x =,x 2=2, ∴A (1,0),B (2,0), ∵C 、D 两点在抛物线上,∴C (x 1,x 12−3x 1+2),D (x 2,22232x x -+),设AD 的函数关系式为:11AD y k x b =+,则11212122032k b k x b x x +=⎧⎨+=-+⎩, 解得:121222k x b x =-⎧⎨=-+⎩,∴()()2222AD y x x x =-+-+, 令x =0,则22y x =-+,∴()202E x -+,, 设AC 的函数关系式为:22AC y k x b =+,则22221211032k b k x b x x +=⎧⎨+=-+⎩, 解得:212122k x b x =-⎧⎨=-+⎩,∴()()1122AC y x x x =-+-+, 令x =0,则12y x =-+,∴()102F x -+,; ②y =kx +b 是“爱凌函数”,理由如下: ∵若OE •OF =1,∴21221x x -+-+=, ∴(2−x 2)(x 1−2)−1=0, ∴2x 1−x 1x 2+2x 2−5=0,∵一次函数y =kx +b 经过C 、D 两点,∴211122223232kx b x x kx b x x ⎧+=-+⎨+=-+⎩, 解得:121232k x x b x x =+-⎧⎨=-⎩,∴CD 的关系式为:y =(x 1+x 2−3)x +2−x 1x 2, 将(2,1)代入得: 2(x 1+x 2−3)+2−x 1x 2=1,即2x 1−x 1x 2+2x 2−5=0,与前提条件OE•OF =1所得出的结论一致, ∴经过C ,D 的一次函数y =kx +b 是“爱凌函数”. 【点睛】本题考查一次函数、反比例函数和二次函数相关知识点,将结论与前提条件进行比较,整个题目涉及的未知数比较多,计算过程中需要仔细.5.(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元 (2)①B 型汽车的最低售价为414万元/台,②A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元 【解析】 【分析】(1)设未知数,用未知数分别表示A 型汽车、B 型汽车的进价,然后根据花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同列分式方程求解即可.(2)①用利润公式:利润=(售价-进价)×数量,分别表示出A 、B 型汽车利润,然后列不等式求解即可;②B 型号的汽车售价为t 万元/台,然后将两车的总利润相加得出一个二次函数,求二次函数的最值即可. (1)解:设B 型汽车的进货单价为x 万元,根据题意,得: 502x +=40x, 解得x =8,经检验x =8是原分式方程的根, 8+2=10(万元),答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元; (2)设B 型号的汽车售价为t 万元/台,则A 型汽车的售价为(t +1)万元/台, ①根据题意,得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14), 解得:t ≥414,∴t 的最小值为414,即B 型汽车的最低售价为414万元/台, 答:B 型汽车的最低售价为414万元/台; ②根据题意,得:w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14) =﹣2t 2+48t ﹣265 =﹣2(t ﹣12)2+23,∵﹣2<0,当t =12时,w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元. 【点睛】本题考查了分式方程的应用,不等式的应用,二次函数的应用,理清数量关系,明确等量关系是解题关键. 6.(1)2100y x =-+(2)221603000w x x =-+-,当销售单价为40元时获得利润最大 【解析】 【分析】(1)待定系数法求解一次函数解析式即可;(2)根据题意得210()(3)00w x x +--=,计算求出满足要求的解即可. (1)解:设该函数的表达式为y kx b =+,根据题意,得30403236k b k b +=⎧⎨+=⎩解得2100k b =-⎧⎨=⎩∴y 与x 之间的关系式为2100y x =-+. (2)解:根据题意,得210()(3)00w x x +--= 221603000x x =-+-224020(0)x =--+∵20a =-<∴当40x =时,w 的值最大∴当销售单价为40元时,获得利润最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,二次函数的图象与性质.解题的关键在于熟练掌握一次函数与二次函数的知识. 7.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.8.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 9.(1)10500y x =-+(2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元.【解析】【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解. (1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩, 解得:2730x ≤≤,由(2)可知21070010000w x x =-+-,∵100-<,即开口向下,对称轴为直线352b x a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=;答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.10.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.。

2011年四川省成都市中考数学试卷及解析

2011年四川省成都市中考数学试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.2.(3分)如图所示的几何体的主视图是().B C D3.(3分)(2011•成都)在函数自变量x的取值范围是().B C D4.(3分)(2011•成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,≠0)有两个实数根,则下列关于判别式n2﹣4mk6.(3分)(2011•成都)已知关于x的一元二次方程mx2+nx+k=0(mAB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()7.(3分)(2011•成都)如图,若8.(3分)(2011•成都)已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()9.(3分)(2011•成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是()10.(3分)(2011•成都)已知⊙O的面积为9πcm2,若点0到直线l的距离为πcm,则直线l与⊙O的位置关系是二、填空题:(每小题4分,共16分)11.(4分)(2011•成都)分解因式:x2+2x+1=_________.12.(4分)(2011•成都)如图,在△ABC中,D,E分别是边AC、BC的中点,若DE=4,则AB=_________.13.(4分)(2011•成都)已知x=1是分式方程的根,则实数k=_________.14.(4分)(2011•成都)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_________.三、解答题:(本大题共6个小题,共54分)15.(12分)(2011•成都)(1)计算:.(2)解不等式组:,并写出该不等式组的最小整数解.16.(6分)(2011•成都)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)17.(8分)(2011•成都)先化简,再求值:,其中.18.(8分)(2011•成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下表为“1”)均为奇数的概率.19.(10分)(2011•成都)如图,已知反比例函数的图象经过点(,8),直线y=﹣x+b经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ 的面积.20.(10分)(2011•成都)如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值;(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.一、填空题:(每小题4分,共20分)21.(4分)(2011•成都)在平面直角坐标系xOy中,点P(2,a)在正比例函数的图象上,则点Q(a,3a ﹣5)位于第_________象限.22.(4分)(2011•成都)某校在“爱护地球,绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学名同学平均每人植树_________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是_________棵.23.(4分)(2011•成都)设,,,…,.设,则S=_________(用含n的代数式表示,其中n为正整数).24.(4分)(2011•成都)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为_________(计算结果不取近似值).25.(4分)(2011•成都)在平面直角坐标系xOy中,已知反比例函数满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+k,都经过点P,且|OP|=,则符合要求的实数k有_________个.二、解答题:(本大题共3个小题,共30分)26.(8分)(2011•成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.27.(10分)(2011•成都)已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O 经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=(a为大于零的常数),求BK的长:(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.28.(12分)(2011•成都)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C 三点.(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG 垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.2011年四川省成都市中考数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求..得,=k=.,再根据扇形的面积公式计算出,=..故答案为:.×+3﹣×m500××=2x时,原式×=所以所求的概率为)把点(,)代入反比例函数y=)把点(,)代入反比例函数•y=;)联立或×××.=,由,利用=求值;EG=BG=BC GF=EF= AD BC CD ABKC=,==;ADBC ABAB=BC+CDAD==nAD一、填空题:(每小题4分,共20分))在正比例函数+===,得出一般规律.+=== ==1+﹣,﹣+1+﹣+﹣=故答案为:.=82 2当y+x=y=当y+x=km+2k=0或,而≥,=30=1800ACAD====,,aEF=EF=,==,AC,,的半径是AB,将直线解析式与抛物线解析式联立,求=,得±±或n=3+﹣2,,或。

【专项突破卷】中考数学《分式方程》专项突破练习卷(含答案与解析)

《分式方程》专项练习卷一.分式方程的解(共12小题)1.(2021•江津区模拟)若a为整数,关于x的不等式组有且只有3个整数解,且关于y的分式方程有整数解,则满足条件的所有整数a的和为()A.0 B.4 C.7 D.82.(2021•九龙坡区校级模拟)若整数a使关于x的不等式组有解且至多有四个整数解,且使关于y的分式方程=﹣的解为非负数,则满足条件的所有a的值之和为()A.63 B.67 C.68 D.723.(2021•新都区模拟)若关于x的方程=+1无解,则a的值是()A.1 B.3 C.﹣1或2 D.1或24.(2021•沙坪坝区校级模拟)若整数a是使得关于x的不等式组有且只有2个整数解,且使得且关于y的分式方程+=a有非负数解,则所有满足条件的整数a的个数为()A.6 B.5 C.4 D.35.(2021•温江区校级模拟)若关于x的分式方程+3的解为3,则a的值是()A.7 B.6 C.﹣1 D.﹣66.(2021•九龙坡区模拟)若关于x的分式方程+=﹣3的解为正数,且关于y的一元一次不等式组有解,则符合条件的所有整数a的和为()A.1 B.2 C.3 D.47.(2021•罗平县模拟)若分式方程=无解,则实数a的值为()A.1 B.1或C.D.1或28.(2021•云南模拟)若关于x的一元一次不等式组的解集为x≤5,且关于y的分式方程的解为非正数,则符合条件的a所有整数的个数为()A.2 B.3 C.4 D.59.(2021•郫都区模拟)若关于x的方程+=3的解为正数,则m的取值范围是.10.(2021•铁岭二模)已知x=9是分式方程=的解,那么k的值为.11.(2020•攀枝花一模)若关于x的方程无解,则m的值为.12.(2020•广陵区校级三模)关于x的方程=2+无解,则k的值为.二.解分式方程(共8小题)13.(2021•平房区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣314.(2021•河南模拟)解分式方程2﹣=,去分母得()A.2(2﹣6x)﹣1=1 B.2(2﹣6x)﹣2=1C.2(2﹣6x)+2=1 D.2(2﹣6x)+2=﹣115.(2021•道里区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=2 D.x=316.(2021•道外区一模)方程=的解为()A.1 B.﹣1 C.4 D.17.(2021•盐城模拟)方程=+3的解是.18.(2021•百色模拟)分式方程+=1的解为.19.(2021•资兴市模拟)在正数范围内定义一种运算“*”,其规则为“a*b=﹣”,根据这个规则方程(x ﹣1)*x=0的解为.20.(2020•资兴市一模)观察下列等式:=1﹣,=﹣,=﹣将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=(1)猜想并写出:=(2)分式方程++=1的解是.三.换元法解分式方程(共1小题)21.(2021•松江区二模)用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.四.分式方程的增根(共4小题)22.(2021•海淀区校级模拟)若关于x的分式方程有增根,则m的值是()A.4 B.3 C.2 D.123.(2021•青羊区校级模拟)若关于x的分式方程有增根,则k的值为.24.(2021•东港市模拟)若关于x的分式方程+3=有增根,则m的值为.25.(2021•贺兰县模拟)如果在解关于x的分式方程+=2时出现了增根x=1,那么常数k的值为.五.由实际问题抽象出分式方程(共11小题)26.(2021•鹿城区一模)一家工艺品厂按计件方式结算工资.小鹿去这家工艺品厂打工,第一天工资60元,第二天比第一天多做了5件,工资为75元.设小鹿第一天做了x件,根据题意可列出方程为()A.=B.=C.=D.=+527.(2021•河南模拟)网上购物已经成为人们常用的一种购物方式.购物方式的改变给快递行业带来了商机,也带来了挑战.为了提高效率,某快递公司研发了快递机器人专门负责分拣包裹,已知单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同.设人工(一个人)每小时分拣x个包裹,则可列方程为()A.B.C.D.28.(2021•宁波模拟)某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.29.(2021•永嘉县模拟)某童装店有几件不同款式的衣服,每件衣服的原价一样,6月1日儿童节那天,全场打7折,某宝妈在儿童节那天去购买该款式的衣服时发现:平时花350元购买到的衣服件数比现在少2件,设原价是x元,则根据题意可列出方程()A.=B.=C.﹣2=D.=﹣230.(2021•兴宁区校级一模)为美化城市环境,计划种植树木10万棵,由于志愿者的加入,实际每天种植比原计划多20%,结果提前5天完成任务,设原计划每天种植树木x万棵.可列方程是()A.+5=B.﹣=5C.﹣=5 D.﹣=531.(2021•河南模拟)由于疫情的原因,拥有“中国医疗耗材之都”之称的河南长垣,这个冬天特别的忙!其中某医护用品集团计划生产口罩1500万只,实际每天比原计划每天多生产2000只,结果提前五天完成任务,则原计划每天生产多少万只口罩?设原计划每天生产x万只口罩,根据题意可列方程为()A.B.C.D.32.(2021•泉州模拟)“绿水青山就是金山银山”,为了进一步优化河道环境,某工程队承担一条4800米长的河道整治任务.开工后,实际每天比原计划多整治200米,结果提前4天完成任务,若设原计划每天整治x米,那么所列方程正确的是()A.+=4 B.﹣=200C.﹣=4 D.﹣=20033.(2021•南昌模拟)数学家斐波那契编写的《算经》中有如下问题,一组人平分10元钱,每人分得若干,若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x,则可列方程为.34.(2021•自贡模拟)某工厂生产一批零件,计划20天完成,若每天多生产5个,则16天完成且还多生产8个.设原计划每天生产x个,根据题意可列分式方程为.35.(2021•镇雄县一模)某校为了丰富学生的校园生活,准备购买一批陶笛.已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500元购买B型陶笛的数量相同,设A型陶笛的单价为x 元,根据题意列出正确的方程是.36.(2020•市北区二模)某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时,每天绿化的面积为x万平方米,则可列方程.六.分式方程的应用(共14小题)37.(2021•立山区一模)A、B两地相距60km,甲骑自行车从A地到B地,出发1h后,乙骑摩托车从A地到B地,且乙比甲早到3h,已知甲、乙的速度之比为1:3,则甲的速度是.38.(2020•盘锦模拟)某村在退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树活动,现植树速度是原计划植树速度的2倍,结果比原计划提前4天完成任务,那么原计划天完成任务.39.(2021•长春一模)某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?40.(2021•宝应县一模)为庆祝中国共产党成立100周年,扬州漆器厂接到制作960件漆器纪念贺礼订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?41.(2021•徐州一模)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣令组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.求每副围棋和象棋各是多少元?42.(2021•铁西区一模)甲、乙两支工程队修建公路,已知甲队每天修路的长度比乙队每天修路的长度多50米,甲队修路600米与乙队修路300米用的天数相同.(1)求甲、乙两支工程队每天各修路多少米?(2)计划修建长度为3600米的公路,因工程需要,甲、乙两支工程队都要参与这条公路的修建.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,在总费用不超过40万元的情况下,至少安排乙队施工天.43.(2021•金山区二模)A、B两地相距18千米,甲工程队要在A、B两地间铺设一条输送天然气的管道,乙工程队要在A、B两地间铺设一条输油管道,已知甲工程队每天比乙工程队少铺设1千米.(1)若两队同时开工,甲工程队每天铺设3千米,求乙工程队比甲工程队提前几天完成?(2)若甲工程队提前3天开工,结果两队同时完成任务,求甲、乙两队每天各铺设管道多少千米?44.(2021•盐田区模拟)某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?45.(2021•南海区模拟)为抗击新型冠状病毒肺炎,某市医院打算采购A、B两种医疗器械,购买1台A机器比购买1台B机器多花10万元,并且花费300万元购买A器材和花费100万元购买B器材的数量相等.(1)求购买一台A器材和一台B器材各需多少万元;(2)医院准备购买购A、B两种器材共80台,若购买A、B器材的总费用不高于1050万元,那么最多购买A器材多少台?46.(2021•山西模拟)“居家嗨购,网上过年”,为做好疫情防控并促进春节线上消费,我省组织开展了2021“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工.该企业选购甲,乙两种物品,已知乙种物品单价是甲种物品单价的,购买9000元甲种物品的数量比购买4800元乙种物品的数量多10件.(1)甲,乙两种物品的单价各为多少元?(2)如果该企业购买甲,乙两种物品共150件,总费用不超过3.9万元,则购买甲种物品最多为多少件?47.(2021•安徽模拟)中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?48.(2021•黔东南州模拟)在抗击“新型冠状病毒”期间,某车间接受到一种零件的加工任务,该任务由甲、乙两人来完成,甲每天加工的数量是乙每天加工数量的1.5倍,现两人各加工300个这种零件,甲比乙少用5天.(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有1500个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过7800元,那么甲至少加工了多少天?49.(2021•历下区一模)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区购进A型和B型两种分类垃圾桶,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花20元,购买A型、B型垃圾桶各花费了1000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍.(1)求购买一个A型垃圾桶和一个B型垃圾桶各需多少元?(2)若小区一次性购买A型和B型垃圾桶共60个,要使总费用不超过2000元,最少要购买多少个A 型垃圾桶?50.(2021•长清区一模)某服装店老板到厂家选购A、B两种品牌的羽绒服,B品牌羽绒服每件进价比A品牌羽绒服每件进价多200元,若用10000元购进A种羽绒服的数量是用7000元购进B种羽绒服数量的2倍.(1)求A、B两种品牌羽绒服每件进价分别为多少元?(2)若A品牌羽绒服每件售价为800元,B品牌羽绒服每件售价为1200元,服装店老板决定一次性购进A、B两种品牌羽绒服共80件,在这批羽绒服全部出售后所获利利不低于28000元,则最少购进B品牌羽绒服多少件?参考答案与试题解析一.分式方程的解(共12小题)1.(2021•江津区模拟)若a为整数,关于x的不等式组有且只有3个整数解,且关于y的分式方程有整数解,则满足条件的所有整数a的和为()A.0 B.4 C.7 D.8【分析】观察此题先解不等式组确定x的解集,由只有3个整数解确定a的取值范围.再根据分式方程由整数解即可找出符合条件的所有整数a,求和即可.【解答】解:不等式组;解①得:x≥﹣2,解②得:x<,∴且x有3个整数解,∴0<≤1,∴0<a≤4,解关于y的分式方程得y=,∵该分式方程有整数解,∴当y=1时,a=0,当y=﹣1时,a=4,当y=2时,a=1,方程产生增根,故舍去.当y=﹣2时,a=3,又∴0<a≤4,∴符合条件的所有整数a可取3和4,∴和为7.故选:C.【点评】此题考查不等式组的解法以及分式方程的解法,综合性较强,解出所有a的取值范围,再取整数求和即可解决本题.2.(2021•九龙坡区校级模拟)若整数a使关于x的不等式组有解且至多有四个整数解,且使关于y的分式方程=﹣的解为非负数,则满足条件的所有a的值之和为()A.63 B.67 C.68 D.72【分析】观察本题,可通过解不等式组找到x的取值范围,结合至多四个整数解和分式方程的解的特点确定a的取值范围再取整数解求和即可.【解答】解:不等式组解①得:x≤7,解①得:x,∴且至多有四个整数解,∴3<≤7,∴4<a≤12,解关于y的分式方程得y=2a﹣8,∵分式方程有解且为非负数,即2a﹣8≥0且2a﹣8≠2,∴a≥4且a≠5,综上整数a可取:6,7,8,9,10,11,12,∴和为:6+7+8+9+10+11+12=63,故选:A.【点评】本题考查不等式组的解法以及分式方程的解法,综合性较强,需要注意分式方程产生增根的特殊性,从而确定a的取值范围再取整数解求和即可.3.(2021•新都区模拟)若关于x的方程=+1无解,则a的值是()A.1 B.3 C.﹣1或2 D.1或2【分析】先转化为整式方程,再由分式方程无解,进而可以求得a的值.【解答】解:=+1,去分母得,ax=2+x﹣1,整理得,(a﹣1)x=1,当x=1时,分式方程无解,则a﹣1=1,解得,a=2;当整式方程无解时,a=1,故选:D.【点评】本题主要考查分式方程的解,掌握解分式方程的方法是解题的关键.4.(2021•沙坪坝区校级模拟)若整数a是使得关于x的不等式组有且只有2个整数解,且使得且关于y的分式方程+=a有非负数解,则所有满足条件的整数a的个数为()A.6 B.5 C.4 D.3【分析】解不等式组,利用有且只有2个整数解,确定a的取值范围;解分式方程,利用有非负数解,也可确定a的取值范围.同时满足两个条件的a的取值范围最终确定,由于a为整数,取a的整数解,结论可得.【解答】解:解不等式组,得,∵不等式组有且只有2个整数解,即x=2,3;∴1<≤2,解得:1<a≤7.∵分式方程+=a,解得,y=,∴≥0且≠1,∴a>2且a≠4.∴2<a≤7且a≠4.∵a为整数,∴a=3,5,6,7.故选:C.【点评】本题主要考查了一元一次不等式组的解法,分式方程的解法.依据已知条件得出a的取值范围是解题的关键.5.(2021•温江区校级模拟)若关于x的分式方程+3的解为3,则a的值是()A.7 B.6 C.﹣1 D.﹣6【分析】将x=3代入原方程即可求出a的值.【解答】解:将x=3代入原方程,得,,解得a=7.故选:A.【点评】本题主要考查分式方程的解,要理解方程的解是使方程成立的未知数的值.6.(2021•九龙坡区模拟)若关于x的分式方程+=﹣3的解为正数,且关于y的一元一次不等式组有解,则符合条件的所有整数a的和为()A.1 B.2 C.3 D.4【分析】分别解出x的解与y的解集,再求关于a的整数解.【解答】解:解关于x的分式方程得x=.∵解为正数,且x≠2.∴a﹣3<0,≠2即a<3且a≠1.解关于y的不等式组得y≥﹣1,y≤.∵不等式组有解,∴,即a≥﹣1.∴满足﹣1≤a<3的所有整数解为﹣1,0,2.∴﹣1+0+2=1.故选:A.【点评】本题考查解含参不等式问题,可利用数轴求解.解题关键是求出a的取值范围,注意增根情况.7.(2021•罗平县模拟)若分式方程=无解,则实数a的值为()A.1 B.1或C.D.1或2【分析】关于x的分式方程=无解,则化成整式方程以后,解整式方程得到的解一定是方程的增根,一定是2,把x=2代入整式方程即可求得a的值,以及未知数化成整式方程以后,未知数系数为0,依此即可求解.【解答】解:=,去分母得:x﹣2=ax﹣3,(a﹣1)x=1,∵分式方程=无解,∴把x=2代入得:2(a﹣1)=1,解得:a=;或a﹣1=0,解得:a=1.故实数a的值为1或.故选:B.【点评】本题考查了分式方程的解,理解分式方程的增根产生的原因是解题的关键.8.(2021•云南模拟)若关于x的一元一次不等式组的解集为x≤5,且关于y的分式方程的解为非正数,则符合条件的a所有整数的个数为()A.2 B.3 C.4 D.5【分析】表示出不等式组的解集,由已知解集确定出a的范围,表示出分式方程的解,根据解为非正数确定出a的范围,进而求出a的具体范围,确定出正整数解的个数即可.【解答】解:不等式组,由①得:x≤5,由②得:x<3+2a,∵关于x的一元一次不等式组的解集为x≤5;∴3+2a>5,解得:a>1;∵+=1的解为非正数,∴解得:y=a﹣6,∴a﹣6≤0,即a≤6,综上所述,可得:a的取值范围为1<a≤6;则符合条件的a所有整数有:2,3,4,5,6,共5个.故选:D.【点评】此题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握各自的性质是解本题的关键.9.(2021•郫都区模拟)若关于x的方程+=3的解为正数,则m的取值范围是m>﹣16且m≠4 .【分析】先解分式方程,根据分式方程的解为正数和分式方程无意义的情况,即可得出m的取值范围.【解答】解:+=3,去分母得,x+m﹣(x﹣4)=3(x﹣4),整理得,3x=m+16,解得,x=,∵分式方程的解为正数,∴>0且≠4,∴m>﹣16且m≠4.故答案为:m>﹣16且m≠4.【点评】本题主要考查解分式方程和一元一次不等式,熟知解分式方程的方法是解题的关键.10.(2021•铁岭二模)已知x=9是分式方程=的解,那么k的值为 1 .【分析】将x=9代入原方程即可求出k的值.【解答】解:将x=9代入原方程,得,,解得k=1.故答案为:1.【点评】本题主要考查分式方程的解,要理解方程的解是使方程成立的未知数的值.11.(2020•攀枝花一模)若关于x的方程无解,则m的值为﹣1或.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出m的值即可.【解答】解:分式方程去分母得:x+4+m(x﹣4)=4,整理得:x+4+mx﹣4m=4,即(m+1)x=4m,当m+1=0,即m=﹣1时,方程无解;当m+1≠0,即m≠﹣1时,由分式方程无解,得到x=4或x=﹣4,把x=4代入整式方程得:4(m+1)=4m,无解;把x=﹣4代入整式方程得:﹣8m=4,即m=﹣,综上,m的值为﹣1或﹣.故答案为:﹣1或﹣.【点评】此题考查了分式方程的解,分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.12.(2020•广陵区校级三模)关于x的方程=2+无解,则k的值为 3 .【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出k的值.【解答】解:去分母得:x=2(x﹣3)+k,∵分式方程无解,∴x﹣3=0,即x=3,把x=3代入整式方程得:k=3.故答案为:3.【点评】此题考查了分式方程的解,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.二.解分式方程(共8小题)13.(2021•平房区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:8x=3(x﹣5),解得:x=﹣3,检验:把x=﹣3代入方程得:2x(x﹣5)=48≠0,则分式方程的解为x=﹣3.故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(2021•河南模拟)解分式方程2﹣=,去分母得()A.2(2﹣6x)﹣1=1 B.2(2﹣6x)﹣2=1C.2(2﹣6x)+2=1 D.2(2﹣6x)+2=﹣1【分析】分式方程整理后,找出最简公分母,去分母得到结果,即可作出判断.【解答】解:方程两边都乘以(2﹣6x),去分母得:2(2﹣6x)+2=1.故选:C.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.(2021•道里区一模)方程=的解为()A.x=1 B.x=﹣1 C.x=2 D.x=3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(4﹣x)=3(x+1),去括号得:8﹣2x=3x+3,解得:x=1,检验:把x=1代入得:(x+1)(4﹣x)=2×3=6≠0,则分式方程的解为x=1.故选:A.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16.(2021•道外区一模)方程=的解为()A.1 B.﹣1 C.4 D.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(2﹣3x)=x﹣4,去括号得:6﹣9x=x﹣4,解得:x=1,检验:把x=1代入得:(x﹣4)(2﹣3x)=﹣3×(﹣1)=3≠0,∴分式方程的解为x=1.故选:A.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(2021•盐城模拟)方程=+3的解是x=1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(2021•百色模拟)分式方程+=1的解为x=1 .【分析】根据解分式方程的步骤,即可解答.【解答】解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(2021•资兴市模拟)在正数范围内定义一种运算“*”,其规则为“a*b=﹣”,根据这个规则方程(x ﹣1)*x=0的解为x=﹣5 .【分析】已知方程利用题中的新定义化简,求出解即可.【解答】解:方程整理得:﹣=0,去分母得:6x﹣5x+5=0,解得:x=﹣5,经检验x=﹣5是分式方程的解,故答案为:x=﹣5【点评】此题考查了解分式方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2020•资兴市一模)观察下列等式:=1﹣,=﹣,=﹣将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=(1)猜想并写出:=﹣(2)分式方程++=1的解是x=5 .【分析】(1)根据已知等式得出拆项法,写出即可;(2)方程利用拆项法变形后,求出解即可.【解答】解:(1)=﹣;(2)已知方程整理得:+﹣+﹣=1,即=1,去分母得:1=x﹣4,解得:x=5,经检验x=5是分式方程的解.故答案为:(1)﹣;(2)x=5【点评】此题考查了解分式方程,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.三.换元法解分式方程(共1小题)21.(2021•松江区二模)用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0 .【分析】根据题意,用含y的式子表示出方程并整理方程即可.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.【点评】本题考查了换元法.换元法解方程一般四步:设元(未知数),换元,解元,还元.四.分式方程的增根(共4小题)22.(2021•海淀区校级模拟)若关于x的分式方程有增根,则m的值是()A.4 B.3 C.2 D.1【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出m的值.【解答】解:,方程两边都乘(x﹣1)得2m﹣1﹣7x=5(x﹣1),∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,2m﹣1﹣7=0,解得m=4.故选:A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.23.(2021•青羊区校级模拟)若关于x的分式方程有增根,则k的值为.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出k的值即可.【解答】解:分式方程去分母得:1﹣kx+3(x﹣2)=﹣1,展开得:(3﹣k)x=4,当3﹣k=0,即k=3时,方程无解,不符合题意;当3﹣k≠0,即k≠3时,∵分式方程无解,∴x﹣2=0,即x=2,把x=2代入得:2﹣2k=﹣1,解得:k=,综上,k=.故答案为:.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.24.(2021•东港市模拟)若关于x的分式方程+3=有增根,则m的值为7 .【分析】由分式方程有增根,得到最简公分母为0,确定出m的值即可.【解答】解:分式方程去分母得:7+3(x﹣1)=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:7=m,解得:m=7.故答案为:7.【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(2021•贺兰县模拟)如果在解关于x的分式方程+=2时出现了增根x=1,那么常数k的值为1 .【分析】分式方程去分母转化为整式方程,把x=1代入整式方程计算即可求出k的值.【解答】解:分式方程去分母得:x﹣k=2x﹣2,解得:x=2﹣k,由分式方程的增根为x=1,得到2﹣k=1,解得:k=1,故答案为:1【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.五.由实际问题抽象出分式方程(共11小题)26.(2021•鹿城区一模)一家工艺品厂按计件方式结算工资.小鹿去这家工艺品厂打工,第一天工资60元,第二天比第一天多做了5件,工资为75元.设小鹿第一天做了x件,根据题意可列出方程为()A.=B.=C.=D.=+5【分析】设小鹿第一天做了x件,则第二天比第一天多做了(x+5)件,根据“第一天工资60元,工资为75元”即可得出关于x的分式方程.【解答】解:设小鹿第一天做了x件,则第二天比第一天多做了(x+5)件,依题意得:=.故选:A.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.27.(2021•河南模拟)网上购物已经成为人们常用的一种购物方式.购物方式的改变给快递行业带来了商机,也带来了挑战.为了提高效率,某快递公司研发了快递机器人专门负责分拣包裹,已知单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同.设人工(一个人)每小时分拣x个包裹,则可列方程为()A.B.C.D.【分析】根据单个机器人比人工(一个人)每小时多分拣100个,单个机器人分拣9000个包裹和人工(一个人)分拣6000个包裹所用时间相同,可以列出相应的分式方程,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.28.(2021•宁波模拟)某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.。

中考数学历年各地市真题 分式(分式方程,分式应用题)

中考数学历年各地市真题分式(分式方程,分式应用题)(2010哈尔滨)1。

函数y =2x 1x ++的自变量x 的取值范围是 .x ≠-2 (2010哈尔滨)2。

方程x3x x 5-+=0的解是 .-2(2010哈尔滨)3.先化简,再求值21a 3a 1a +÷++其中a =2sin60°-3.3323a 2=+ (2010珠海)4为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得105.112001200=-xx 解得:x=40经检验:x=40是原方程的根,所以1.5x=60答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.(2010红河自治州)16. (本小题满分7分)先化简再求值:.25624322+-+-÷+-a a a a a 选一个使原代数式有意义的数带入求值. 解:原式=.25)3(2)2)(2(32+-+-+÷+-a a a a a a =.25)2)(2()3(232+--++⋅+-a a a a a a =2522+-+a a =23+-a当即可)、的取值不唯一,只要时,(321-≠=a a a原式=1213-=+-(2010年镇江市)18.计算化简(2).31962++-x x原式31)3)(3(6-+-+=x x x (1分) )3)(3(36-+-+=x x x (3分))3)(3(3-++=x x x (4分).31-=x (2010年镇江市)19.运算求解(本小题满分10分)解方程或不等式组;(2).231-=x xx 223x x =-,(1分) 0232=+-x x , (2分) 0)1)(2(=--x x , (3分) .1,221==∴x x (4分)经检验,1,221==x x 中原方程的解. (5分)(2010年镇江市)25.描述证明(本小题满分6分)海宝在研究数学问题时发现了一个有趣的现象:答案:(1);2ab abb a =++(1分).ab b a =+(2分) (2)证明:,2,222ab ab abb a ab a b b a =++∴=++ (3分))6.(,0,0,0,0)5(,)()()4(,)(222222分分分ab b a ab b a b a ab b a ab ab b a =+∴>>+>>=+∴=++∴(2010遵义市) 解方程:xx x -=+--23123 答案:解:方程两边同乘以()2-x ,得:()323-=-+-x x合并:2x -5=-3 ∴ x =1经检验,x =1是原方程的解.(2010台州市)解方程:123-=x x答案:解:x x 233=-3=x . ……………………………………………………………………3分经检验:3=x 是原方程的解.…………………………………………………………1分所以原方程的解是3=x .(玉溪市2010)2. 若分式221-2b-3b b -的值为0,则b 的值为(A )A. 1B. -1C.〒1D. 2(玉溪市2010)…………3分…………4分…………5分a )1)(1(1)1)(1(12-+⋅⎥⎦⎤⎢⎣⎡++--+=a a a a a a a 解:原式.211,111.1622代入求值的值作为数中选一个你认为合适的和,再从)先化简(a a a a a a --÷+-+a )1)(1(1122-+⋅++-=a a a a a .a1-=a .212-==时,原式当a…………7分(桂林2010)17.已知13xx+=,则代数式221xx+的值为_________.7(桂林2010)20.(本题满分6分)先化简,再求值:222 11()x y x y x y x y+÷-+-,其中1,1x y==2222222:=()x y x y x yx y x y x y+-+÷---20.(本题 6分)解原式………………1分=22222x y x y x yx y x y++--⨯-………………………3分=22xx y=2xy…………………………………4分=2131=-……………………………………6分(2010年无锡)18.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了▲.【注:销售利润率=(售价—进价)〔进价】答案40%(2010年无锡)19.计算:(2)221(2).1a aaa-+---(2)原式=2(1)(2)1aaa----=12a a--+=1(2010年无锡)20.1,,2=yxy==当时原式(1) 解方程:233x x =+; 答案解:(1)由原方程,得2(x+3)=3x,……(1分) ∴x=6.……………………………(3分) 经检验,x=6是原方程的解,∴原方程的解是x=6………………(4分)(2010年连云港)14.化简:(a -2)〃a 2-4a 2-4a +4=___________.答案 2a +(2010宁波市)19.先化简,再求值:a -2a 2-4 +1a +2,其中a =3.12. (2010年金华) 分式方程112x =-的解是 ▲ . 答案:x =32.(2010年长沙)函数11y x =+的自变量x 的取值范围是 C A .x >-1B .x <-1C .x ≠-1D .x ≠118.(2010年长沙)先化简,再求值:2291()333x x x x x ---+ 其中13x =. 解:原式=(3)(3)13(3)x x x x x +--+ ……………………………………………2分=1x……………………………………………………………4分当13x =时,原式=3 …………………………………………………6分(2010年湖南郴州市)18.先化简再求值:2111x x x---, 其中x =2. 答案:18.解:原式=1(1)(1)x x x x x --- ……………………………………………3分 =1(1)x x x -- ………………………………………………4分=1x………………………………………………5分 当x =2时,原式=1x =12………………………………………………6分(2010湖北省荆门市)17.观察下列计算:111122=-⨯1112323=-⨯ 1113434=-⨯1114545=-⨯ … …从计算结果中找规律,利用规律性计算111111223344520092010++++⨯⨯⨯⨯⨯ =___▲___. 答案:200920104.(2010湖北省咸宁市)分式方程131x x x x +=--的解为 A .1x = B .1x =- C .3x =D .3x =-答案:D17.(2010湖北省咸宁市)先化简,再求值:21(1)11aa a +÷--,其中3a =-. 解:原式21(1)(1)a a a a a -=⨯+-1a a =+.当3a =-时,原式33312-==-+.19.(2010年济宁市)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 19.(1)111n n -+ 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . 〃〃〃〃〃 3分 (3)原式=1-12+12-31+31-41+…+20091-20101 =12009120102010-=. (2010年成都)14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________. 答案:6(2010年眉山)20.解方程:2111x x x x++=+答案:20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解. ∴原方程的解为12x =-.……………………(6分)北京14. 解分式方程423-x -2-x x=21。

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④

山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 组和第 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 名学生,其中选择“C家用器具使用与维护”的女生有 名,“D烹饪与营养”的男生有 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.山东省各地市2023-中考数学真题分类汇编-03解答题(提升题)知识点分类④参考答案与试题解析一.分式方程的应用(共1小题)1.(2023•济宁)为加快公共领域充电基础设施建设,某停车场计划购买A,B两种型号的充电桩.已知A型充电桩比B型充电桩的单价少0.3万元,且用15万元购买A型充电桩与用20万元购买B型充电桩的数量相等.(1)A,B两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A,B型充电桩,购买总费用不超过26万元,且B型充电桩的购买数量不少于A型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?【答案】见试题解答内容【解答】解:(1)设A型充电桩的单价为x万元,则B型充电桩的单价少(x+0.3)万元,根据题意得=,解得x=0.9,经检验x=0.9是原方程的解,x+0.3=1.2.答:A型充电桩的单价为0.9万元,则B型充电桩的单价为1.2万元;(2)设购买A型充电桩m个,则购买B型充电桩(25﹣m)个,根据题意,得:,解得:≤m≤.∵m为整数,∴m=14,15,16.∴该停车场有3种购买机床方案,方案一:购买14个A型充电桩、11个B型充电桩;方案二:购买15个A型充电桩、10个B型充电桩;方案三:购买16个A型充电桩、9个B型充电桩.∵A型机床的单价低于B型机床的单价,∴购买方案三总费用最少,最少费用=16×0.9+1.2×9=25.2(万元).二.反比例函数与一次函数的交点问题(共1小题)2.(2023•聊城)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,4),B(a,﹣1)两点.(1)求反比例函数和一次函数的表达式;(2)点P(n,0)在x轴负半轴上,连接AP,过点B作BQ∥AP,交y=的图象于点Q,连接PQ.当BQ=AP时,求n的值.【答案】(1)反比例函数为y=﹣,B(4,﹣1),一次函数为y=﹣x+3;(2)n=﹣.【解答】解:(1)反比例函数y=的图象过A(﹣1,4),B(a,﹣1)两点,∴m=﹣1×4=a•(﹣1),∴m=﹣4,a=4,∴反比例函数为y=﹣,B(4,﹣1),把A、B的坐标代入y=kx+b得,解得,∴一次函数为y=﹣x+3;(2)∵A(﹣1,4),B(4,﹣1),P(n,0),BQ∥AP,BQ=AP,∴四边形APQB是平行四边形,∴点A向左平移﹣1﹣n个单位,向下平移4个单位得到P,∴点B(4,﹣1)向左平移﹣1﹣n个单位,向下平移4个单位得到Q(5+n,﹣5),∵点Q在y=﹣上,∴5+n=,解得n=﹣.三.反比例函数综合题(共1小题)3.(2023•枣庄)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A (m,1),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)设直线AB与x轴交于点C,若P(0,a)为y轴上的一动点,连接AP,CP,当△APC的面积为时,求点P的坐标.【答案】(1)一次函数的表达式为y=x﹣1,该函数的图象见解答;(2)x<﹣2或0<x<4;(3)点P的坐标为(0,)或(0,﹣).【解答】解:(1)∵反比例函数y=的图象经过A(m,1),B(﹣2,n)两点,∴1=,n==﹣2,解得:m=4,∴A(4,1),B(﹣2,﹣2),将A(4,1),B(﹣2,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为y=x﹣1,该函数的图象如图所示:(2)由图可得,不等式kx+b﹣<0的解集范围是x<﹣2或0<x<4;(3)设直线AB交x轴于C,交y轴于D,在y=x﹣1中,当x=0时,y=﹣1,∴D(0,﹣1),当y=0时,得x﹣1=0,解得:x=2,∴C(2,0),∴OC=2,∵P(0,a),A(4,1),∴PD=|a+1|,∵S△APC=,∴|a+1|•(4﹣2)=,解得:a=或﹣,∴点P的坐标为(0,)或(0,﹣).四.二次函数综合题(共1小题)4.(2023•济宁)如图,直线y=﹣x+4交x轴于点B,交y轴于点C,对称轴为的抛物线经过B,C两点,交x轴负半轴于点A,P为抛物线上一动点,点P的横坐标为m,过点P作x轴的平行线交抛物线于另一点M,作x轴的垂线PN,垂足为N,直线MN交y 轴于点D.(1)求抛物线的解析式;(2)若,当m为何值时,四边形CDNP是平行四边形?(3)若,设直线MN交直线BC于点E,是否存在这样的m值,使MN=2ME?若存在,求出此时m的值;若不存在,请说明理由.【答案】(1)y=﹣x2+3x+4;(2)当m为时,四边形CDNP是平行四边形;(3)存在这样的m值,使MN=2ME,此时m的值为或.【解答】解:(1)在直线y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,∴点B(4,0),点C(0,4),设抛物线的解析式为,把点B(4,0),点C(0,4)代入可得:,解得:,∴抛物线的解析式为y==﹣x2+3x+4;(2)由题意,P(m,﹣m2+3m+4),∴PN=﹣m2+3m+4,当四边形CDNP是平行四边形时,PN=CD,∴OD=﹣m2+3m+4﹣4=﹣m2+3m,∴D(0,m2﹣3m)N(m,0),设直线MN的解析式为,把N(m,0)代入可得,解得:k1=3﹣m,∴直线MN的解析式为y=(3﹣m)x+m2﹣3m,又∵过点P作x轴的平行线交抛物线于另一点M,且抛物线对称轴为,∴M(3﹣m,﹣m2+3m+4),∴(3﹣m)2+m2﹣3m=﹣m2+3m+4,解得m1=(不合题意,舍去),m2=;∴当m为时,四边形CDNP是平行四边形;(3)存在,理由如下:∵对称轴为x=,设P点坐标为(m,﹣m2+3m+4),∴M点横坐标为:×2﹣m=3﹣m,∴N(m,0),M(3﹣m,﹣m2+3m+4),①如图1,∵MN=2ME,即E是MN的中点,点E在对称轴x=上,∴E(,),又点E在直线BC:y=﹣x+4,代入得:=﹣+4,解得:m=或(舍去),故此时m的值为.②如图2,设E点坐标为(n,﹣n+4),N(m,0),M(3﹣m,﹣m2+3m+4),∵MN=2ME,∴0﹣(﹣m2+3m+4)=2(﹣m2+3m+4+n﹣4)①,∴3﹣m﹣m=2(n﹣3+m)②,联立①②并解得:m=(舍去)或,综上所述,m的值为或.五.全等三角形的判定与性质(共1小题)5.(2023•聊城)如图,在四边形ABCD中,点E是边BC上一点,且BE=CD,∠B=∠AED =∠C.(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4时,求△AED的面积.【答案】(1)证明过程见解答;(2).【解答】(1)证明:∵∠B=∠AED=∠C,∠AEC=∠B+∠BAE=∠AED+∠CED,∴∠BAE=∠CED,在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,∴∠EAD=∠EDA;(2)解:∵∠AED=∠C=60°,AE=ED,∴△AED为等边三角形,∴AE=AD=ED=4,过A点作AF⊥ED于F,∴EF=ED=2,∴AF=,∴S△AED=ED•AF=.六.菱形的性质(共1小题)6.(2023•滨州)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.(1)求S关于x的函数解析式;(2)当x取何值时,S的值最大?请求出最大值.【答案】(1)S=(0≤x≤4),(2)当x=2时,S有最大值,最大值为2.【解答】解:(1)如图,过点A作AG⊥OC于点G,连接AC,∵顶点A的坐标为(2,2),∴OA=,OG=2,AG=2,∴cos∠AOG==,∴∠AOG=60°,∵四边形OABC是菱形,∴∠BOC=∠AOB=30°,AC⊥OB,AO=OC,∴△AOC是等边三角形,∴∠ACO=60°,∵DE⊥OB,∴DE∥AC,∴∠EDO=∠ACO=60°,∴△EOD是等边三角形,∴ED=OD=x,∵DF∥OB,∴△CDF∽△COB,∴,∵A(2,2),AO=4,则B(6,2),∴OB=,∴=,∴DF=(4﹣x),∴S==,∴S=(0≤x≤4),(2)∵S==(0≤x≤4),∴当x=2时,S有最大值,最大值为2.七.切线的判定与性质(共1小题)7.(2023•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,∠ADC的平分线DE交AC于点E.以AD上的点O为圆心,OD为半径作⊙O,恰好过点E.(1)求证:AC是⊙O的切线;(2)若CD=12,tan∠ABC=,求⊙O的半径.【答案】(1)见解析;(2)15﹣3.【解答】(1)证明:连接OE,∵OD=OE,∴∠OED=∠ODE,∵DE平分∠ADC,∴∠CDE=∠ODE,∴∠OED=∠CDE,∴OE∥CD,∵∠ACB=90°,∴∠AEO=90°,∴OE⊥AC,∴AC是⊙O的切线;(2)解:过D作DF⊥AB,∵AD平分∠BAC,DF⊥AB,∠ACB=90°,∴CD=DF,∵CD=12,tan∠ABC=,∴BF==16,∴BD==20,∴BC=CD+BD=32,∴AC=BC•tan∠ABC=24,∴=12,∵OE∥CD,∴△AEO∽△ACD,∴,∴,解得EO=15﹣3,∴⊙O的半径为15﹣3.八.圆的综合题(共1小题)8.(2023•滨州)如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC 的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)【答案】见解答.【解答】(1)解:过点F作FH⊥AC,FG⊥AB,垂足分别为H、G,如图:∵点E是△ABC的内心,∴AD是∠BAC的平分线,∵FH⊥AC,FG⊥AB,∴FG=FH,∵S△ABF,S△ACF,∴S△ABF:S△ACF=AB:AC.(2)证明:过点A作AM⊥BC于点M,如图,∵S△ABF=,S△ACF=,∴S△ABF:S△ACF=BF:FC,由(1)可得S△ABF:S△ACF=AB:AC.∴AB:AC=BF:FC,(3)证明:连接DB、DC,如图,∵,,∴∠ACF=∠BDF,∠FAC=∠FBD,∴△BFD∽△AFC,∴BF•CF=AF•DF,∵,∴∠FBA=∠ADC,又∠BAD=∠DAC,∴△ABF∽△ADC,∴,∴AB•AC=AD•AF,∴AB•AC=(AF+DF)•AF=AF2+AF•DF,∴AF2=AB•AC﹣BF•CF.(4)连接BE,如图,∵点E是△ABC的内心,∴BE是∠ABC的平分线,∴∠ABE=∠FBE,∵∠CAB=∠CAD=∠BAD,∠ADB=∠BDF,∴△ABD∽△BFD,∴,∴DB2=DA•DF,∵∠BED=∠BAE+∠ABE=+,∠DBE=∠DBC+∠FBE=∠DAC+∠FBE=+,∴∠BED=∠DBE,∴DB=DE,∴DE2=DA•DF,九.作图—复杂作图(共1小题)9.(2023•滨州)(1)已知线段m,n,求作Rt△ABC,使得∠C=90°,CA=m,CB=n;(请用尺规作图,保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明)【答案】(1)见解答;(2)见解答.【解答】解:(1)如图:Rt△ABC即为所求;(2)已知:Rt△ABC,∠ACB=90°,CE是AB边上的中线,求证:CE=AB,证明:延长CE到D,使得DE=CE,∵CD是AB边上的中线,∴BE=AE,∴四边形ACBD是平行四边形,∵∠BCA=90°,∴四边形ABCD是矩形,∴AB=CD,∴CE=CD=AB.一十.解直角三角形的应用-方向角问题(共1小题)10.(2023•聊城)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B 的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内),求明珠大剧院到龙堤BC的距离.(结果精确到1m,参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)【答案】明珠大剧院到龙堤BC的距离约为1320m.【解答】解:如图,过P作PE⊥BC于E,过A作AD⊥PE于D,则四边形ADEB是矩形,∴DE=AB=520m,设PD=xm,在Rt△APD中,∵∠PAD=68.2°,∴AD=≈m,∴BE=AD=m,∴PE=PD+DE=(x+520)m,CE=BC﹣BE=(1200﹣)m,在Rt△PCE中,tan C=tan56.31°=,解得x=800,∴PD=800m,∴PE=PD+DE=800+520=1320(m),答:明珠大剧院到龙堤BC的距离约为1320m.一十一.频数(率)分布直方图(共1小题)11.(2023•聊城)某中学把开展课外经典阅读活动作为一项引领学生明是非、知荣辱、立志向、修言行的德育举措.为了调查活动开展情况,需要了解全校2000名学生一周的课外经典阅读时间.从本校学生中随机抽取100名进行调查,将调查的一周课外经典阅读的平均时间x(h)分为5组:①1≤x<2;②2≤x<3;③3≤x<4;④4≤x<5;⑤5≤x <6,并将调查结果用如图所示的统计图描述.根据以上信息,解答下列问题:(1)本次调查中,一周课外经典阅读的平均时间的众数和中位数分别落在第 ③ 组和第 ③ 组(填序号);一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为 28% ;估计全校一周课外经典阅读的平均时间达到4小时的学生有 560 人;(2)若把各组阅读时间的下限与上限的中间值近似看作该组的平均阅读时间,估计这100名学生一周课外经典阅读的平均时间是多少?(3)若把一周课外经典阅读的平均时间达到4小时的人数百分比超过40%,作为衡量此次开展活动成功的标准,请你评价此次活动,并提出合理化的建议.【答案】(1)③,③,28%,560;(2)估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).【解答】解:(1)∵第③组的人数最多,∴一周课外经典阅读的平均时间的众数落在第③组;∵抽取100名进行调查,第50名、51名学生均在第③组,∴一周课外经典阅读的平均时间的中位数落在第③组;由题意得:(20+8)÷100×100%=28%,∴一周课外经典阅读的平均时间达到4小时的学生人数占被调查人数的百分比为28%;2000×28%=560(人),即估计全校一周课外经典阅读的平均时间达到4小时的学生有560人;故答案为:③,③,28%,560;(2)由题意可知,每组的平均阅读时间分别为1.5小时,2.5小时,3.5小时,4.5小时,5.5小时,∴=3.4(小时),答:估计这100名学生一周课外经典阅读的平均时间为3.4小时;(3)一周课外经典阅读的平均时间达到4小时的学生的人数的百分比为28%,∵28%<40%,∴此次开展活动不成功;建议:①学校多举办经典阅读活动;②开设经典阅读知识竞赛,提高学生阅读兴趣(答案不唯一).一十二.列表法与树状图法(共1小题)12.(2023•枣庄)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群;A清洁与卫生,B整理与收纳,C家用器具使用与维护,D烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了 20 名学生,其中选择“C家用器具使用与维护”的女生有 2 名,“D烹饪与营养”的男生有 1 名;(2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C家用器具使用与维护”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率.【答案】(1)20;2;1;(2)见解答;(3).【解答】解:(1)3÷15%=20(名),所以本次调查中,一共调查了20名学生,“C家用器具使用与维护”的女生数为25%×20﹣3=2(名),“D烹饪与营养”的男生数为20﹣3﹣10﹣5﹣1=1(名);故答案为:20;2;1;(2)选择“D烹饪与营养”的人数所占的百分比为:×100%=10%,补全上面的条形统计图和扇形统计图为:(3)画树状图为:共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果数为12,所以所选的学生恰好是一名男生和一名女生的概率==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011全国中考真题解析分式方程的应用一、选择题1. (2011重庆綦江,8,4分)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( )A .x 10000-5010000+x =10B .5010000-x -x 10000=10C .x 10000-5010000-x =10D .5010000+x -x10000=10 2. (2011吉林长春,6,3分)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( ) A .28002800304-=x x B .28002800304-=x x C .28002800305-=x x D .2800280030-=5x x3.(2011辽宁沈阳,8,3)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A 、6010%)801(3025=+-x xB 、10%)801(3025=+-xx C 、601025%)801(30=-+x x D 、1025%)801(30=-+x x 4.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .00253010(18060x x -=+)B .00253010(180x x -=+)C .00302510(18060x x -=+D .00302510(180x x -=+5. (2011湖南衡阳,10,3分)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠x 米,则下面所列方程正确的是( )A . 3600x = 36001.8xB . 36001.8x -20=3600xC . 3600x - 36001.8x =20D . 3600x + 36001.8x=20 二、填空题1. (2011•安顺)某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x 元/立方米,则所列方程为_________________2. (2011山东青岛,11,3分)某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为_________________3. (2011辽宁阜新,8,3分)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,根据题意列出的方程是 .三、解答题1. (2011江苏淮安,22,8分)七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100个,小月跳了140个.如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个?2.(2011江苏连云港,21,6分)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)3.(2011•南通)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?4.(2011•江苏徐州,22,6)徐州至上海的铁路里程为650km.从徐州乘“C”字头列车A,“D”字头列车B都可到达上海,已知A车的平均速度为B车的2倍,且行驶时间比B车少2.5h.(1)设A车的平均速度是xkm/h,根据题意,可列分式方程:;(2)求A车的平均速度及行驶时间.5.(2011•广东汕头)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?6.(2011•河池)大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.(1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?7.(2011•柳州)某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)求去年购进的文学羽和科普书的单价各是多少元?(2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?8.(2011•德州,21,10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.9.(2011•莱芜)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.10.(2011泰安,25,8分)某工厂承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲.乙两车间每天加工零件各多少个?11.(2011四川遂宁,20,9分)一场特大暴雨造成遂渝高速公路某一路段被严重破坏.为抢修一段120米长的高速公路,施工队每天比原计划多修5米,结果提前4天完成抢修任务.问原计划每天抢修多少米?12.(2011河北,22,8分)甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?13.(2011广东肇庆,21,分)肇庆市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20%,结果提前两天完成.求原计划平均每天修绿道的长度.15.(2011广东珠海,14,6分)八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.16.(2011广西崇左,20)今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?18.(2011广西来宾,21,10分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?19.(2011梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?20.(2011•玉林,24,8分)上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?21.(2011黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:(1)若剑江河首批需要清淤的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由(体积可按面积@高进行计算)(2)若甲公司单独做了2天,乙公司单独做了3天,恰好完成全部清淤任务的一半;若甲公司先做2天,剩下的清淤工作由乙公司单独完成,则乙公司所用时间恰好比甲公司单独完成清淤任务所用时间多1天,则甲、乙两公司单独完成清淤任务各需多少时间?22.(2011•湖南张家界,21,8)湖南张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(2011辽宁本溪,21,10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24.(2011•丹东,23,10分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?27. (2011北京,18,5分)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的73.小王用自驾车方式上班平均每小时行驶多少千米?28. (2011福建厦门,21)甲、乙两辆汽车同时分别从A 、B 两城沿同一条高速公路匀速驶向C 城.已知A 、C 两城的距离为360km ,B 、C 两城的距离为320km ,甲车比乙车的速度快10km /h ,结果两辆车同时到达C 城.设乙车的速度为xkm /h .(1)根据题意填写下表:(2)求甲、乙两车的速度.。

相关文档
最新文档