20221021太阳能光伏发电基本介绍

合集下载

光伏发电知识科普

光伏发电知识科普

光伏发电知识科普随着全球对清洁能源需求的不断增长,光伏发电作为一种可再生能源,逐渐成为能源领域的热门话题。

光伏发电利用太阳能将光能转化为电能,具有环保、可再生、零排放等优势。

本文将从光伏发电的基本原理、技术类型、应用领域等方面进行科普,以提高公众对光伏发电的了解。

一、光伏发电的基本原理光伏发电的基本原理是利用光生电效应,即某些材料在光照射下能够产生电流。

主要包括以下几个步骤:光照射:太阳光中含有丰富的能量,其中的光子具有一定能量。

光子击中半导体:光子被太阳能电池板上的半导体材料(通常是硅)吸收,导致半导体中的电子被激发并跃迁。

电子跃迁:被激发的电子从半导体的价带跃迁到导带,形成电子-空穴对。

电子流动:电子和空穴分别在半导体中流动,形成电流。

电流输出:通过电流的流动,光伏电池产生的电能被输出到电路中供电使用。

二、光伏发电的技术类型光伏发电技术主要分为单晶硅、多晶硅、非晶硅和薄膜光伏等几种类型。

单晶硅光伏:制作单晶硅太阳能电池需要高纯度的硅材料,通过单晶体生长技术制成单晶硅棒,再切割成薄片制成太阳能电池板。

具有高转换效率,但制造成本较高。

多晶硅光伏:多晶硅是由多个小晶体组成的,制造成本较单晶硅低,但转换效率稍低。

多晶硅光伏是目前市场上应用最广泛的技术。

非晶硅光伏:非晶硅光伏利用非晶硅材料制造,具有制造成本低、灵活性高的优势,但转换效率相对较低。

薄膜光伏:利用薄膜材料制造太阳能电池板,如铜铟镓硒(CIGS)薄膜电池、非晶硅薄膜电池等。

薄膜光伏具有轻薄、柔韧性强的特点,适用于一些特殊应用场景。

三、光伏发电的应用领域光伏发电在各个领域都有广泛的应用,其中主要包括:居民和商业用途:家庭屋顶、商业建筑屋顶等场所安装太阳能电池板,通过光伏发电为居民和商业用户提供清洁能源。

农业光伏:在农田、温室等农业用地上建设光伏电站,既能发电又能保护农作物,实现农业与光伏的双赢。

工业和公用事业:大规模的光伏电站用于工业和公用事业,为工厂和城市提供清洁能源。

太阳能光伏发电系统概述

太阳能光伏发电系统概述

太阳能光伏发电系统概述太阳能光伏发电系统是一种利用太阳能直接转化为电能的发电方式。

该系统主要由光伏电池组、控制器、逆变器、储能装置和配电设备等组成。

太阳能光伏发电系统具有环境友好、可再生能源等优势,被广泛应用于家庭、工业和农村等领域。

太阳能光伏发电系统的核心是光伏电池组。

光伏电池是一种能够将太阳能转化为电能的半导体器件。

常见的光伏电池主要有单晶硅电池、多晶硅电池和薄膜太阳能电池。

光伏电池通过吸收太阳辐射光的光子,将其转化为电子和空穴,形成电压和电流。

控制器是太阳能光伏发电系统的调节器,用于控制光伏电池组的充电和放电过程。

控制器具有过充保护、过放保护、过载保护和短路保护等功能,以保证光伏电池组的安全运行和延长使用寿命。

逆变器是太阳能光伏发电系统的重要组成部分,用于将直流电转化为交流电。

逆变器能够将光伏电池组产生的直流电转换为家庭或工业用电所需的交流电,并能适应电网频率和电压波动。

储能装置是太阳能光伏发电系统的重要组成部分,用于储存电能。

储能装置可以是蓄电池组,也可以是超级电容器。

蓄电池组可以将白天产生的多余电能储存起来,供夜晚或阴雨天使用,以实现24小时不间断供电。

配电设备用于将太阳能光伏发电系统产生的电能连接到家庭或工业用电系统中。

配电设备包括电源开关、电流互感器和电表等,用于确保电能的安全供应和计量使用。

太阳能光伏发电系统的工作原理是光伏效应。

当光照射到光伏电池上时,光子会激发光伏电池中的电子,使其从价带跃迁到导带中,形成电压和电流。

通过控制器和逆变器的调节,将直流电转化为交流电,并将其连接到电网或用于自用。

太阳能光伏发电系统具有许多优势。

首先,它是一种清洁能源,不会产生污染物和温室气体。

其次,太阳能是一种可再生能源,源源不断地提供电能,不会耗尽。

此外,太阳能光伏发电系统可以在贫瘠的地区使用,有利于推动农村发展。

最后,太阳能光伏发电系统可以降低电力供应成本,节约能源开支。

然而,太阳能光伏发电系统也存在一些挑战。

太阳能光伏发电技术简介

太阳能光伏发电技术简介

【什么是太阳能光伏】太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。

独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,整个系统造价很高;在有公共电网的地区,光伏发电系统与电网连接并网运行,省去蓄电池,不仅可以大幅度降低造价,而且具有更高的发电效率和更好的环保性能。

【什么是太阳能光伏技术】太阳是能量的天然来源。

地球上每一个活着的生物之所以具有发挥作用的能力,甚至于是它的生存,都是由于直接或间接来自于太阳的能量。

我们的地球处在离太阳差不多有一亿英里的地方。

它所截取的辐射能少到难以置信(大约千万分之三),这么小的一点能量,实际上比整个世界目前现有的发电能力还大十万倍。

目前全世界尤其是工业发达国家开始感到能量短缺,因此,人们开始求助于太阳能,以解决能源危机。

太阳能每天都能无限供应,而且数量庞大。

如果在大的电厂利用,就减少了温室效应,有些能源专家和环境保护的专家则认为,在满足人类今后能量需要方面,太阳能的热影响比任何其他替换品的热影响要小得多。

作为一种不污染环境,又取之不尽的新能源,它无处不在。

尤其是在电力供力方面,有专家认为太阳能发电最终将在电力供应中占20%。

太阳能是一种辐射能,太阳能发电意味着---要将太阳光直接转换成电能,它必须借助于能量转换器才能转换成为电能。

将光能直接转换成电能的过程确切地说应叫光伏效应。

不需要借助其它任何机械部件,光线中的能量被半导体器件的电子获得,于是就产生了电能。

这种把光能转换成为电能的能量转换器,就是太阳能电池。

太阳能电池也同晶体管一样,是由半导体组成的。

它的主要材料是硅,也有一些其他合金。

用于制造太阳能电池的高纯硅,要经过特殊的提纯处理制作。

太阳能电池只要受到阳光或灯光的照射,就能够把光能转变为电能,使电流从一方流向另一方,一般就可发出相当于所接收光能的10~20% 的电来。

光伏太阳能发电

光伏太阳能发电

光伏太阳能发电光伏太阳能发电1 光伏发电简介光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

这种技术的关键元件是太阳能电池。

太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短的优点。

光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。

不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。

理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。

2(光伏发电在国内目前发展现状中国的光伏发电市场目前主要用于边远地区农村电气化、通信和工业应用以及太阳能光伏商品,包括太阳能路灯、草坪灯、太阳能交通信号灯以及太阳能景观照明等。

由于成本很高,并网光伏发电目前还处于示范阶段。

2002年,国家计委启动“西部省区无电乡通电计划”,通过光伏发电和小型风力发电解决西部七省区(西藏、新疆、青海、甘肃、内蒙古、陕西和四川)700多个无电乡的用电问题,光伏用量达到15.5MWp。

该项目大大刺激了光伏工业,国内建起了几条太阳电池的封装线,使太阳电池的年生产量迅速达到100MWp(2002年当年产量20MWp)。

为了促进我国太阳能光伏发电产业的发展,实现可再生能源中长期规划提出的发展目标,2007年国家发改委启动了“大型并网光伏示范电站建设计划”,加快解决日照资源丰富的西部八省(内蒙古、云南、西藏、新疆、甘肃、青海、宁夏、陕西)无电乡用电问题,明确要求并网光伏示范电站建设规模应不小于5兆瓦,同时明确了大型并网光伏电站的上网电价通过招标确定。

光伏发电基本原理及入门知识

光伏发电基本原理及入门知识

光伏发电基本原理及入门知识
光伏发电是利用光伏效应转换太阳能为电能的一种技术。

光伏效应是指当光线照射到半导体材料上时,光子的能量会激发材料的电子跃迁,产生电压和电流。

光伏发电的基本原理如下:
1. 材料选择:光伏电池通常采用硅材料制成,硅根据材料纯度的不同,分为晶硅、多晶硅和非晶硅等几种。

2. pn结构:光伏电池的结构通常是由p型半导体和n型半导体组成的pn结构。

当光线照射到pn结构上时,会形成电场,将光生电子和空穴分离。

3. 光生电子的漂移:光生电子会被电场推动,向p型半导体的一侧流动,形成电流。

4. 电子流动的回路:电子流经过外部电路,导致电流的产生。

这个过程被称为光伏效应。

5. 发电性能:光伏电池的发电性能主要取决于光线强度、光谱和温度等因素。

入门知识:
1. 光伏电池种类:光伏电池的种类有单晶硅、多晶硅、非晶硅和铜铟镓硒等。

不同种类的光伏电池具有不同的优缺点,适用于不同的应用场景。

2. 光伏模块:多个光伏电池组合在一起形成光伏模块,常见的光伏模块有多晶硅和单晶硅。

3. 光伏阵列:多个光伏模块组合在一起形成光伏阵列,用于大型的光伏发电系统。

4. 发电系统:光伏发电系统包括光伏阵列、逆变器、电池和电网等组件,用于将光能转换为可用的电能。

5. 应用领域:光伏发电被广泛应用于家庭、企业和工业等场所,用于发电、供电和照明等用途。

光伏太阳能发电

光伏太阳能发电

基本原理
光伏发电,其基本原理就是“光伏效应”。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收, 电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。
光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为 电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就 会形成电流的回路。
1、地面应用时有间歇性和随机性,发电量与气候条件有关,在晚上或阴雨天就不能或很少发电; 2、能量密度较低,标准条件下,地面上接收到的太阳辐射强度为1000W/M^2。大规格使用时,需要占用较大 面积; 3、价格仍比较贵,为常规发电的3~15倍,初始投资高。
谢谢观看
光伏发电的主要原理是半导体的光电效应。硅原子有4个电子,如果在纯硅中掺入有5个电子的原子如磷原子, 就成为带负电的N型半导体;若在纯硅中掺入有3个电子的原子如硼原子,形成带正电的P型半导体。当P型和N型 结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,空穴由N极区往P极区移动, 电子电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或 110V,还 需要配置逆变器。各部分的作用为:
(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部 分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量 和成本将直接决定整个系统的质量和成本。
发电优缺点
优点
缺点
1、太阳能取之不尽,用之不竭,地球表面接受的太阳辐射能,能够满足全球能源需求的1万倍。只要在全球 4%沙漠上安装太阳能光伏系统,所发电力就可以满足全球的需要。太阳能发电安全可靠,不会遭受能源危机或燃 料市场不稳定的冲击;

太阳能光伏发电系统介绍

太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。

独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,整个系统造价很高;在有公共电网的地区,光伏发电系统与电网连接并网运行,省去蓄电池,不仅可以大幅度降低造价,而且具有更高的发电效率和更好的环保性能。

一套基本的太阳能发电系统是由太阳电池板、充电控制器、逆变器和蓄电池构成,下面对各部分的功能做一个简单的介绍:太阳电池板太阳电池板的作用是将太阳辐射能直接转换成直流电,供负载使用或存贮于蓄电池内备用。

一般根据用户需要,将若干太阳电池板按一定方式连接,组成太阳能电池方阵,再配上适当的支架及接线盒组成。

充电控制器在不同类型的光伏发电系统中,充电控制器不尽相同,其功能多少及复杂程度差别很大,这需根据系统的要求及重要程度来确定。

充电控制器主要由电子元器件、仪表、继电器、开关等组成。

在太阳发电系统中,充电控制器的基本作用是为蓄电池提供最佳的充电电流和电压,快速、平稳、高效的为蓄电池充电,并在充电过程中减少损耗、尽量延长蓄电池的使用寿命;同时保护蓄电池,避免过充电和过放电现象的发生。

如果用户使用直流负载,通过充电控制器还能为负载提供稳定的直流电(由于天气的原因,太阳电池方阵发出的直流电的电压和电流不是很稳定)。

逆变器逆变器的作用就是将太阳能电池方阵和蓄电池提供的低压直流电逆变成220伏交流电,供给交流负载使用。

蓄电池组蓄电池组是将太阳电池方阵发出直流电贮存起来供负载使用。

在光伏发电系统中,电池处于浮充放电状态,夏天日照量大,除了供给负 载用电外,还对蓄电池充电。

在冬天日照量少时,这部分贮存的电能逐步放出。

白天太阳能电池方阵给蓄电池充电,同时方阵还要给负载用电,晚上负载用电全部由 蓄电池供给。

因此,要求蓄电池的自放电要小,而且充电效率要高,同时还要考虑价格和使用是否方便等因素。

太阳能光伏发电技术

太阳能光伏发电技术太阳能光伏发电技术是一种利用太阳能转化为电能的可再生能源技术。

随着能源需求的增长和环境保护意识的提高,太阳能光伏发电技术在近年来得到了广泛的发展和应用。

一、太阳能光伏发电技术简介太阳能光伏发电技术是利用光伏效应将太阳能转化为电能。

光伏效应是指在PN结构的半导体材料中,光子的能量被电子吸收后,电子受到激发,从而形成电流。

在太阳能光伏电池中,通过将多个光伏电池组合在一起,形成光伏电池阵列,以提高发电功率和效率。

二、太阳能光伏发电技术的发展历程太阳能光伏发电技术的发展经历了几个重要的阶段。

首先是单晶硅太阳能电池的研制成功,这是光伏技术的里程碑。

之后,多晶硅太阳能电池的开发,使得太阳能光伏发电技术更加成熟和商业化。

近年来,薄膜太阳能电池和有机太阳能电池的研究取得了突破,为太阳能光伏发电技术的应用拓展提供了新的可能性。

三、太阳能光伏发电技术的应用领域1. 居民和商业建筑:太阳能光伏发电系统可以安装在屋顶上,为居民和商业建筑提供清洁能源供应。

不仅可以减少对传统能源的依赖,还能够降低能源成本,对环境友好。

2. 农业和农村地区:太阳能光伏发电技术可以用于灌溉系统、养殖场以及农村地区的电力供应。

这对于改善农村地区的能源供应和促进农业可持续发展具有重要意义。

3. 城市基础设施:大城市的公共交通、街道照明、交通信号灯等都可以采用太阳能光伏发电系统,减少对传统能源的消耗,并降低城市污染。

4. 远程地区和岛屿:在没有电力传输线路的远程地区和岛屿上,太阳能光伏发电技术可以成为独立电力系统的理想选择。

太阳能光伏电池板可以直接接收太阳辐射提供电能,并通过电池储存电能供应给用户。

五、太阳能光伏发电技术的优势和挑战太阳能光伏发电技术具有以下优势:1. 清洁环保:太阳能是一种无污染、可再生的能源,光伏发电不会产生二氧化碳等有害气体,对环境没有负面影响。

2. 长期可靠:太阳能光伏发电技术利用太阳能作为主要能源,太阳能的持续性保证了电力供应的稳定性和可靠性。

光伏发电基本介绍

光伏发电光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

这种技术的关键元件是太阳能电池。

光生伏特效应,是指光照时不均匀半导体或半导体与金属组合的部位间产生电位差的现象。

光伏发电基本原理当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层,界面的P型一侧带正电,N型一侧带负电。

这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。

N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。

达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是P-N结。

太阳光照在半导体P-N结上,形成新的空穴-电子对,在P-N结电场的作用下,空穴由P区流向N区,电子由N区流向P区,接通电路后就形成电流。

太阳能电池的基本结构就是一个大面积平面P-N结。

光伏发电发展历史早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。

这种现象后来被称为“光生伏特效应”,简称“光伏效应”。

1930年,肖特基提出Cu2O势垒的“光伏效应”理论。

同年,朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。

1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。

20世纪90年代后,光伏发电快速发展,到2006年,世界上已经建成了10多座兆瓦级光伏发电系统,6个兆瓦级的联网光伏电站。

世界光伏组件在1990年——2005年年平均增长率约15%。

20世纪90年代后期,发展更加迅速,1999年光伏组件生产达到200兆瓦。

商品化电池效率从10%~13%提高到13%~15%,生产规模从1~5兆瓦/年发展到5~25兆瓦/年,并正在向50兆瓦甚至100兆瓦扩大。

光伏组件的生产成本降到3美元/瓦以下。

光伏发电系统分类及组成光伏发电系统分为独立光伏发电系统和并网光伏发电系统。

光伏发电基础知识

本文由天才范贡献pdf文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

(一)光伏发电简介:光伏发电是利用光生伏打效应,使太阳光辐射能转变成电能的发电方式,是当今太阳光发电的主流。

太阳光发电是无需通过热过程直接将光能转变为电能的发电方式,它包括光伏发电、光化学发电、光感应发电和光生物发电。

光伏效应就是当物体受到光照射时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。

早在1839年,法国物理学家贝克勒尔意外地发现,用两片金属浸人溶液构成的伏打电池,在受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。

后来有人发现当太阳光或其他光照射半导体的PN结时,就会在PN结的两边出现电压,叫做光生电压,如果使PN结短路,就会产生电流。

人们把能够产生光生伏打效应的器件称为光伏器件。

由于半导体PN结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为太阳能电池,也称光电池或太阳电池。

太阳能电池是太阳能光伏发电的核心组件。

1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,由此诞生了将太阳光能转换为电能的实用光伏发电技术。

近年来太阳能电池的转换效率得到提高,光伏发电技术逐渐成熟。

现在比较成熟的光伏元件是硅元件, 分为晶体硅和非晶体硅。

晶体硅目前能规模生产的产品发电效率在13%一17%, 非晶体硅效率在7%一10%左右。

即1m 电池板在1kw太阳能量的照射下, 分别产生130 一170Wp和70一100Wp的电能(电池板发电能力以Wp来表示, 读作“峰瓦”, 表示电池板在标准条件下所产生的电力)。

由于晶体硅比非晶体硅的发电效率高, 所以目前市场上晶体硅太阳电池(包括单晶硅、多晶硅电池)占主导地位。

2(二)光伏发电的特点:(1)资源优势能源问题是世界众多焦点问题之首。

2006 年全球人口已经突破 65 亿,能源需求折合成发电装机容量为 14.5TW,2050 年全世界人口将达到 90 多亿,折合电力装机容量接近60TW。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能光伏发电基本介绍一、系统简介光伏发电系统(PV System)是将太阳能转换成电能的发电系统,利用光生伏特效应。

光伏发电系统分为独立太阳能光伏发电系统、并网太阳能光伏发电系统。

其中独立太阳能系统是独立运行的、不需要依赖电网。

配备了有储能作用的蓄电池,可保证系统功率稳定,能在光伏系统夜间不发电或阴雨天发电不足等情况下供给负载用电。

不管何种形式,工作原理均为光伏组件将光能转换成直流电,直流电在逆变器的作用下转变成交流电,最终实现用电、上网功能。

二、系统组成1、光伏组件光伏组件是整个发电系统里的核心部分,由光伏组件片或由激光切割机机或钢线切割机切割开的不同规格的光伏组件组合在一起构成。

由于单片光伏电池片的电流和电压都很小,所以要先串联获得高电压,再并联获得高电流,通过一个二极管(防止电流回输)输出,然后封装在一个不锈钢、铝或其他非金属边框上,安装好上面的玻璃及背面的背板、充入氮气、密封。

把光伏组件串联、并联组合起来,就成了光伏组件方阵,也叫光伏阵列。

工作原理:太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n 结电场的作用下,空穴由p区流向n区,电子由n区流向p区,接通电路后就形成电流。

其作用是将太阳能转化为电能,并送往蓄电池中存储起来,或推动负载工作。

组件类型:①单晶硅:光电转换率≈18%,最高可达到24%,是所有光伏组件中转换率最高的,一般采用钢化玻璃及防水树脂封装,坚固耐用,使用寿命一般可达25年。

②多晶硅:光电转换率≈14%,与单晶硅的制作工艺差不多,多晶硅的区别在于光电转换率更低、价格更低、寿命更短,但多晶硅材料制造简便、节约电耗,生产成本低,因此得到大力发展。

③非晶硅:光电转换率≈10%,与单晶硅和多晶硅的制作方法完全不同,是一种薄膜式太阳电池,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。

2、控制器(离网系统使用)光伏控制器是能自动防止蓄电池过充电和过放电的自动控制设备。

采用高速CPU微处理器和高精度A/D模数转换器,是一个微机数据采集和监测控制系统,既可快速实时采集光伏系统当前的工作状态,随时获得PV站的工作信息,又可详细积累PV 站的历史数据,为评估PV系统设计的合理性及检验系统部件质量的可靠性提供了准确而充分的依据,还具有串行通信数据传输功能,可将多个光伏系统子站进行集中管理和远距离控制。

3、逆变器逆变器是一种将光伏发电产生的直流电转换为交流电的装置,光伏逆变器是光伏阵列系统中重要的系统平衡之一,可以配合一般交流供电的设备使用。

太阳能逆变器有配合光伏阵列的特殊功能,例如最大功率点追踪及孤岛效应保护的机能。

太阳能逆变器分类①独立逆变器:用在独立系统,光伏阵列为电池充电,逆变器以电池的直流电压为能量来源。

许多独立逆变器也整合了电池充电器,可以用交流电源为电池充电。

一般这种逆变器不会接触到电网,因此也不需要孤岛效应保护机能。

②并网逆变器逆变器的输出电压可以回送到商用交流电源,因此输出弦波需要和电源的相位、频率及电压相同。

并网逆变器会有安全设计,若未连接到电源,会自动关闭输出。

若电网电源跳电,并网逆变器没有备存供电的机能。

4、蓄电池(并网系统不需要)蓄电池是光伏发电系统中储存电的设备。

目前采用的有铅酸免维护蓄电池、普通铅酸蓄电池,胶体蓄电池和碱性镍镉蓄电池四种,广泛使用的有铅酸免维护蓄电池和胶体蓄电池。

工作原理白天太阳光照射到光伏组件上,产生直流电压,把光能转换为电能,再传送给控制器,经过控制器的过充保护,将光伏组件传来的电输送到蓄电池里进行储存,以供需要时使用。

二、系统形式1.独立光伏发电系统(离网系统)2.集中并网光伏发电系统3.分布式并网光伏发电系统独立光伏发电系统主要组成部分1. 光伏阵列2. 光伏控制器3. 蓄电池组4. 逆变器5. 监控系统6. 负载集中式并网光伏发电系统主要组成部分1. 光伏阵列2. 并网逆变器3. 公共电网4. 监控系统分布式并网光伏发电系统主要组成部分1. 光伏阵列2. 直流汇流箱3. 直流配电柜4. 并网逆变器5. 交流配电柜6. 负载7. 公共电网8. 监控系统独立太阳能光伏发电是指太阳能光伏发电不与电网连接的发电方式,典型特征为需要用蓄电池来存储夜晚用电的能量。

独立太阳能光伏发电在民用范围内主要用于边远的乡村,如家庭系统、村级太阳能光伏电站;在工业范围内主要用于电讯、卫星广播电视、太阳能水泵,在具备风力发电和小水电的地区还可以组成混合发电系统,如风力发电/太阳能发电互补系统等。

并网太阳能光伏发电是指太阳能光伏发电连接到国家电网的发电的方式,成为电网的补充,典型特征为不需要蓄电池。

民用太阳能光伏发电多以家庭为单位,商业用途主要为企业、政府大楼、公共设施、安全设施、夜景美化景观照明系统等的供电,工业用途如太阳能农场。

分布式太阳能光伏发电又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。

其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接公共电网来调节。

并网型光伏发电系统具体可以分为以下四类:1.有逆流并网光伏发电系统当太阳能光伏系统发出的电能充裕时,可将剩余电能馈入公共电网,向电网供电(卖电);当太阳能光伏系统提供的电力不足时,由电网向负载供电(买电)。

由于向电网供电时与由电网供电的方向相反,所以这种系统被称为有逆流光伏发电系统。

2.无(防)逆流并网光伏发电系统无(防)逆流并网光伏发电系统是指光伏系统即使发电充裕也不向公共电网供电,但当太阳能光伏系统供电不足时,则由公共电网向负载供电。

3.切换型并网光伏发电系统所谓切换并网光伏发电系统,实际上是具有自动运行双向切换的功能。

一是当光伏发电系统因多云、阴雨天及自身故障等导致发电量不足时,切换器能自动切换到电网供电一侧,由电网向负载供电;二是当电网因为某种原因突然停电时,光伏系统可以自动切换使电网与光伏系统分离,成为独立光伏发电系统工作状态。

有些切换型光伏发电系统,还可以在需要时断开为一般负载的供电,接通对应急负载的供电。

一般切换型并网发电系统都带有储能装置。

4.有储能装置的并网光伏发电系统带有储能装置的光伏系统主动性较强,当电网出现停电、限电及故障时,可独立运行,正常向负载供电。

因此带有储能装置的并网光伏发电系统可以作为紧急通信电源、医疗设备、加油站、避难场所指示及照明等重要或应急负载的供电系统。

三、防逆流系统在光伏发电系统中,根据光伏并网系统是否允许通过配电变压器向主电网馈电,一般分为可逆流光伏并网发电系统和防逆流光伏并网发电系统。

正常光伏系统:将光伏组件直流电转变成交流电并入电网;防逆流的光伏系统:通过实时监测配电变压器低压侧出口电压、电流信号计算出输入电网的功率或接入点靠近电网侧的电能潮流方向,一旦发现逆变器向电网输入能量,立即通过RS485通讯的方式控制逆变器降低输出电流,减小光伏系统发电功率,从而达到光伏系统防逆流的功能。

光伏发的电仅供给就地负载使用,防止光伏系统发出的电送入电网。

▲PInv :逆变器的输出功率;PLoad :负载功率;PGrid :余电上网功率防逆流的作用就是PGrid的值限制为0。

PINV -PLoad≤01、为什么要防逆流防逆流产品的应用场景:☆因手续不全、产权等原因无法并网的项目;☆因无法申请并网或变压器容量受到限制的项目;☆具备一定消纳能力自发自用项目2、防逆流解决方案根据应用环境的不同,目前有两种防逆流方案,一是单机防逆流方案;二是多机防逆流方案。

(1)单机单相防逆流系统★注意:使用智能电表情况下,当电表与逆变器通讯断开时,逆变器会按照设置的“防逆流失效后功率”限制此时允许到电网功率;单机防逆流也可以采用配套的CT进行防逆流设置,需要考虑通讯线缆长度可否满足防逆流点至逆变器的距离,不够的情况下需要考虑延长。

一般情况都建议直接采用电表进行防逆流。

(2)单机三相防逆流系统a、按照电表100A最大电流计算,三相最大可接入69KW的负载,但必须考虑电网入户主线线缆线径与电表孔径压接问题;(3)单机三相防逆流电表+CT互感器CT的选择要点:1)P负载≤P光伏,以光伏逆变器的最大输出电流来选择CT;I光伏=N数量×Imax/台2)P负载>P光伏,以负载最大电流来选型CT变比;I负载=P负载÷380÷1.7323)目前最小的CT变比为250/5A,虽然定义为100kw以下功率段,但实际计算得到:Pmax=250*230*3=172.5KW理论上讲如果光伏侧或者负载侧的功率在100~172.5KW以内均可以选择此CT。

(4)多机防逆流系统针对较大的工商业项目,可采用多机防逆流箱方案。

多台逆变器通过485接口串联,防逆流箱采集逆变器、电表以及线路电流,再通过路由器,连接到监控后台。

通过远程操作,设置防逆流参数。

这种方式适合于100kW以上的项目,要求逆变器有485接口,安装现场有以太网。

三、防逆流注意事项(1)CT接入注意事项1.1 接入位置:3个CT和AC电压采样线需要放在负载和电网之间,实时检测并网接入点的功率,电表建议安装在电网的配电柜附近或单独电表箱中,CT和AC电压采样线放于配电柜中。

1.2 RS485接线:电表的RS485接口用于连接逆变器的RS485接口,注意事项:RS485线材建议选用双绞屏蔽线,屏蔽层两端接在逆变器和电表的GND引脚,并把逆变器GND引脚再接到大地,485屏蔽层要单点接地,走线和强电分开。

1.3 电流互感器接线:电流互感器两面有P1、P2的丝印,用来区分方向,P1侧靠近电网,P2侧靠近逆变器和负载。

相关文档
最新文档