数字信号处理大题(含答案)

合集下载

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案1.序列x(n)=cos(nπ/46)+sin(nπ/46)的周期为24.2.采样间隔T=0.02s,对连续信号xa(t)=cos(40πt)进行采样,采样所得的时域离散信号x(n)的周期为5.3.某线性移不变离散系统的单位抽样响应为h(n)=3nu(n),该系统是因果不稳定系统。

4.采样信号的采样频率为fs,采样周期为Ts,采样信号的频谱是原模拟信号频谱的周期函数,周期为fs,折叠频率为fs/2.5.关于序列的傅里叶变换X(ejω)说法中,正确的是X(ejω)关于ω是周期的,周期为2π。

6.已知序列x(n)=2δ(n-1)+δ(n)-δ(n+1),则X(ejω)ω=π的值为2.7.某序列的DFT表达式为X(k)=Σx(n)Wn=N-1nk,由此可看出,该序列的时域长度是N,变换后数字域上相邻两个频率样点之间的间隔为2π/M。

8.设实连续信号x(t)中含有频率40Hz的余弦信号,现用fs=120Hz的采样频率对其进行采样,并利用N=1024点DFT分析信号的频谱,得到频谱的谱峰出现在第341条谱线附近。

9.已知x(n)={1,2,3,4},x((n+1) mod 6)=1,则x((-n) mod6)={2,1,0,0,4,3}。

10.下列表示错误的是(N应为序列长度):(W_N(N-n)k-nkN/2=-W_Nn(k-N/2))2抽样点间的最大时间间隔T105s2fh在一个记录中的最小抽样点数N2fhT500个点。

3.(5分)简述FIR滤波器和IIR滤波器的区别。

答:FIR滤波器是一种只有前向通道的滤波器,其输出仅由输入和滤波器的系数决定,没有反馈路径。

而IIR滤波器则包含反馈路径,其输出不仅由输入和系数决定,还与滤波器的前一次输出有关。

因此,XXX滤波器具有线性相位和稳定性,而IIR滤波器则可能具有非线性相位和不稳定性。

4.(5分)简述FFT算法的基本思想和应用场景。

数字信号处理复习题带答案

数字信号处理复习题带答案

1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。

A、理想低通滤波器B、理想高通滤波器C、理想带通滤波器D、理想带阻滤波器2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__A、.h(n)=δ(n)+δ(n-10)B、h(n)=u(n)C、h(n)=u(n)-u(n-1)D、 h(n)=u(n)-u(n+1)3.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是_____A_____。

≥M ≤M≤2M ≥2M4.以下对双线性变换的描述中不正确的是__D_________。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对5、信号3(n)Acos(n)78xππ=-是否为周期信号,若是周期信号,周期为多少?A、周期N=37πB、无法判断C、非周期信号D、周期N=146、用窗函数设计FIR滤波器时,下列说法正确的是___a____。

A、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。

B、加大窗函数的长度可以增加主瓣与旁瓣的比例。

C、加大窗函数的长度可以减少主瓣与旁瓣的比例。

D、以上说法都不对。

7.令||()nx n a=,01,a n<<-∞≤≤∞,()[()]X Z Z x n=,则()X Z的收敛域为__________。

A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。

点FFT 所需乘法(复数乘法)次数为____D___。

A 、2N log NB 、NC 、2ND 、2log 2NN 9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。

数字信号处理试卷及答案_程培青(第三版)

数字信号处理试卷及答案_程培青(第三版)

数字信号处理 试卷一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。

错填、不填均无分。

1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n);输入为x (n-3)时,输出为 y(n-3)。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: f ≥2fs 。

3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 N 点等间隔 抽样 。

4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= ()70()nkNn X k x n W==∑ 。

5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_递归型_的。

6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 。

7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=_ 0_ _。

8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,级联型,并联型四种。

9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__主值序列 ,,而周期序列可以看成有限长序列的__周期序列__。

10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)= x((n+m))N R N (n) _。

二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 A 。

A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 B , 5点圆周卷积的长度是 。

A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 B 级蝶形运算 过程。

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。

①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(—n )的波形图。

②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

(完整word版)数字信号处理试卷及答案两份.docx

(完整word版)数字信号处理试卷及答案两份.docx

数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。

2.线性时不变系统的性质有律、律、律。

3.对x(n)R4(n)的Z 变换为,其收敛域为。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。

5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。

6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。

7.因果序列x(n) ,在Z→∞时,X(Z)=。

二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在括号。

1.若⼀模拟信号为带限,且对其抽样满⾜奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想⾼通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输⼊序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲⽤圆周卷积计算两者的线性卷积,则圆周卷积的长度⾄少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,⽽不发⽣时域混叠现象,则频域抽样点数N 需满⾜的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正⽐。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第⼆种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率fs的归一化,其值是连续Ω与数字频率ω之间的映射变换关系为Ω=2tan(ωT/2)。

用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=2fsarctan(ω/fs)。

2、双边序列z变换的收敛域形状为圆环或空集。

3、某序列的DFT表达式为X(k)=∑x(n)Wkn,由此可以看出,该序列时域的长度为N,变换后数字频域上相邻两个频率样点之间的间隔是2π/M。

4、线性时不变系统离散时间因果系统的系统函数为H(z)=(8(z^2-z-1))/(2z^2+5z+2),则系统的极点为z=1/2,z=-2;系统的稳定性为不稳定。

系统单位冲激响应h(n)的初值h(0)=4;终值h(∞)不存在。

5、如果序列x(n)是一长度为64点的有限长序列(0≤n≤63),序列h(n)是一长度为128点的有限长序列(0≤n≤127),记y(n)=x(n)*h(n)(线性卷积),则y(n)为64+128-1=191点的序列,如果采用基2FFT算法以快速卷积的方式实现线性卷积,则FFT的点数至少为256点。

6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=2fsarctan(ω/fs)。

7、当线性相位FIR数字滤波器满足偶对称条件时,其单位冲激响应h(n)满足的条件为h(n)=h(N-1-n),此时对应系统的频率响应H(ejω)=H(ω)ejφ(ω),则其对应的相位函数为φ(ω)=-N/2ω。

8、巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器是三种常用低通原型模拟滤波器。

二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。

(×)2、已知某离散时间系统为y(n)=T[x(n)]=x(5n+3),则该系统为线性时不变系统。

数字信号处理习题集大题与答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?14][]0[19===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理试题及答案

数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。

要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。

以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。

2. 解释频率抽样定理(Nyquist定理)。

3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。

请解释它们的区别,并举例说明各自应用的情况。

2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。

它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。

DSP可以实现信号的滤波、变换、编码、解码、增强等功能。

2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。

数字信号处理试卷及答案

数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。

–[ ] B. 采样频率必须是信号最高频率的两倍。

–[ ] C. 采样频率必须是信号最高频率的四倍。

–[ ] D. 采样频率必须大于信号最高频率的两倍。

2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。

–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。

–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。

–[ ] D. DFT和DTFT是完全相同的。

3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。

–[ ] B. 抽样频率必须是信号最高频率的两倍。

–[ ] C. 抽样频率必须是信号最高频率的四倍。

–[ ] D. 信号频率必须是抽样频率的两倍。

5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。

–[ ] B. 具有无限阶。

–[ ] C. 比其他类型的滤波器更加陡峭。

–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。

…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。

2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、计算题(每小题10分,共40分)1.已知11257()252z X z zz----=-+,求出对应X(z)的各种可能的序列表达式。

解: X (z )有两个极点:z 1=0.5,z 2=2, 因为收敛域总是以极点为界,因此收敛域有三种情况: |z |<0.5,0.5<|z |<2,2<|z |。

对应三种不同的原序列。

-----------3分0.521()R e s[(),0.5]R es[(),2](57)(57)(0.5)(2)2(0.5)(2)2(0.5)(2)1[3()2](1)2nnz z n nx n F z F z z zz zz z z z z z u n ==+=----=--------=-⋅+-- ------------3分11()3()()2(1)2n nx n u n u n +=⋅--- ------------------------2分11 ()32()2n nx n u n +⎡⎤⎛⎫=⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦------------------------2分2.用Z 变换法解下列差分方程:y (n )-0.9y (n -1)=0.05u (n ),n < 0时y (n )=0。

解:11111()0.9()0.0510.05()(10.9)(1)Y z Y z z zY z z z -----=-=-- ------------------------4分()110.050.05()R e s[(),0.9]R e s[(),1](0.9)0.10.1 0.50.90.5n n y n F z F z ++=+=+-=-⋅+ ------------------------3分n <0时, y (n )=0最后得到 y (n )=[-0.5 · (0.9)n +1+0.5]u (n ) ------------------------3分3.设计一个巴特沃斯低通滤波器, 要求其通带截止频率f p=12 kHz ,阻带截止频率f s=24 kHz ,f p 处最大衰减为3dB ,阻带最小衰减a s=15dB 。

求出该滤波器的系统函数H a(s ),并说明如何应用脉冲响应不变法转换为数字滤波器系统函数。

解:3s sp 3p2π241022π1210ΩλΩ⨯⨯===⨯⨯sp 5.548k ===≈sp splg lg 5.548 2.472lg lg 2k N λ=== ------------------------4分321()221G p p p p =+++c3c3223c cc()()|22sp H s G p s s s ΩΩΩΩΩ===+++ ------------------------3分式中Ωc=2πf c=2π×12×103=24π×103 rad/s由1()Ni i iA H s s s ==-∑、11()1i Nis Ti A H z ez-==-∑关系可得数字滤波器系统函数 ----3分4.用矩形窗设计线性相位低通FIR 滤波器,要求过渡带宽度不超过π/8 rad 。

希望逼近的理想低通滤波器频率响应函数为 j j d c e 0||(e )0||a c H ωωωωωωπ-⎧≤≤⎪=⎨<≤⎪⎩。

(1) 求出理想低通滤波器的单位脉冲响应h d(n );(2) 求出加矩形窗设计的低通FIR 滤波器的单位脉冲响应h (n )表达式, 确定α与N 之间的关系;(矩形窗过渡带宽度近似值:4π/N ) (3) 简述N 取奇数或偶数对滤波特性的影响。

解:(1)ccπj j j j d d πc 11()(e)ed eed 2π2πsin[()] π()nnh n H n n ωωωωαωωωωωαα----==-=-⎰⎰ ------------------------4分(2) 12N α-=,4ππ8N≤求解得到N ≥32c d sin[()]()()()()()N N n h n h n R n R n n ωαπα-=⋅=-c sin[()]101,π()20n N n N n nωααα--⎧≤≤-=⎪-=⎨⎪⎩其它 ------------------------3分(3) N 取奇数时,幅度特性函数H g(ω)关于ω=0,π,2π三点偶对称,可实现各类幅频特性; N 取偶数时,H g(ω)关于ω=π奇对称,即H g(π)=0,所以不能实现高通、 带阻和点阻滤波特性。

------------------------3分三、(15分)、已知某离散时间系统的差分方程为)1(2)()2(2)1(3)(-+=-+--n x n x n y n y n y系统初始状态为1)1(=-y ,2)2(=-y ,系统激励为)()3()(n u n x n =, 试求:(1)系统函数)(z H ,系统频率响应)(ωj e H 。

(2)系统的零输入响应)(n y zi 、零状态响应)(n y zs 和全响应)(n y 。

解:(1)系统函数为23223121)(22211+-+=+-+=---z z zzzzz z H 系统频率响应232)()(22+-+===ωωωωωωj j j j ez j e eee z H eH j解一:(2)对差分方程两端同时作z 变换得)(2)(])2()1()([2])1()([3)(1221z X z z X z y z y z Y z z y z Y z z Y ---+=-+-++-+-即:)(231)21(231)2(2)1(2)1(3)(211211z X zzz zzy y zy z Y ------+-+++------=上式中,第一项为零输入响应的z 域表示式,第二项为零状态响应的z 域表示式,将初始状态及激励的z 变换3)(-=z z z X 代入,得零输入响应、零状态响应的z 域表示式分别为23223121)(22211+-+-=+---=---z zzzz z zz Y zi ,3232323121)(22211-⋅+-+=-⋅+-+=---z z z zzzz z z zz z Y zs将)(),(z Y z Y zs zi 展开成部分分式之和,得2413232)(2--+-=+-+-=z z z zz zz Y zi ,32152812331232)(22-+--+-=-⋅+-+=z z z z z zzzzz Y zs即2413)(--+-=z z z z z Y zi321528123)(-+--+-=z zz z z zz Y zs对上两式分别取z 反变换,得零输入响应、零状态响应分别为)(])2(43[)(k k y kzi ε-=,)(])3(215)2(823[)(k k y kkzs ε+-=故系统全响应为:)()()(k y k y k y zs zi +=)(])3(215)2(1229[k kkε+-= 解二、(2)系统特征方程为0232=+-λλ,特征根为:11=λ,22=λ;故系统零输入响应形式为kzi c c k y )2()(21+=将初始条件1)1(=-y ,2)2(=-y 带入上式得⎪⎪⎩⎪⎪⎨⎧=+=-=+=-2)41()2(1)21()1(2121c c y c c y zi zi 解之得31=c ,42-=c ,故系统零输入响应为: kzi k y )2(43)(-=≥k系统零状态响应为3232323121)()()(22211-⋅+-+=-⋅+-+==---z z z zzzz z z zz z X z H z Y zs32152812331232)(22-+--+-=-⋅+-+=z z z z z z zzzz Y zs即321528123)(-+--+-=z zz z z zz Y zs对上式取z 反变换,得零状态响应为 )(])3(215)2(823[)(k k y kkzs ε+-=故系统全响应为)()()(k y k y k y zs zi +=)(])3(215)2(1229[k kkε+-=四、回答以下问题:(1) 画出按时域抽取4=N 点基FFT 2的信号流图。

(2) 利用流图计算4点序列)4,3,1,2()(=n x (3,2,1,0=n )的DFT 。

(3) 试写出利用FFT 计算IFFT 的步骤。

解:(1))0(x 1(x )2(x 3(x )0(X )1(X )2(X )3(Xkr001102W 02W 02W 12W kl001104W 04W 14W 234W 04W 04W 24W 34W4点按时间抽取FFT 流图 加权系数 (2)⎩⎨⎧-=-=-==+=+=112)2()0()1(532)2()0()0(00x x Q x x Q⎩⎨⎧-=-=-==+=+=341)3()1()1(541)3()1()0(11x x Q x x Q1055)0()0()0(10=+=+=Q Q X31)1()1()1(1140⋅+-=+=j Q W Q X55)0()0()2(1240=-=+=Q W Q XjQ W Q X 31)1()1()3(1340--=+=即: 3,2,1,0),31,0,31,10()(=--+-=k j j k X(3)1)对)(k X 取共轭,得)(k X *; 2)对)(k X *做N 点FFT ;3)对2)中结果取共轭并除以N 。

五、(12分)已知二阶巴特沃斯模拟低通原型滤波器的传递函数为1414.11)(2++=s s s H a试用双线性变换法设计一个数字低通滤波器,其3dB 截止频率为πω5.0=c rad ,写出数字滤波器的系统函数,并用正准型结构实现之。

(要预畸,设1=T ) 解:(1)预畸2)25.0arctan(2)2arctan(2===ΩπωTT cc(2)反归一划4828.241)2(414.1)2(1)()(22++=++==Ω=s ssss H s H cs s a(3) 双线性变换得数字滤波器4112828.2)112(44828.24)()(1121121121111211++-⋅++-=++==----+-=-+--=--zz zz s ss H z H zz s zz T s2212211716.01)21(2929.0344.2656.13)21(4------+++=+++=zzzzz z(4)用正准型结构实现(n x )(n y六、(12分)设有一FIR 数字滤波器,其单位冲激响应)(n h 如图1所示:试求:(1)该系统的频率响应)(ωj e H ;(2)如果记)()()(ωϕωωj j e H e H =,其中,)(ωH 为幅度函数(可以取负值),)(ωϕ为相位函数,试求)(ωH 与)(ωϕ;(3)判断该线性相位FIR 系统是何种类型的数字滤波器?(低通、高通、带通、带阻),说明你的判断依据。

相关文档
最新文档