第3章井眼轨迹的测量和计算
实钻井眼轨迹计算实例2

求解过程:(1)平均角法:
△L =1100-900=200m;
αc=
α1+α2 2
=
ቤተ መጻሕፍቲ ባይዱ
30+45 2
= 37.5°;Φc=
Φ1+Φ2 2
=
120+150 2
=135°;
△H= △Lcos αc= 200×cos 37.5°= 158.7(m);
△S = △Lsin αc= 200×sin 37.5°= 121.8(m);
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
� cos
Φ2 )
=
1 2
×
200×(sin
30°×cos
120°
+
sin
45°×cos
150°)
=
-
86.2(m)
△E =
1 2
△L(sin
α1
�
sin
Φ1
+
sin α2 � sin Φ2 )
=
1 2
×
200×(sin
30°
×
sin
120°
+
sin
45°×sin
150°)
=
78.7(m)
对比两种方法的计算结果,平衡正切法计算值略小于平均角法计算值。
△H = 12△L(cos α1 + cos α2 )
=
1 2
×
200×(cos
30°+
cos
45°)=157.3(m);
△S = 12△L(sin α1 + sin α2 )
= 12△L(sin 30° + sin 45°)=120.7(m);
井眼轨迹计算及预测模型

井眼轨迹计算及预测模型作者:陈涛许贺永李静嘉来源:《数码设计》2018年第04期摘要:基于空间圆弧性质的分段法计算井眼轨迹相对于传统的直线和圆弧类方法而言,不仅具有直线法的易理解性、计算简便性,同时也具备圆弧类方法的较高的计算精度。
通过将井眼轨迹离散测点间的弧线划分成尽可能多的逼近直线的小分段,然后将连续的小直线段在各方向上的增量进行叠加计算,即可得到精确的井眼轨迹。
在井眼轨迹的三维可视化描述中,分段法可实现轨迹的精细化处理,同时此方法可预测相同钻井措施下的下一段井眼轨迹在各方向上的位移量,从而指导现场钻井作业的高效进行。
关键词:井眼轨迹;误差分析;精细化模型;轨迹预测中图分类号:TE3 文献标识码:A 文章编号:1672-9129(2018)04-0160-04Abstract:Compared with the conventional methods to calculate the wellbore trajectory, Multi-interval Method, based on the properties of arc, is not just as easy to understand and calculate as the traditional linear methods, but also as accurate as the traditional arc methods. By dividing the wellbore trajectory between two adjacent discrete pointsinto short arcs as many as possible, so that the very short arc can be regarded as line. Then calculating the successive connected short lines, and summing up the increments of same direction gotten form every line, so we can get the calculated wellbore trajectory between the two adjacent testing points accurately. Meanwhile, the multi-interval method can achieve refining processing in the 3D visual description of wellbore trajectory,and predict the next wellbore trajectory in the same measure of drilling operation, so that it can help to operate the drilling efficiently in field.Keywords:wellbore trajectory; error analysis; fine model; prediction model.引言在石油工业中,随着井型的不断丰富,对井眼轨迹计算的准确性也提出了越来越高的要求。
井眼轨迹计算及预测模型

井眼轨迹计算及预测模型作者:陈涛许贺永李静嘉来源:《数码设计》2019年第02期摘要:基于空间圆弧性质的分段法计算井眼轨迹相对于传统的直线和圆弧类方法而言,不仅具有直线法的易理解性、计算简便性,同时也具备圆弧类方法的較高的计算精度。
通过将井眼轨迹离散测点间的弧线划分成尽可能多的逼近直线的小分段,然后将连续的小直线段在各方向上的增量进行叠加计算,即可得到精确的井眼轨迹。
在井眼轨迹的三维可视化描述中,分段法可实现轨迹的精细化处理,同时此方法可预测相同钻井措施下的下一段井眼轨迹在各方向上的位移量,从而指导现场钻井作业的高效进行。
关键词:井眼轨迹;误差分析;精细化模型;轨迹预测中图分类号:TE3 文献标识码:A 文章编号:1672-9129(2019)02-0124-05引言在石油工业中,随着井型的不断丰富,对井眼轨迹计算的准确性也提出了越来越高的要求。
由于井眼轨迹的计算依赖于离散的测试点,因此如何准确判断出测点间井眼轨迹走向也就成为其中的重点。
目前理论上已经有超过二十种井眼轨迹计算方法,而实际施工中常用的方法主要有平均角法、平衡正切法、校正平均角法、曲率半径法(圆柱螺线法)、最小曲率法、弦步法、自然参数法等,而由于直线或折线法本身的误差性,目前国内外普遍较为认可的方法主要有曲率半径法、最小曲率法、弦步法、自然参数法等这几种方法。
曲率半径法最开始是由Wilson等人于1968年提出以上下两测点与井眼轨迹相切、并在水平与垂直方向上的投影为圆弧的假设的计算方法,之后于1987年由郑基英等人提出以井眼轨迹为一段圆柱上的圆弧、且在上下两测点处与井眼轨迹垂直的圆柱螺线法,而这两种方法后被证实为同一方法。
最小曲率法是于1975年由Taylor等人提出的基于空间斜平面弧线假设的计算方法,利用圆弧曲率见圆弧转化为两条直线后再进行计算。
就目前应用而言,最小曲率法使用较多,但是在计算旋转导向与定向钻井的井眼轨迹时,误差依然较大。
井眼轨迹测量计算剖析PPT文档89页

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
井眼轨迹测量计算剖析
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
ENDΒιβλιοθήκη
直井定向井井斜控制

最大特点:柱面展平后,井眼长度和井斜角都保持不变。
优点:
凭着这两张图,即可了解井眼的空间形状,可以反映出井
身参数的真实值,作图容易,利用测斜资料算出每个测点 的坐标位置,即可作图。
H
§3-3 直井钻井技术
三、井斜的危害 1、使井眼偏离设计井位 ,将打 乱油气田开发的布井方案。 2、使井深发生误差,使所得的地 质资料不真实。 3、给钻井工作增加困难,甚至造 成井下复杂事故。 4、使钻柱磨损和折断或造成井壁 坍塌及键槽卡钻等事故。 5、下套管困难,套管居中,影响 固井质量。 6、影响采油及注水工作,常引起 油管和抽油杆的磨损和折断,甚至 造成严重的井下事故。 所以,井斜过大对油气田的勘探 和开发都有很大危害。如何控制井 斜是钻井工作的一个重要课题。
(2)层状地层对井斜的影响
钻头在倾斜的层状地层中钻进时,当钻至每个层面交界处时,此处岩层不能长时 间支持所加的钻压而趋向沿垂直层面发生破碎。在井眼上倾一侧的小斜台很容易 钻掉。相反,在井眼下倾一侧却残留一个小斜台;它就向小变向器作用一样,对 钻头施加一个横向力,把钻头推向上倾的一侧,从而引起井斜。
参数的真实值。
井眼轴线的图示法
二、柱面图表示法:
包括两张图:
一张是水平投影图,相当于俯视图,与投影图表示法相同; 一张是垂直剖面图(横坐标 P,纵坐标D或 H),与垂直投影
图不同,它不是在某个铅垂平面上的投影。
垂直剖面图的形成:实钻井眼是一条空间曲线,设想经过
这条曲线上的每一个点作一条铅垂线,所有这些铅垂线就构成 了一个曲面。
2、钻具原因
钻具导致井斜的主要因素是钻 具的倾斜和弯曲。一是引起钻头 倾斜,在井底形成不对称切削; 二是使钻头受到侧向力的作用, 迫使钻头进行侧向切削。 (1)导致钻具的倾斜和弯曲的 原因: ①由于钻具直径小于井眼直径 钻具和井眼之间有一定的间隙。 ②钻压使下部钻具受压弯曲。 弯曲钻柱将使靠近钻头的钻具弯 曲更大。 ③下入井内的钻具本来就是倾 斜和弯曲的。
第一节井眼轨迹的基本参数

第一节井眼轨迹的基本参数井眼轨迹的基本参数是石油钻井过程中的重要参考数据,能够描述井眼在地下的几何形状、位置和方向等信息。
井眼轨迹的基本参数包括偏位、井深、井斜角和方位角等。
一、偏位偏位是指井眼轨迹在地层中与井口位置的相对位置关系,可以分为水平偏位和垂直偏位。
水平偏位指在地平面上井眼轨迹与井口的横向距离,垂直偏位指井眼轨迹在地层中与井口的纵向距离。
水平偏位通常用平面坐标系来表示,如笛卡尔坐标系或极坐标系。
在笛卡尔坐标系中,水平偏位可以通过井口位置和井眼轨迹点的平面坐标差来计算。
而在极坐标系中,水平偏位可通过井口位置和井眼的方位角、井斜角来计算。
垂直偏位通常用垂直深度来表示,垂直深度是指井眼轨迹中一些点相对于井口的垂直距离。
垂直深度可以通过井眼轨迹的井深和垂直角来计算。
二、井深井深是指井眼轨迹点相对于井口的累计垂直距离。
在钻井过程中,井深通常用来衡量井眼轨迹的长度,以确定井筒的总长度。
井深可以通过测量井眼轨迹中每个点的垂直深度来计算。
要准确计算井深,需要确保测量的垂直深度具有一定的精度和准确性。
三、井斜角井斜角是指井眼轨迹与垂直方向之间的夹角,用来描述井眼轨迹的倾斜程度。
通常用角度来表示,单位为度。
井斜角可以通过测量井眼轨迹中两个点之间的水平偏位和垂直偏位来计算。
以两个点的方位角和高程差来计算井斜角。
四、方位角方位角是指井眼轨迹在平面坐标系中与参考方向之间的夹角,用来描述井眼轨迹的走向。
方位角通常用角度来表示,单位为度。
方位角的测量一般以正北方向为基准,顺时针增加。
方位角可以通过测量井眼轨迹中两个点之间的水平偏位来计算,或者通过测量井眼轨迹中每个点与基准方向之间的夹角来计算。
以上就是井眼轨迹的基本参数,包括偏位、井深、井斜角和方位角。
这些参数在石油钻井中起到重要的作用,能够帮助工程师确定井筒的几何形状和方向,为后续的钻井作业提供重要的参考数据。
项目五--井眼轨迹基本认知
井眼方位线:是指该点井眼方向线在水平面上的 投影。
(二)井眼轨迹计算参数
根据监测参数计算出来的其他井眼 轴线的几何、方位参数。 1.垂直井深D(垂深):井眼轨迹 上的点至井口所在水平面距离。垂 增ΔD。 2.水平投影长度LP(平长):井眼轨 迹上的点至井口的长度在水平面上 的投影长度,也是井深在水平面上 的投影长度,也称为水平长度。平 增ΔLP。 3.N坐标和E坐标:井眼轨迹上的 点在以井口为原点的水平面 坐标系 里的坐标值。增量分别为ΔN、ΔE 。
学习情境二 开钻准备 项 目三 井眼轨道与井眼轨迹
(一)井眼轨迹监测参数(测量参数、基本参数) 由监测仪器在井眼轨迹每个测点上测得的。
• 三个基本参数:井深、井斜角和井斜方位角。
1. 井深L(斜深、测深):井口(常以转盘面为基准)至测点的井 眼长度,单位米(m) ;以钻柱或电缆的长度来量测。井深既是测点的
注意:水平位移和水平长度是完 全不同的两个概念。在实钻的三 维井眼轨迹上,二者有着明显的 区别,但在二维轨道设计上是完 全相同的。
学习情境二 开钻准备 项 目五 井眼轨道与井眼轨迹
N坐标和E坐标 : 南北坐标轴,以 正北方向为正; 东西坐标轴,以 正东方向为正。
水平位移和水平长度是完全不同的概念。
度,量OB=ΔΦ;
(4)自B点向OA作垂线, 垂足为C点;
(5)按步骤(3)中的比例 (以长度代表角度的比例 ),量CA=Δα;
(6)连接A、B,并量A、 B长度,按步骤(3)中 的比例换算成角度, 此角 度即狗腿角γ。
第二套计算公式:
井眼曲率计算
假定测段是斜面圆弧曲线,则测段的狗腿角γ:
式中 : 若用半角和平均角形式表达,则可得:
定向井轨迹设计计算方法探析
1.井眼轨迹的基本概念1.1定向井的定义定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。
(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。
1.2井眼轨迹的基本参数所谓井眼轨迹,实指井眼轴线。
测斜:一口实钻井的井眼轴线乃是一条空间曲线。
为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。
测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。
这些井段被称为“测段”,这些点被称为“测点”。
基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。
这三个参数就是轨迹的基本参数。
井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。
井深是以钻柱或电缆的长度来量测。
井深既是测点的基本参数之一,又是表明测点位置的标志。
井深常以字母L表示,单位为米(m)。
井深的增量称为井段,以ΔL表示。
二测点之间的井段长度称为段长。
一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。
井深的增量总是下测点井深减去上测点井深。
井斜角:井眼轴线上每一点都有自己的井眼前进方向。
过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。
井眼方向线与重力线之间的夹角就是井斜角。
井斜角常以希腊字母α表示,单位为度(°)。
一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。
井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。
井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。
井斜方位角常以字母θ表示,单位为度(°)。
井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。
井眼轨迹测量计算剖析89页PPT
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
井眼轨迹控制技术讲义
井眼轨迹控制技术 (1)三、海洋定向井直井防斜技术 (12)四、海洋定向井预斜技术 (14)上图为某平台表层预斜轨迹与内排井直井段轨迹对比图 (15)五、造斜段、稳斜段、降斜段轨迹控制 (15)井眼轨迹控制技术井眼轨迹控制指:按照设计要求(地质设计、钻井工程设计、定向井设计等),利用定向井工艺、技术,完成定向井、水平井、水平分枝井等轨迹控制的过程。
井眼轨迹控制技术按照定向井的工艺过程,可分为直井段、预斜段、造斜段、增斜段、稳斜段、降斜段和扭方位井段等控制技术。
目前海洋定向井轨迹控制使用的是导向钻具,而在陆地油田有的还是用常规钻具组合(增斜、降斜、稳斜、降斜)实现井眼轨迹的控制。
定向井井眼轨迹控制考虑的因素及工作内容包括:1.造斜点的选择(1).选择地层均一,可钻性好的地层(2).KOP在前一层套管鞋以下50米,套以免损坏套管鞋(3).初始造斜的准确性非常重要(4).大于25度的定向井方位易控制2.造斜率选择(1).大斜度大位移定向井:2~3度/30米(2).一般丛式井3 ~5度/30米(3).造斜率要均匀3.降斜率(1).对于“S”井眼,通常降斜率1~2度/30米(2).如降斜后仍然要钻长的井段,降斜率还要小,以免键槽卡钻4.预测井眼轨迹要考虑的方面(1).底部钻具组合的受力分析(2).地层的因素:岩性、均匀性、走向、倾向、倾角(3).钻头结构、形状(4).侧向切削模型和轴向切削模型,确定侧向力5.钻具组合影响轨迹:底部钻具组合表现不同的效果,是由于不同的钻具有各自的力学特性,产生钻头侧向力的方向和大小不同。
(1).1#STB和2#STB的距离(2).(刚度)钻铤内外径、材料(3).扶正器尺寸(4).钻头类型和冠部形状6.井眼方向控制内容:(1).井斜角的控制:增斜、降斜、稳斜;(2).井斜方位角控制:增方位、降方位、稳方位;7.定向井轨迹控制的主要做法1)第一阶段:打好垂直井段(1).垂直井段打不好,将给造斜带来很大的困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章井眼轨迹的测量和计算
井眼轨迹的测量和计算是钻井工程中的重要内容,它对于确定井眼位置、计算井深、评估钻井过程中的偏差以及设计水平井等都有着重要的作用。
本章将重点介绍井眼轨迹的测量方法和计算原理。
1.井眼轨迹的测量方法
井眼轨迹的测量方法主要包括传统方法和现代方法两种。
(1)传统方法
传统方法主要是通过测量物理量来推算井眼轨迹,主要包括:
a.测深测点法:通过测量井深和钻头位置来确定井眼轨迹。
b.倾斜度测量法:通过倾斜度测量仪器来测量钻柱倾斜度,并根据倾
斜度和井深的关系来计算井眼轨迹。
c.方位角测量法:通过方位角测量仪器来测量钻柱方位角,并根据方
位角和井深的关系来计算井眼轨迹。
(2)现代方法
现代方法主要是通过仪器测量井眼轨迹,主要包括:
a.地磁测斜仪法:通过地磁测斜仪器来直接测量井眼的倾角和方位角,可以实时监测井眼的轨迹。
b.陀螺仪法:通过陀螺仪仪器来直接测量井眼的倾角和方位角,可以
实现高精度的井眼轨迹测量。
2.井眼轨迹的计算原理
井眼轨迹的计算主要依赖于测量的倾角和方位角,根据这两个参数可
以推算出井眼轨迹的路径。
(1)倾角的计算
倾角是指井眼的倾斜程度,可以通过倾斜度测量仪器或者陀螺仪仪器
来测量。
一般情况下,倾角的计算可采用如下公式:
倾角=arccos[(D2-D1)/(L2-L1)]
其中,D2和D1是两个测量点之间的井斜深度,L2和L1是两个测量
点之间的井深。
(2)方位角的计算
方位角是指井眼相对于参考方向的偏转角度,一般采用0°-360°的
范围来表示。
方位角的计算可采用如下公式:
方位角=方位角1+arcsin[(ΔYsin(方位角2-方位角1))/(L2-L1)]
其中,方位角1和方位角2是两个测量点处的方位角,ΔY是两个测
量点处的北西偏移量,L2和L1是两个测量点之间的井深。
3.井眼轨迹计算的应用
井眼轨迹计算在钻井工程中有着广泛的应用,主要包括以下几个方面:(1)确定井眼位置:通过井眼轨迹的测量和计算,可以准确确定井
眼所在的位置,为后续作业提供基础数据。
(2)计算井深:通过井眼轨迹的测量和计算,可以实时计算井眼深度,为钻井过程提供参考。
(3)评估钻井偏差:通过井眼轨迹的测量和计算,可以评估钻井过程中的偏差,及时调整钻控参数,避免出现副井等情况。
(4)设计水平井:通过井眼轨迹的测量和计算,可以得到井眼的倾角和方位角,为设计水平井提供参考。
总结:
井眼轨迹的测量和计算是钻井工程中的重要环节,传统方法通过测量物理量来推算,现代方法则通过仪器进行测量。
测量倾角和方位角后,可以通过相应的计算公式来求解井眼轨迹。
井眼轨迹的测量和计算在确定井眼位置、计算井深、评估钻井过程中的偏差以及设计水平井等方面都有着重要的应用。