四年级奥数练习题(相遇问题)

合集下载

四年级奥数行程试题及答案:相遇问题

四年级奥数行程试题及答案:相遇问题

四年级奥数行程试题及答案:相遇问题教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.这篇《四年级奥数行程试题及答案:相遇问题》,是小编特地为大家整理的,希望对大家有所帮助!知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

例题:1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。

请问A、B两地相距多少千米?A._0B.1_C.90D.802.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。

两城市相距()千米A._B._0C._0D.1_1.选择A。

解析:设两地相距_千米,由题可知,第一次相遇两车共走了_,第二次相遇两车共走了2_,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54_2=_-54+42,得出_=_0。

2.选择D。

解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52_2=1_千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(1_+96)÷2=1_千米。

四年级奥数行程试题及答案:相遇问题.到电脑,方便收藏和打印:。

四年级奥数行程问题相遇问题

四年级奥数行程问题相遇问题
1.速度和=总路程÷相遇时间 2.相遇时间=总路程÷速度和
1、一般相遇问题:如果两个物体是同时出发,那 么相遇路程就是两个物体原来相距的路程;如果两 个物体不是同时出发,那么它们的相遇路程等于两 个物体原来相距的路程减去其中一个物体先走的路 程;
2、中点相遇问题:相遇路程等于相遇地点与中 点距离的两倍;
第二次相遇
小明每分钟 25米
两人第二次相遇时 共走了多少米 ? 两人1 分钟可共走多少米?
第一次相遇
小红每分钟 25米
小红每分钟 25米
小明每分钟 25米
400×2÷(15+25) =800÷40 =20(分钟)
答:两人第二次迎面相遇的时间是起跑后的20分钟。
环形跑道上同时背向行驶,相遇几次,则相遇路程就是几个 全程,再根据相遇时间=相遇路程÷速度和求解。
(280-10)÷(50+40)×200 =270÷90×200 =3×200 =600(千米)
当两人相距10米时,
小杉和妹妹共同走的 路程280米吗?实际走 的路程需要多长时间 呢?
答:小狗一共跑了多少米
往返相遇问题的关键是,中间往返跑的时间就是相遇时间。
例4、在长400米的环形跑道上、小明、小红从同一点同时 相背起跑。小红每分钟跑15米,小明每分钟跑25米,两人 第二次迎面相遇的时间是起跑后的多少分钟 ?
=235÷5
=47(千米)
答:货车每小时行47千米.甲、乙两地相距550千米.
中点相遇问题的解题步骤是:
(1)求快的一共多走的路程 (距离中点的路程乘2); (2)求每小时快的多走的路程 (快的减慢的);
(3)求相遇时间(用第一步的结果除以第二步的结果 ); (4)求总路程。
例3、甲、乙两个车队同时从相隔330千米的两地相向而行。 甲队每小时行60千米,乙队每小时行50千米,同时,一个人 骑摩托车每小时行80千米在两车队中间往返联络。问:两车 队相遇时,摩托车行驶了多少千米 ?

四年级 奥数行程问题(相遇问题)

四年级 奥数行程问题(相遇问题)

2×2÷(12-10)×(12+10) =4÷2×22 =2×22 =44(千米)
答:两地相距44千米。
甲一共比乙多 走了多少千米?
2、两列火车同时从A、B两地同时开出。客车每小时行 60千米,货车每小时行驶54千米,几小时后客车在超过 中点18千米处与货车相遇?求A、B两地相距多少千米。
18×2÷(60-54) =36÷6 =6(小时)
行程问题
——
甲车
乙车
相遇问题是行程问题中的重要一部分,相遇问题的特 征是:两个物体从两地出发,相向而行,共同行一段路程, 直至相遇。这类问题的基本数量关系是:总路程=速度和 ×相遇时间,这里的“速度和”是指两个物体在单位时间 内共同行的路程,还可以推导出以下的数量关系:
1.速度和=总路程÷相遇时间 2.相遇时间=总路程÷速度和
本讲我们主要解决以下几种类型:
1、一般相遇问题:如果两个物体是同时出发,那 么相遇路程就是两个物体原来相距的路程;如果两 个物体不是同时出发,那么它们的相遇路程等于两 个物体原来相距的路程减去其中一个物体先走的路 程;
2、中点相遇问题:相遇路程等于相遇地点与中 点距离的两倍;
3、往返相遇问题:同时出发,同时停止,则中间往 返的时间就相遇时间;
A
客车每小时走120千米
(540-120×1)÷(120+90) =420÷210 =2(小时) 答:货车出发2小时后两车相遇。
B
货车每小时走90千米
客车和货车共 同走的路程是 540千米吗?
2、甲、乙两地相距102千米。赵、李二人骑自行车分别 从两地同时、相向出发,赵每小时行15千米,李每小时 行14千米。李在途中因修车敢误了1小时,然后继续前 进。他们经过多少小时相遇?

四年级奥数-相遇问题

四年级奥数-相遇问题

相遇问题(一)例1:A、B两地相距138 千米,甲、乙两人骑自行车分别从两地同时出发,相向而行。

甲每小时行13 千米,乙每小时行12 千米,乙在行进中因修车耽误了 1 小时,然后继续行进,与甲相遇。

求出发到相遇经过几小时例2:甲、乙两车分别从相距480 千米的两地同时相向而行, 5 小时后相遇。

已知甲车每小时比乙车快8 千米,相遇时乙车行了多少路程例3:A、B两地相距520千米,甲车从A地开出2小时后,乙车从B地相对开出,乙车开出后 5 小时后与甲车相遇,已知甲车比乙车每小时少行8千米。

问甲、乙两车每小时各行多少千米例 4 :某县举行长跑比赛,运动员跑到离起点 5 千米处要向起跑点返回,领先的运动员每分跑320 米,最后的运动员每分跑305 米。

起跑后多少分这两个运动员相遇相遇时离返回点有多少米练一练1.甲、乙两地相距450 千米,客车10 小时行完全程,货车15 小时行完全程,客车和货车同时从两地出发,相向而行,几小时后相遇相遇时两车各行了多少千米2.甲、乙两人从同一地点出发,背向而行,甲以每分钟60 米的速度先行,12分钟后乙才出发,乙行了20 分钟后与甲相距3220米,乙每分钟行多少米3.甲、乙两地相距180 千米,一人骑自行车从甲地出发每小时走15千米,另一人骑摩托车从乙地同时出发,两人相向而行,已知摩托车车速是自行车的3 倍,问多少小时后两人相遇4.两地相距320千米,甲车从一地开出 1 小时后,乙车从另一地相对开出,又经过 4 小时与甲车相遇,已知甲车每小时比乙车多行10 千米,问一车每小时行多少千米5.甲、乙二人从相距116千米的A、B两地出发相向而行,甲先出发 1 小时。

他们二人在乙出后的 4 小时相遇,又已知甲比乙每小时慢2千米,求甲、乙二人的速度。

6.A、B两地相距496千米,甲车从 A 地出发开往B地,每小时行32 千米,甲车开出半小时后,乙车从B地出发开往A地,它的速度是甲车的 2 倍,问乙车开出几小时后,两车相遇7.甲、乙两人骑自行车,分别从相距75 千米处同时相向而行,3 小时后两人相遇,已知甲骑车比一骑车每小时快 5 千米。

四年级数学相遇问题练习题

四年级数学相遇问题练习题

四年级数学相遇问题练习题1. 题目描述在一个操场上,小明和小红同时开始从同一地点出发,小明每分钟走1米,小红每分钟走2米。

他们沿着操场的边界同时行走,直到相遇为止。

求他们相遇的时间。

2. 解题思路为了解这个问题,我们可以使用相遇问题的公式来求解。

相遇问题的公式为:时间 = 距离 / 速度。

根据题目的描述,小明和小红走的距离是相同的,设为d米。

小明的速度为1米/分钟,小红的速度为2米/分钟。

将这些信息代入公式,可以得到时间的表达式:时间 = d / 1 = d / 2。

3. 解题过程由于小明和小红是同时出发的,所以他们到达相遇地点的时间是相同的。

设他们相遇的时间为t分钟,那么小明在t分钟内走过的距离为1 * t = t米,小红在t分钟内走过的距离为2 * t = 2t米。

根据题目中的描述,小明和小红走的距离是相同的,即t = d。

将这个等式代入前面的表达式,可以得到:t = d = d / 2。

4. 结果验证通过观察前面的等式,我们可以发现d在等式两边都存在,这意味着d的值可以随意设定。

为了简化计算,我们可以随意设定d的值为2。

代入等式,可以得到t = 2 = 2 / 2 = 1。

所以,小明和小红相遇的时间为1分钟。

5. 答案与解析小明和小红相遇的时间为1分钟。

6. 扩展问题我们可以进一步扩展这个问题,考虑在不同的速度和起点条件下,小明和小红相遇的时间是否会有所不同?请尝试进行分析和解答。

7. 总结通过这个问题的练习,我们学习了相遇问题的解题思路,并利用公式解答了题目中的具体问题。

相遇问题是数学中的经典题型,通过这些练习,我们可以提高自己的数学思维和解题能力。

希望同学们能够善于运用数学知识,解决生活中的实际问题。

高斯小学奥数四年级上册含答案第06讲_相遇问题

高斯小学奥数四年级上册含答案第06讲_相遇问题

第六讲相遇问题院子里两棵槐树之间的距离是10米,一只小猫从一棵槐树跑到10米外的另÷=米.一棵槐树需要5秒,那么小猫每秒跑1052行程问题是研究路程、时间和速度之间的关系.速度是衡量运动快慢的量.一般我们选用1个单位的时间,如用1小时或1分钟或1秒,用1个单位的时间内经过的路程的多少来表示速度的大小.因此,我们有了速度的定义:速度、时间和路程是行程问题中最重要的三个量,它们之间的关系如下:那么本文一开始提到的小猫跑过的距离10米就为路程,行程问题中常用的路程单位是米和千米.而小猫跑了5秒就是时间,时间的常用单位有秒、分钟和小时.那么小猫的速度就是2米/秒,行程问题中常用的速度单位有米/秒、米/分和千米/时.例题1甲、乙两地相距360千米,一辆汽车原计划用8小时从甲地到乙地,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生了故障,在途中停留了1小时.如果按照原定的时间到达乙地,汽车在后一半路程上每小时应该行驶多少千米?「分析」要计算速度,找清楚对应..的路程和时间即可.练习1兔子和乌龟赛跑,从A地跑到B地,全程共6000米.兔子计划5分钟跑完全程,结果比赛时兔子实际每分钟跑的路程要比计划的要少200米.那么兔子实际跑完全程用了多长时间?例题2A、B两地相距4800米,甲、乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两个人从出发到相遇需要多长时间?「分析」从出发到相遇,两人一共走了多远?他俩每分钟一共走多远呢?练习2阿呆和阿瓜从相距5000米的A、B两地同时出发,相向而行.阿呆每分钟走150米,阿瓜每分钟走350米,那么两人从出发到相遇需要多长时间?在两个运动物体在一条直线上运动,行进的方向可能相同,也可能相反.当它们行进方向相反时,如果它们面对面地接近,我们就称为“相向而行”;如果它们背对背地远离,我们就称为“相背而行”.两人之间的“相遇问题”既可以是“相向而行”也可以是“相背而行”,其中“相向而行”的相遇问题更常见一些.相遇问题关心的是两个人的“速度和”以及“路程和”.根据行程问题基本公式,我们可以类似得到相遇问题的三个基本公式:在使用上述公式的时侯一定要注意,两个运动物体必须同时行进.如果整个相遇过程中并不是同时行进的,这个公式就不能直接应用了,需要分段考虑.例题3一辆公共汽车和一辆小轿车同时从相距350千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行60千米,问:(1)2小时后两车相距多少千米?(2)出发几小时后两车第一次相距50千米?(3)出发几小时后两车第二次相距50千米?「分析」两辆车从两地出发相向而行,为什么会有两次相距50千米呢?画出线段图,试着找找相同时间内两辆车的路程和吧! 练习3A 、B 两地相距400千米,甲、乙两车分别从A 、B 同时出发,相向而行.甲车的速度为每小时60千米,乙车的速度为每小时40千米,请问:出发几小时后甲、乙两车第一次相距100千米?再过多长时间两车第二次相距100千米?对一些复杂的行程问题,单靠凭空想象已经无能为力了,这时就需要用一种形象的语言,把运动过程直观地表现出来,这就是我们解行程问题最得力的助手——线段图.画线段图时要特别注意:(1)专人专线:如果我们考虑的是两个或多个对象的运动,可以把它们的运动路线并排摆放,要注意不同人的运动路线不同;(2)同时性:如果运动时间分为几个阶段,那么应该在运动路线上表示相应的时刻.比如上图表示汽车A 与汽车B 分别从甲地、乙地同时出发,从开始①时刻到②时刻两车相遇,从②时刻到③时刻表示两车相遇后各自的运动情况.这样一来,我们就可以借助线段图把整个行程过程看得更清楚.画线段图是解行程问题最基本的方法.通过作图,可以将题目中的条件梳理清楚,还可以通过对图形的观察,挖掘出很多字面上看不出来的隐藏条件,进而找到解题的的突破口.汽车A汽车B例题4甲、乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地.2小时后另一辆汽车以每小时50千米的速度从乙地开往甲地.问:什么时候两车在途中相遇?「分析」两辆车不同时出发,可是不能直接用公式计算时间的.还是画出线段图,寻找相同时间内的路程和进行分析计算吧!练习4小王和小许从相距5000米的各自的家里出发,相向而行.小王每分钟走300米,小许每分钟走200米.小王出发10分钟后小许才从家出发,那么小王走了多长时间两人才相遇?例题5(1)小高跑400米用50秒,旗鱼每小时能游120千米.请问:谁的速度更快?(2)一般情况下,成年人跑100米要用14秒,河马奔跑的速度是40千米/时,河马跑的比人快吗?「分析」单位相同时,比较速度的大小即得谁快谁慢,这两小问中速度单位都没办法统一,该怎么去比较快慢呢?例题6甲、乙两人分别从A、B两地同时出发相向而行,已知甲每分钟走50米,乙走完全程要18分钟,出发3分钟后,甲、乙仍相距450米.请问:还要过多少分钟,甲、乙两人才能相遇?「分析」乙已经走了3分钟,那么走完剩下的路程就还需要多长时间?你能找到这段时间的路程吗?画出线段图分析吧!课堂内外作业1.一名长跑运动员以每秒4米的速度奔跑,那么5分钟后,他跑了多少米?2.甲、乙两车从相距700千米的两地同时出发,相向而行.甲车每小时行40千米,乙车每小时行60千米,出发几小时后两车相遇?3.甲、乙两车从两地同时出发,相向而行.甲车每小时行60千米,乙车每小时行75千米,出发2小时后两车相遇.请问两地相距多少千米?4.一只大老鼠和一只小老鼠分别从一根长1000厘米的直面条的两端开始吃.大老鼠每秒钟吃3厘米,小老鼠每秒钟吃1厘米,请问多长时间后,大老鼠和小老鼠第一次相距40厘米?5.甲、乙两城相距580千米,从甲城开往乙城的客车每小时行驶60千米.客车出发1小时后,货车从乙城开往甲城,每小时行70千米.货车开出多少小时后两车相遇?第六讲 相遇问题1.例题1答案:45千米/小时;60千米/小时.详解:(1)行驶路程是360千米,行驶时间是8小时,所以行驶速度是360845÷=千米/小时;(2)后一半路程是3602180÷=千米,行驶总时间仍然是8小时,前半程花了415+=小时,所以后半程行驶时间是3小时,后半程的速度是180360÷=千米/小时. 2.例题2答案:80分钟;30分钟详解:(1)甲行驶的路程是4800米,行驶的速度是60米/分钟,所以行驶的时间是48006080÷=分钟;(2)两人从出发到相遇行驶的路程和是4800米,行驶的速度和是60100160+=米/分钟,所以相遇时间是480016030÷=分钟. 3.例题3答案:150千米;3小时;4小时详解:(1)两车的速度和是4060100+=千米/小时,行驶时间是2小时,所以两车的路程和是1002200⨯=千米,两车相距350200150-=千米;(2)两车第一次相距50千米,两车还没有相遇,两车行驶的路程和是35050300-=千米,两车的速度和是4060100+=千米/小时,行驶时间是3001003÷=小时;(3)两车相遇后继续行驶,第二次相距50千米时,两车行驶的路程和是35050400+=千米,两车的速度和是4060100+=千米/小时,行驶时间是4001004÷=小时. 4.例题4 答案:13点详解:画行程图,如下图所示,“车1”提前出发2小时所行驶的路程是40280⨯=千米,剩下的路程是两辆汽车在相同时间内行驶的路程和,路程和是35080270-=千米,速度和是405090+=千米/小时,所以相遇时间是270903÷=小时,“车2”从10点出发,行驶了3小时,所以13点两车在途中相遇. 5.例题5答案:旗鱼快;河马比人快详解:(1)小高的速度是400508÷=米/秒,单位不一样,无法比较,所以把小高的速度变成米/小时,1小时小高跑8360028800⨯=米,速度即28800米/小时;旗鱼的速度是120000米/小时,所以旗鱼的速度更快;(2)成年人14秒跑100米,所以1秒跑7米多;河马1小时跑40千米,车1 40km /h车2 50km /h乙所以1秒跑11米多,所以河马跑的比人快;或者可以统一路程比速度:河马跑40000米用1小时即3600秒,而成人跑40000米需要144005600⨯=秒,路程相同,河马用时短,所以更快. 6.例题6 答案:5分钟详解:甲3分钟所行驶的路程是503150⨯=米,乙距离A 地还有150450600+=米.乙行驶全程要18分钟,已经行驶了3分钟,还需要行驶15分钟才能走完600米,所以乙的速度是6001540÷=米/分,450米是两人之后的路程和,速度和是504090+=米/分,所以还需要450905÷=分钟,甲、乙两人才能相遇.7.练习1 答案:6分钟详解:原计划5分钟跑完6000米,所以原计划速度为600051200÷=米/分,实际每分钟跑12002001000-=米,所以实际时间为600010006÷=分钟. 8.练习2 答案:10分钟详解:从出发到相遇,路程和为5000米,速度和为150350500+=米/分,所以时间为500050010÷=分钟. 9.练习3答案:3小时;5小时简答:(1)两车第一次相距100千米,两车还没有相遇,两车行驶的路程和是400100300-=千米,两车的速度和是4060100+=千米/小时,行驶时间是3001003÷=小时;(2)两车相遇后继续行驶,第二次相距100千米时,两车行驶的路程和是400100500+=千米,两车的速度和是4060100+=千米/小时,行驶时间是5001005÷=小时. 10. 练习4答案:14分钟简答:画行程图,如下图所示,小王提前出发10分钟所行驶的路程是300103000⨯=米,剩下的路程是两人在相同时间内行驶的路程和,路程和是500030002000-=米,速度和是300200500+=米/分,相遇时间是20005004÷=分钟,所以小王一共走了10414+=分钟两人才相遇. 11. 作业1甲50米/分 乙BA王 300许 200答案:1200米简答:45601200⨯⨯=米.注意单位换算.12.作业2答案:7小时简答:相遇时间为()÷+=小时.7004060713.作业3答案:270千米简答:两地距离即为两车路程和,为()+⨯=千米.6075227014.作业4答案:240秒简答:第一次相距40厘米,两只老鼠共同吃的面条长度和为100040960-=厘米,用时()÷+=秒.9603124015.作业5答案:4小时简答:客车1小时行60千米,货车出发时两车相距58060520-=千米,相遇时间为()÷+=小时.所以货车出发后4小时两车相遇了.52060704。

四年级奥数相遇问题

火车过桥问题火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和。

⑴火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和。

⑴火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度。

对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.【例1】列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?【解析】列车的速度是(250-210)÷(25-23)=20(米/秒),列车的车身长:20×25-250=250(米).列车与货车从相遇到相离的路程差为两车车长,根据路程差速度差追击时间,可得列车与货车从相遇到相离所用时间为:(250+320)÷(20-17)=190(秒).【例2】少先队员346人排成两路纵队去参观画展.队伍行进的速度是23米/分,前面两人都相距1米.现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟?【解析】把整个队伍的长度看成是“车长”,先求出“车长”.因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173-1)=172米.车长求出后,就可以求出过桥的时间了.解:队伍长:1×(346÷2—1),=1×(173-1),=172(米);过桥的时间: (702+172)÷23, =874÷23,=38(分钟).答:整个队伍从上桥到离桥共需要38分钟.点评:此题解答时,依据行程问题的一般数量关系:(车长+桥长)÷速度=上桥到离桥的时间.【例3】少先队员346人排成两路纵队去参观画展.队伍行进的速度是23米/分,前面两人都相距1米.现在队伍要通过一座长702米的桥,整个队伍从上桥到离桥共需要几分钟?【解析】把整个队伍的长度看成是“车长”,先求出“车长”.因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173-1)=172米.车长求出后,就可以求出过桥的时间了.解:队伍长:1×(346÷2—1), =1×(173-1),=172(米);过桥的时间:(702+172)÷23,=874÷23,=38(分钟).答:整个队伍从上桥到离桥共需要38分钟.点评:此题解答时,依据行程问题的一般数量关系:(车长+桥长)÷速度=上桥到离桥的时间.反向运动问题即在同一道路上的两个运动物体作方向相反的运动的问题.它又包括相遇问题和相背问题。

四年级奥数试题及答案:二次相遇问题

四年级奥数试题及答案:二次相遇问题
这篇《四年级奥数试题及答案:二次相遇问题》,是小编特地为大家整理的,希望对大家有所帮助!
甲乙两队学生从相隔_千米的两地同时出发相向而行.一个同学骑自行车以每小时_千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?
考点:相遇问题.
专题:行程问题.
分析:甲队每小时行5千米,乙对每小时行4千米,两地相距_千米,根据路程÷速度和=相遇时间可知,两人相遇时共行了_÷(4+5)=2小时,在这两小时中,这名骑自行车的学生始终在运动,所以两队相遇时,骑自行车的学生共行:__2=30千米.
解答:解:_÷(4+5)__
=_÷9__,
=30(千米).
答:两队相遇时,骑自行车的学生共行30千米.
点评:明确两队相遇时,骑自行车的学生始终在运动,然后根据时间_速度=所行路程求出骑自行车的学生行的路程是完成本题的关键.
四年级奥数试题及答案:二次相遇问题.到电脑,方便收藏和打印:。

2023年通用版小学数学四年级奥数第七讲《相遇问题》

第七讲 相遇问题
Lorem ipsum dolor sit amet, consectetur adipisicing elit.
例 1:甲、乙两人分别从相距 480 千米的两地同时出发,相向而行。甲每小时走
40 千米,乙每小时走 42 千米,5 小时后,两车相距多少千米?
能力冲浪 1
1、两辆汽车同时从甲、乙两城出发相向而行,快车每小时行 62 千米,慢车每小时 行 38 千米,6 小时后相遇,则甲、乙两城相距多少千米?
例 4:一列火车下午 1 时 30 分从甲站向乙站开出,每小时行 60 千米。1 小时后,
另一列火车以同样的速度从乙站向甲站开出,当天下午 6 时两车相遇。甲、乙两 站相距多少千米?
能力冲浪 4
1、甲、乙两人同时从 A、B 两地相向而行,甲骑自行车每小时行 16 千米,乙乘 汽车每小时行 60 千米。甲离出发点 64 千米处与乙相遇。A、B 两地相距多少千 米?
例 3:甲骑摩托车,乙骑自行车,同时从相距 126 千米的 A、B 两城出发、相向
而行。3 小时后,在离两城中心处 24 千米的地方,甲、乙两人相遇。求甲、乙 两人的速度各是多少?
能力冲浪 3
1、客车和货车同时从 A、B 两地相向开出,客车每小时行 60 千米,货车每小时 行 80 千米。两车在距中点 30 千米处相遇,求 A、B 两地相距多少千米?
2、两列火车同时分别从甲、乙两站相对开出,客车每小时行 109 千米,货车每 小时行 99 千米,5 小时后,两车还差 206 千米相遇。甲、乙两站相距多少千米?
3、甲、乙两车分别从相距 480 千米的 A、B 两城同时出发,相向而行。已知甲车 从 A 城到 B 城需要 6 小时,乙车从 B 城到 A 城需要 12 小时。两车出发多少小时 后相遇?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数练习题(相遇问题)
1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,
乙列车每小时行90千米,几小时两列火车相遇?

2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行
60千米,经过3小时相遇。两地相距多少千米?

3、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船
每小时航行22千米,乙船每小时航行多少千米?

4、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?

5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途
中因汽车故障甲车停了1小时,5小时后两车相遇。乙车每小时行多少千米?

6、甲、乙两地相距280千米,一辆汽车和一辆拖拉机同时分别从两地相对开出,
经过4小时两车相遇。已知汽车的速度是拖拉机速度的4倍,相遇时,汽车比拖
拉机多行多少千米?

7、姐妹俩同时从家里到少年宫,路程全长440米。妹妹步行每分钟行60米,姐
姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。这
时妹妹走了几分钟?
8、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲
站,每小时行驶60千 米,相遇时快车比慢车多走10千米。求甲、乙两站间的
距离是多少千米?

9、A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。各自达到目
的地后又立即返回,经过9小时后它们第二次相遇。已知甲车每小时行42千米,
乙车每小时行多少千米?

10、(2005+2006+2007+2008+2009+2010+2011)÷2008=_________
11、长征时期,一支红军部队的76位指战员要坐船过河,渡口处只有一条可载
16人的木船(无船工),那么要将这支部队全部送到河对岸,则用这条木船渡河
至少______次。

12、一只猴吃63只桃,第一天吃了一半加半只,以后每天吃前一天剩下的一半
再加半只,则_______天后桃子被吃完。

家庭作业:
1、甲、乙两人从相距36千米的两地相向而行。甲速度为每小时3千米,乙速度
为每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?

2、A、B两地相距600千米,两辆汽车同时从两地出发,相向而行。各自达到目
的地后又立即返回,经过12小时后它们第二次相遇。已知甲车每小时行65千米,
乙车每小时行多少千米?

相关文档
最新文档