椭圆及其性质
椭圆的基本性质

椭圆的基本性质椭圆是一种常见的几何图形,具有一些特定的性质。
在本文中,我们将介绍椭圆的基本概念以及与它相关的一些重要性质。
1. 椭圆的定义与特点椭圆是平面上到两个固定点的距离之和等于常数的点的集合。
这两个固定点称为焦点,常数称为椭圆的离心率。
椭圆的形状可以用离心率来描述,当离心率小于1时,椭圆更加接近于一个圆形;当离心率等于1时,椭圆退化为一个特殊的圆;当离心率大于1时,椭圆的形状变得更加扁平。
2. 椭圆的中心与轴椭圆的中心是指位于椭圆的中心点,它同时也是椭圆的两个轴(主轴和次轴)的交点。
主轴是通过椭圆的中心,并且与椭圆的两个焦点重合的直线段;次轴是与主轴垂直,并通过椭圆的中心的直线段。
主轴的长度称为椭圆的长轴,次轴的长度称为椭圆的短轴。
3. 椭圆的焦点和准线椭圆的焦点是椭圆上到两个固定点的距离之和等于常数的点,它们位于椭圆的主轴上,并且与椭圆的中心对称。
准线是与主轴平行,并且通过椭圆的焦点的直线段。
4. 椭圆的半长轴与半短轴椭圆的半长轴是指从椭圆的中心到椭圆的一条主轴上的一个顶点的距离,长度记为a。
半短轴是指从椭圆的中心到椭圆的一条次轴上的一个顶点的距离,长度记为b。
椭圆的离心率e与半长轴a和半短轴b之间存在着如下关系:e = √(1 - b^2/a^2)。
5. 椭圆的周长与面积椭圆的周长可以使用椭圆的长轴和短轴来计算,公式为:C =4aE(e),其中E(e)为椭圆的第二类完全椭圆积分,是一个与椭圆离心率有关的特殊函数。
椭圆的面积可以使用椭圆的长轴和短轴来计算,公式为:S = πab。
6. 椭圆的离心率与轨道的形状离心率可以帮助我们描述椭圆的形状,离心率越小,椭圆越接近于完美的圆形;离心率越大,椭圆越扁平。
在天文学中,行星的轨道通常是椭圆,其中太阳位于椭圆的一个焦点上。
例如,地球的轨道就是一个离心率接近于0.017的椭圆。
通过以上对椭圆的基本性质的介绍,我们对椭圆有了更深入的了解。
椭圆作为一种重要的几何图形,在数学、物理和工程等领域都有广泛的应用。
椭圆的标准方程及性质

椭圆的标准方程及性质
椭圆是平面上一个动点到两个定点的距离之和等于常数的点的轨迹。
在直角坐
标系中,椭圆的标准方程为:
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
其中a和b分别为椭圆的长半轴和短半轴。
下面我们将详细介绍椭圆的标准方
程及其性质。
首先,我们来看椭圆的标准方程。
椭圆的标准方程是一个二次方程,其中x和
y的平方项系数分别为a的平方和b的平方。
通过这个方程,我们可以轻松地确定
椭圆的长短半轴,进而画出椭圆的图形。
其次,让我们来了解一下椭圆的性质。
椭圆有许多独特的性质,这些性质在数
学和实际应用中都有着重要的作用。
首先,椭圆上任意一点到两个焦点的距离之和等于常数,这个性质被称为椭圆的定义性质。
其次,椭圆的长半轴和短半轴的长度决定了椭圆的形状,长短半轴之比称为离心率,离心率越接近于零,椭圆形状越接近于圆。
另外,椭圆还有对称性,关于x轴、y轴和原点对称的性质。
除此之外,
椭圆还有着许多其他有趣的性质,如切线与法线的性质、椭圆的焦点和直径等。
总之,椭圆的标准方程及性质是数学中一个重要的概念,它不仅有着丰富的数
学内涵,而且在物理、工程等领域都有着广泛的应用。
通过学习椭圆的标准方程及性质,我们可以更好地理解椭圆的几何特征,为解决实际问题提供数学工具和思路。
希望本文对您有所帮助,谢谢阅读!。
数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结

数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结
椭圆的焦距与长轴长之比叫做椭圆的离心率。
椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:。
5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。
利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,高考物理,从而求离心率或离心率的取值范围.。
椭圆的定义与性质

椭圆的定义与性质椭圆是数学中的一个重要几何概念,它在几何学、物理学、天文学等领域中都有广泛的应用。
本文将从椭圆的定义、性质以及应用等方面进行探讨。
一、椭圆的定义椭圆是平面上一组点的集合,这组点到两个给定点的距离之和等于常数的情况。
这两个给定点称为焦点,而常数称为离心率。
椭圆的定义可以用数学表达式表示为:对于平面上的点P(x, y),到焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 =2a。
其中,a为椭圆的半长轴。
二、椭圆的性质1. 焦点与半长轴的关系:椭圆的两个焦点到椭圆中心的距离之和等于2a,即F1C + F2C = 2a。
这表明椭圆的中心C位于焦点连线的中垂线上。
2. 离心率与形状的关系:离心率e是椭圆的一个重要参数,它决定了椭圆的形状。
当离心率e=0时,椭圆退化为一个圆;当0<e<1时,椭圆的形状趋近于圆;当e=1时,椭圆退化为一个抛物线;当e>1时,椭圆的形状趋近于双曲线。
3. 半短轴与半长轴的关系:椭圆的半长轴为a,半短轴为b,它们之间的关系可以用离心率e来表示,即e = √(1 - b²/a²)。
通过这个公式,我们可以计算出椭圆的半短轴。
4. 焦点与直径的关系:椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的直径。
这个性质在椭圆的应用中非常重要,例如在天文学中,可以用椭圆的性质来描述行星的轨道。
三、椭圆的应用1. 天文学中的椭圆轨道:行星绕太阳运动的轨道可以近似看作椭圆,根据椭圆的性质,可以计算出行星的轨道参数,如离心率、半长轴等。
2. 椭圆的光学性质:椭圆镜是一种常见的光学元件,它可以将入射光线聚焦到一个点上,用于望远镜、显微镜等光学仪器中。
3. 椭圆的工程应用:在建筑、桥梁等工程设计中,椭圆形状的结构可以提供更好的力学性能和美观效果。
总结:椭圆作为一种重要的数学概念,在几何学和应用数学中都有广泛的应用。
通过对椭圆的定义与性质的探讨,我们可以更好地理解椭圆的形状特征以及其在各个领域中的应用。
椭圆的性质及公式

椭圆的性质及公式
椭圆公式是(x-h)/a+(y-k)/b=1。
椭圆公式是(x-h)/a+(y-k)/b=1。
公式中a,b分别为长短轴长,中心点为(h,k),主轴平行于x轴。
椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。
公人人网面积公式nabS=Tab(其中a,b分别是椭圆的长半轴、短半轴的长),或S= (其中a,b分别是椭圆的长轴短椭圆周长计算公式
L=T(r+R)T为椭圆系数。
可以由r/R的值,查表找出系数T值r为椭圆短半径R为椭圆长半径。
椭圆周长定理椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或
S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).如果一条固定直线被甲乙两个封闭图形所截得的线段比都为k,那么甲面积是乙面积的k倍。
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。
其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆的经典知识总结

椭圆的经典知识总结椭圆是一个非常重要的几何形状,广泛应用于数学、物理和工程等领域。
下面将对椭圆的经典知识进行总结,涵盖椭圆的定义、性质以及一些常见的应用。
一、定义和性质:1.椭圆定义:椭圆是平面上到两个给定点(焦点)距离之和等于一定常数(长轴)的点的集合。
2.主要要素:(1)焦点:椭圆的两个焦点是确定椭圆形状的关键要素。
(2)长轴和短轴:椭圆的长轴是连接两个焦点的线段,短轴则是垂直于长轴并通过中心点的线段。
长轴的长度称为椭圆的主轴,短轴的长度则称为次轴。
(3)中心:椭圆的中心是指长轴和短轴的交点。
(4)半焦距:则是焦点到中心的距离。
(5)离心率:椭圆的离心率是一个用来衡量椭圆形状的值,定义为离心距(焦点到中心的距离)与主轴长度之比。
3.离心率和几何性质:(1)离心率的取值范围为0到1之间,当离心率为0时,椭圆退化为一个点;当离心率为1时,椭圆退化为一个抛物线。
(2)在椭圆上的任意一点,到焦点的距离之和等于常数,称为焦散性质。
(3)椭圆的两个焦点到任意一点的距离之差等于长轴的长度。
4.椭圆的方程:椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆中心点的坐标,a和b分别为长轴和短轴的长度,并且a>b。
二、椭圆的性质和应用:1.对称性:(1)椭圆具有对称性,关于中心对称,即中心点是对称中心。
(2)长轴和短轴也是椭圆的对称轴。
2.焦点与直线的关系:(1)焦点到椭圆上的任意一点的距离之和等于该点到椭圆的任意一条切线的长度。
(2)椭圆上的任意一条切线与焦点之间的两条线段的夹角相等。
3.切线和法线:(1)切线是与椭圆一点相切且垂直于切线的直线。
(2)法线是与切线垂直且通过椭圆上切点的直线。
4.面积公式:椭圆的面积为πab,其中a和b分别为长轴和短轴的长度。
5.椭圆的应用:(1)椭圆在天文学中被用来描述行星、彗星和其他天体的轨道。
(2)椭圆也广泛应用于工程学、建筑学和设计中,例如椭圆形的天花板和门窗等。
椭圆92条二级结论及其性质证明
椭圆二级结论大全1.122PF PF a+= 2.标准方程22221x y a b+= 3.111PF e d =<4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离.7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y ab -=.10.若000(,)P x y 在椭圆22221x y ab +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.11.若000(,)P x y 在椭圆22221x y ab +=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab +=.12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y ab +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y ab a b +=+.15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==.16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1)222211A B a b +=+;(2)2222L a A b B =+.17.给定椭圆1C :222222b x a y a b +=(a >b >0),2C :222222222()a b b x a y ab a b -+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222002222(,)a b a b x y a b a b---++.(ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+=(a >0,.b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1,PP 2斜率存在,记为k 1,k 2,则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=-⋅-.19.过椭圆22221x y ab +=(a >0,b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).20.椭圆22221x y ab +=(a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan 2F PF S b γ∆=,2(tan )2b P cγ±.21.若P 为椭圆22221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1,F 2是焦点,12PF F α∠=,21PF F β∠=,则tan tan 22a c a c αβ-=+.22.椭圆22221x y ab +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)Fc -,2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e -≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k-≤+.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+.29.设A,B 为椭圆2222(0,1)x y k k k a b+=>≠上两点,其直线AB 与椭圆22221x y a b +=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bx ay α=-,当0y =时,90α= .31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,c e a=);当l S <Φ时,有0max ()x =0min ()0x =.32.椭圆22221x y ab +=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b--+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆22221x y ab +=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin c e aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=.36.已知椭圆22221x y ab +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP ab +=+.39.设椭圆22221x y a b+=(a >b >0),M(m,o)或(o,m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m=(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q,A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y ab +=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y ab +=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PB b a PC PD b a ββαα⋅+=⋅+.44.已知椭圆22221x y ab +=(a >b >0),点P 为其上一点F 1,F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a yb x xc c y a y b x c ⎡⎤+±⎣⎦=+±).45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y ab +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1,y 1)是椭圆22221x y a b+=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d是原点到直线L 的距离,12,r r 分别是Aab =.48.已知椭圆22221x y a b +=(a >b >0)和2222x y a bλ+=(01λ<<),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知椭圆22221x y ab +=(a >b >0),A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x ,则22220a b a b x a a ---<<.50.设P 点是椭圆22221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2)122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a mb n a --∠=⇔=++.52.L 是经过椭圆22221x y a b+=(a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y ab +=(a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y ab +=(a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =时取等号).55.已知椭圆22221x y ab +=(a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a-≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=(a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2)2tan tan 1e αβ=-.(3)22222cot PAB a b S b aγ∆=-.57.设A 、B 是椭圆22221x y a b +=(a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、Bx 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y ab +=(a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠= ,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y ab +=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P的轨迹是双曲线22221x y ab -=.60.过椭圆22221x y a b+=(a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a +≤+≤+.61.到椭圆22221x y a b+=(a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b+=(a >b >0)的长轴两端点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222(()a b x y ee ±+=.63.到椭圆22221x y a b +=(a >b >0)的两准线和x 轴的交点的距离之比为a cb-(c 为半焦距)的动点的轨迹是姊妹圆22222()()a b x y ee ±+=(e 为离心率).64.已知P 是椭圆22221x y ab +=(a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b +=(a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b -+=(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2)以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()a b a b x y a ba b -+=++(0)x ≠.69.(,)P m n 是椭圆2222()1x a y ab -+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b+--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y ab +=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y ab +=≠.72.设点00(,)P x y 为椭圆22221x y a b +=(a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min 2()(||||)a b a y b x PA PB a -+⋅=.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆22221(0,0)x y a b a b +=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及b y x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90.过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P的轨迹方程是22221(0,0)x y a b a b +=>>.91.点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记OMQ ∆与ONR ∆的面积为12,S S ,则:122abS S +=.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记OMQ ∆与ONR ∆的面积为12,S S ,已知122ab S S +=,则P 的轨迹方程是22221(0,0)x y a b ab +=>>.椭圆性质92条证明1.椭圆第一定义。
椭圆的定义及几何性质(含答案)
椭圆的定义及其几何性质[要点梳理]1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质椭圆的常用性质(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.[基础自测]一、思考辨析判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)椭圆既是轴对称图形,又是中心对称图形.()(5)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(6)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()答案:(1)×(2)√(3)×(4)√(5)√(6)√二、小题查验1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5 C.8 D.10解析:D[由椭圆的定义知:|PF1|+|PF2|=2×5=10.]2.已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2 B.3 C.4 D.9解析:B[由题意知25-m2=16,解得m2=9,又m>0,所以m=3.]3.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A .13B .12C .22D .223解析:C [由椭圆x 2a 2+y 24=1知b 2=4,∴b =2,c =2,∴a =b 2+c 2=22.∴椭圆的离心率e =c a =222=22.]4.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( )A .x 215+y 210=1B .x 225+y 220=1C .x 210+y 215=1D .x 220+y 215=1解析:A [由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.]5.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是__________.解析:由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4. 答案:(3,4)∪(4,5) 三、大题突破1.分别求出满足下列条件的椭圆的标准方程.(1)与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3);(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且 与长轴垂直的直线恰过椭圆的一个焦点.解:(1)由题意,设所求椭圆的方程为x 24+y 23=t 1或y 24+x 23=t 2(t 1,t 2>0),因为椭圆过点(2,-3),所以t 1=224+(-3)23=2,或t 2=(-3)24+223=2512.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.(2)由于焦点的位置不确定,所以设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b>0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32,解得a =4,c =2,所以b 2=12. 故椭圆方程为x 216+y 212=1或y 216+x 212=1.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(2,1),且离心率为22.(1)求椭圆C 的方程;(2)设M ,N 是椭圆上的点,直线OM 与ON (O 为坐标原点)的斜率之积为-12.若动点P满足OP →=OM →+2ON →,求点P 的轨迹方程.解:(1)因为e =22,所以b 2a 2=12,又椭圆C 经过点(2,1),所以2a 2+1b 2=1,解得a 2=4,b 2=2,所以椭圆C 的方程为x 24+y 22=1.(2)设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由OP →=OM →+2ON →得x =x 1+2x 2,y =y 1+2y 2, 因为点M ,N 在椭圆x 24+y 22=1上,所以x 21+2y 21=4,x 22+2y 22=4,故x 2+2y 2=(x 21+4x 1x 2+4x 22)+2(y 21+4y 1y 2+4y 22)=(x 21+2y 21)+4(x 22+2y 22)+4(x 1x 2+2y 1y 2)=20+4(x 1x 2+2y 1y 2).设k OM ,k ON 分别为直线OM 与ON 的斜率,由题意知, k OM ·k ON =y 1y 2x 1x 2=-12,因此x 1x 2+2y 1y 2=0,所以x 2+2y 2=20,故点P 的轨迹方程为x 220+y 210=1.第1课时 椭圆的定义及简单几何性质[考点梳理]1.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1[解析] 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,∴b 2=48,故所求的轨迹方程为x 264+y 248=1.2.F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7B .74C .72D .752[解析] 由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8.∴|AF 1|=72,∴S △AF 1F 2=12×72×22×22=72.[答案] (1)D (2)C3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________. 解析:由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, ∵△ABF 2的周长为16,∴4a =16,∴a =4. 则|AF 1|+|AF 2|=2a =8, ∴|AF 2|=8-|AF 1|=8-3=5.4.已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =________.解析:设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 所以2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2,所以S △PF 1F 2=12r 1r 2=b 2=9,所以b =3. 答案:(1)5 (2)31.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1B .x 24+y 25=1C .x 25+y 2=1或x 24+y 25=1D .x 24+y 2=1[解析] C [直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.] 2.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的标准方程为( )A .x 28+y 26=1B .x 216+y 26=1C .x 24+y 22=1D .x 28+y 24=1[解析] A [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列, 则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12即a 2=8,b 2=6,故椭圆方程为x 28+y 26=1.] 3.已知F 1(-1,0),F 2(1,0)是椭圆的两个焦点,过F 1的直线l 交椭圆于M ,N 两点,若△MF 2N 的周长为8,则椭圆方程为( )A .x 24+y 23=1B .y 24+x 23=1C .x 216+y 215=1D .y 216+x 215=1解析:∵F 1(-1,0),F 2(1,0)是椭圆的两个焦点,∴c =1.根据椭圆的定义,得△MF 2N 的周长为4a =8,得a =2,∴b =3,∴椭圆方程为x 24+y 23=1,故选A .4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且与抛物线y 2=x 交于A ,B 两点,若△OAB (O 为坐标原点)的面积为22,则椭圆C 的方程为( )A .x 28+y 24=1B .x 22+y 2=1C .x 212+y 26=1D .x 212+y 28=1解析:∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=x 交于A ,B 两点∴设A (x ,x ),B (x ,-x ),则x x =22,解得x =2,∴A (2,2).由已知得⎩⎨⎧c a =22,4a 2+2b2=1,a 2=b 2+c 2,解得a =22,b =2.∴椭圆C 的方程为x 28+y 24=1,故选A .答案:(1)A (2)A[命题角度1] 椭圆的长轴、短轴、焦距1.已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5 解析:A [∵椭圆x 2m -2+y 210-m =1的长轴在x 轴上,∴⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.∵焦距为4,∴c 2=m -2-10+m =4,解得m =8.] [命题角度2] 椭圆的离心率2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14解析:D [如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1,由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2, tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4.所以e =c a =14.故选D .]2.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2-3 C .3-12D .3-1 解析:D [在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|FP 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1(a >b >0)中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D .]3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( ) A .[32,1) B .[31,22] C .[31,1) D .(0,31]解析:C [如图所示,∵线段PF 1的中垂线经过F 2, ∴|PF 2|=|F 1F 2|=2c , 即椭圆上存在一点P , 使得|PF 2|=2c .∴a -c ≤2c <a +c .∴e =c a ∈⎣⎡⎭⎫13,1.] [命题角度3] 与椭圆有关的最值或范围问题4.已知F 是椭圆C :x 29+y 25=1的左焦点,P 为C 上一点,A (1,34),则|P A |+|PF |的最小值为( )A .103B .113C .4D .133解析:D [设椭圆C :x 29+y 25=1的右焦点为F ′(2,0),F (-2,0),由A ⎝⎛⎭⎫1,43,则|AF ′|=53, 根据椭圆的定义可得|PF |+|PF ′|=2a =6,所以|P A |+|PF |=|P A |+6-|PF ′|≥6-|AF ′|=6-53=133.]5.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·P A →的最大值为( )A .1B .23C .4D .43解析:C [设P 点坐标为(x 0,y 0). 由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤3. 又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0), ∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=-2时,PF →·P A →取得最大值4.][课时训练]一、选择题1.椭圆x 216+y 225=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±9,0)D .(0,±9) 解析:B [根据椭圆方程可得焦点在y 轴上,且c 2=a 2-b 2=25-16=9,∴c =3,故焦点坐标为(0,±3).故选B.]2.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A .x 24+y 23=1B .x 28+y 26=1C .x 22+y 2=1D .x 24+y 2=1解析:A [依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.] 3.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .k >4B .k =4C .k <4D .0<k <4 解析:D [方程kx 2+4y 2=4k表示焦点在x 轴上的椭圆,即方程x 24+y 2k=1表示焦点在x轴上的椭圆,可得0<k <4,故选D.]4.若椭圆x 24+y 2m =1上一点到两焦点的距离之和为m -3,则此椭圆的离心率为( )A .53B .53或217C .217D .37或59解析:A [由题意得,2a =m -3>0,即m >3,若a 2=4,即a =2,则m -3=4,m =7>4,不合题意,因此a 2=m ,即a =m ,则2m =m -3,解得m =9,即a =3,c =m -4=5,所以椭圆离心率为e =53.故选A.] 5.设椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点E (0,t )(0<t <b ).已知动点P 在椭圆上,且点P ,E ,F 2不共线,若△PEF 2的周长的最小值为4b ,则椭圆C 的离心率为( ) A .32 B .22 C .12 D .33解析:A [△PEF 2的周长为|PE |+|PF 2|+|EF 2|=|PE |+2a -|PF 1|+|EF 2| =2a +|EF 2|+|PE |-|PF 1|≥2a +|EF 2|-|EF 1|=2a =4b ,∴e =c a =1-⎝⎛⎭⎫b a 2=1-14=32,故选A.] 6.在椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别是其左、右焦点,若|PF 1|=2|PF 2|,则该椭圆离 心率的取值范围是( )A .(31,1)B .[31,1)C .(0,31)D .(0,31] 解析:B [根据椭圆定义得|PF 1|+|PF 2|=2a ,将|PF 1|=2|PF 2|代入,得|PF 2|=2a 3,根据椭圆的几何性质,知|PF 2|≥a -c ,故2a 3≥a -c ,即a ≤3c ,故c a ≥13,即e ≥13,又e <1,故该椭圆离心率的取值范围是⎣⎡⎭⎫13,1,故选B.]7.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则 △PQF 周长的最小值是( )A .14B .16C .18D .20 解析:C [如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.]二、填空题8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线y 2=16x 的焦点相同,离心率为63,则此椭圆 的方程为______________.解析:由题意知抛物线y 2=16x 的焦点为(4,0),∴c =4, ∵e =c a =4a =63,∴a =26,∴b 2=a 2-c 2=8,∴椭圆的方程为x 224+y 28=1. 答案:x 224+y 28=1 9.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是____________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k>2, 解得0<k <1.答案:(0,1)10.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________. 解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8.答案:4或811.若椭圆x 2a 2+y 2b 2=1(a >b >0)上存在点P ,使得PF 1→·PF 2→=0,则椭圆离心率的取值范围是 ______________.解析:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°.设P (x 0,y 0)S △PF 1F 2=b 2=c |y 0|≤cb ,即b ≤c ,则a 2-c 2≤c 2,解得e 2≥12,即e ≥22,又在椭圆中0<e <1,故椭圆离心率的取值范围是⎣⎡⎭⎫22,1. 答案:⎣⎡⎭⎫22,1三、解答题12.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.13.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 依题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4, 所以椭圆的标准方程为x 225+y 216=1. (2)易知|y P |=4,又c =3,所以S △F 1PF 2=12|y P |×2c =12×4×6=12. 14.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,b 2a 2c =34, 2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a=-2(舍去). 故C 的离心率为12. (2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a=4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.② 将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1. 解得a =7,b 2=4a =28,故a =7,b =27.14.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.解:(1)由椭圆的定义知,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知得PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1. (2)如图,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义知,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,所以|PF 1|+|PQ |+|QF 1|=4a .于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎣⎢⎡⎦⎥⎤2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43及1+λ+1+λ2关于λ的单调性, 得3≤t <4,即14<1t ≤13,进而12<e 2≤59,即22<e ≤53.。
椭圆的基本概念与性质
椭圆的基本概念与性质椭圆是一种常见的几何图形,具有一些独特的性质和应用。
本文将介绍椭圆的基本概念以及一些相关的性质。
一、椭圆的定义与特点椭圆可以由一个固定点F(焦点)和到该点距离的总和等于常数2a (长轴)的点P的轨迹组成。
根据定义,椭圆上的任意点到焦点F和焦点到点到点P的距离之和等于常数2a。
椭圆还有一个参数b,称为短轴。
这两个参数构成了椭圆的两个辅助直径。
椭圆的中心是离焦点F和点P等距离的点O。
长轴和短轴的长度分别为2a和2b,其中2a>2b。
两个焦点F与F'关于中心O对称。
椭圆有一些特殊的性质:1. 椭圆上的任意点P到焦点的距离之和等于2a。
2. 椭圆的离心率e是一个介于0和1之间的数,定义为焦点到椭圆的中心的距离与长轴的一半的比值。
离心率决定了椭圆形状的“瘦胖程度”。
当e=0时,椭圆退化成一个点;当e=1时,椭圆退化成一个线段。
3. 椭圆的面积等于πab,其中π是圆周率。
二、椭圆的方程与坐标表示椭圆的方程可以通过焦点和离心率进行表示。
一般形式的椭圆方程为:(x^2/a^2) + (y^2/b^2) = 1其中,a和b分别表示长轴和短轴的长度。
椭圆的中心位于原点(0,0)处。
椭圆还可以通过参数方程进行表示:x = a * cosθy = b * sinθ其中,θ为参数,0 ≤ θ ≤ 2π。
三、椭圆的性质1. 焦点定理:椭圆上的任意点P到焦点F1和F2的距离之和等于2a。
2. 切线性质:椭圆上的任意点P处的切线斜率等于y/x的导数值,即m = (dy/dx) = -b^2 / a^2 * (x / y)。
3. 点到椭圆的距离:点(x1, y1)到椭圆(x^2/a^2) + (y^2/b^2) = 1的距离为d = sqrt[(x1^2/a^2) + (y1^2/b^2) - 1]。
4. 对称性:椭圆关于x轴和y轴对称。
5. 垂直角性质:椭圆上的任意点P处,直线PF1和PF2的夹角相等于直线PL1和PL2的夹角。
椭圆的性质大总结
椭圆的性质大总结椭圆是我们常见的几何图形之一,具有独特的形状和性质。
在数学和物理学中,椭圆的性质和应用非常广泛,涉及到许多重要的概念和定理。
在本文中,我们将对椭圆的各种性质进行总结,并探讨其在现实世界中的一些应用。
一、椭圆的定义和基本性质椭圆是一个平面上的闭合曲线,其定义为到两个特定点的距离之和等于常数的所有点的轨迹。
这两个特定点称为焦点,常数称为椭圆的离心率。
椭圆还具有以下基本性质:1. 椭圆是对称图形,具有中心对称性。
即椭圆上的任意一点关于中心对称点都存在。
2. 椭圆的两个焦点和中心在同一条直线上,并且中心距离两个焦点的距离等于a,即椭圆的长轴长度。
3. 椭圆的离心率满足0<e<1的条件。
当离心率e=0时,得到一个圆;当离心率e=1时,得到一个拋物线。
二、椭圆的参数方程与极坐标方程椭圆的一种常用参数方程可以表示为:x = a * cosθy = b * sinθ其中θ为参数,a和b为椭圆的长半轴和短半轴。
这个参数方程可以将椭圆表示为以原点为焦点的平面曲线。
而椭圆的极坐标方程可以表示为:r = (a * b) / √(a^2 * sin^2θ + b^2 * cos^2θ)其中r是距离原点的距离。
三、椭圆的周长和面积椭圆的周长可以通过积分计算得到,其公式为:C = 4a * E(e)其中E(e)是椭圆的柯西数,满足以下积分表达式:E(e) = ∫(0 to π/2) √(1 - e^2*sin^2θ) dθ椭圆的面积可以通过以下公式计算:S = π * a * b四、焦准线和近心点椭圆的焦准线是由椭圆上各点到两个焦点垂直于长轴的连线组成的直线。
这些焦准线在离心率不等于0的椭圆中可以证明是相交于椭圆的坐标轴的。
椭圆的近心点是离两个焦点距离之和与椭圆上任意一点到两个焦点距离之和等于常数的点。
近心点与椭圆的中心之间的距离等于离心率乘以椭圆的长轴长度。
五、椭圆的应用椭圆在生活和科学研究中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 椭圆 第1课时 椭圆及其性质 [最新考纲] 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.
1.椭圆的定义 平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: (1)若a>c,则集合P为椭圆. (2)若a=c,则集合P为线段. (3)若a<c,则集合P为空集. 2.椭圆的标准方程和几何性质
标准方程 x2a2+y2b2=1(a>b>0) y2a2+x2b2=1(a>b>0)
图形 范围 -a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a 对称性 对称轴:坐标轴;对称中心:原点 顶点坐标 A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) A1(0,-a),A2(0,a),B1(-b,0),
B2(b,0) 焦点坐标 F1(-c,0),F2(c,0) F1(0,-c),F2(0,c)
性半轴长 长半轴长为a,短半轴长为b 质 离心率 e=ca,且e∈(0,1)
a,b,c的关系 c2=a2-b2
[常用结论] 1.过椭圆焦点垂直于长轴的弦是最短的弦,长为2b2a,过焦点最长弦为长轴. 2.过原点最长弦为长轴长2a,最短弦为短轴长2b. 3.与椭圆x2a2+y2b2=1(a>b>0)有公共焦点的椭圆方程为x2a2+λ+y2b2+λ=1(λ>-b2). 4.焦点三角形:椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.若∠F1PF2=θ,则 (1)|PF1|+|PF2|=2a. (2)4c2=|PF1|2+|PF2|2-2|PF1||PF2|·cos θ. (3)S△PF1F2=12|PF1||PF2|·sin θ,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为bc. (4)焦点三角形的周长为2(a+c). (5)已知过焦点F1的弦AB,则△ABF2的周长为4a.
一、思考辨析(正确的打“√”,错误的打“×”) (1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆. ( ) (2)椭圆的离心率e越大,椭圆就越圆. ( )
(3)y2a2+x2b2=1(a≠b)表示焦点在y轴上的椭圆. ( )
(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等. ( ) [答案] (1)× (2)× (3)× (4)√ 二、教材改编
1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于( ) A.4 B.5 C.8 D.10 D [依椭圆的定义知:|PF1|+|PF2|=2×5=10.]
2.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则椭圆C的方程是( ) A.x23+y24=1 B.x24+y23=1
C.x24+y22=1 D.x24+y23=1 D [设椭圆的标准方程为x2a2+y2b2=1(a>b>0).
因为椭圆的一个焦点为F(1,0),离心率e=12,所以 c=1,ca=12,a2=b2+c2,解得
a2=4,
b2=3,
故椭圆C的标准方程为x24+y23=1.] 3.过点A(3,-2)且与椭圆x29+y24=1有相同焦点的椭圆的方程为( ) A.x215+y210=1 B.x225+y220=1 C.x210+y215=1 D.x220+y215=1 A [设所求椭圆的方程为x29+λ+y24+λ=1(λ>-4),则有99+λ+44+λ=1,解得λ=6,故所求椭圆方程为x215+y210=1.] 4.已知点P是椭圆x25+y24=1上y轴右侧的一点,且以点P及焦点F1,F2
为顶点的三角形的面积等于1,则点P的坐标为 .
152,1或15
2,-1 [设P(xP,yP),xP>0,由题意知|F1F2|=2.
则S△PF1F2=12×|F1F2|×|yP|=1,解得|yP|=1. 代入椭圆的方程,得x25+14=1,解得x=152, 因此点P的坐标为152,1或152,-1.]
考点1 椭圆的定义及应用 利用定义求方程、焦点三角形及最值的方法
求方程 通过对题设条件分析、转化后,能够明确动点P满足椭圆的定义,便可直接求解其轨迹方程
求焦点三角形 利用定义求焦点三角形的周长和面积.解决焦点三角形问题常利用椭圆的定义、正弦定理或余弦定理.其中|PF1|+|PF2|=2a两边平方是常用技巧
求最值 抓住|PF1|与|PF2|之和为定值,可联系到基本不等式求|PF1|·|PF2|的最值;利用定义|PF1|+|PF2|=2a转化或变形,借助三角形性质求最值 (1)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆
C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为( ) A.x264-y248=1 B.x248+y264=1 C.x248-y264=1 D.x264+y248=1 (2)如图,椭圆x2a2+y24=1(a>2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若∠F1PF2=60°,那么△PF1F2的面积为( )
A.233 B.332 C.334 D.433 (3)设F1,F2分别是椭圆x225+y216=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为 . (1)D (2)D (3)-5 [(1)设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且 2a=16,2c=8,故所求的轨迹方程为x264+y248=1. (2)由题意知|PF1|+|PF2|=2a,|F1F2|2=4a2-16, 由余弦定理得 4a2-16=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°, 即4a2-16=(|PF1|+|PF2|)2-3|PF1||PF2|, ∴|PF1||PF2|=163, ∴S△PF1F2=12|PF1||PF2|sin 60°=433,故选D. (3)由题意知,点M在椭圆外部,且|PF1|+|PF2|=10,则|PM|-|PF1|=|PM|-(10-|PF2|)=|PM|+|PF2|-10≥|F2M|-10.(当且仅当点P,M,F2三点共线时等号成立) 又F2(3,0),则|F2M|=6-32+4-02=5. ∴|PM|-|PF1|≥-5,即|PM|-|PF1|的最小值为-5.] 解答本例T(3)的关键是差式(|PM|-|PF1|)转化为和式|PM|+|PF2|-10.而转化的依据为|PF1|+|PF2|=2a. 1.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,
线段AB的垂直平分线交BF于P,则动点P的轨迹方程为( )
A.x212+y211=1 B.x236-y235=1 C.x23-y22=1 D.x23+y22=1 D [由题意得|PA|=|PB|, ∴|PA|+|PF|=|PB|+|PF|=r=23>|AF|=2, ∴点P的轨迹是以A,F为焦点的椭圆,且a=3,c=1,∴b=2, ∴动点P的轨迹方程为x23+y22=1,故选D.] 2.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为23,过F2的直线l交C于A,B两点,若△AF1B的周长为12,则椭圆C的标准
方程为( ) A.x23+y2=1 B.x23+y22=1
C.x29+y24=1 D.x29+y25=1 D [由椭圆的定义,知|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,所以△AF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=12,所以a=3.因为椭圆的离心率e=ca=23,所以c=2,所以b2=a2-c2=5,所以椭圆C的方程为x29+y25=1,故选D.]
3.已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b= .
3 [设|PF1|=r1,|PF2|=r2,则 r1+r2=2a,r21+r22=4c2, 所以2r1r2=(r1+r2)2-(r21+r22)=4a2-4c2=4b2,所以S△PF1F2=12r1r2=b2=9,所以b=3.] 考点2 椭圆的标准方程 求椭圆标准方程的两种方法 (1)定义法.根据椭圆的定义,确定a2,b2的值,结合焦点位置写出椭圆方程. (2)待定系数法.一般步骤如下:
(1)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,3)是椭圆上
一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为 . (2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(3,2),则椭圆的方程为 .
(3)[一题多解]与椭圆x24+y23=1有相同离心率且经过点P(2,-3)的椭圆方程为 .