六年级数学上册总复习知识点

合集下载

最新六年级上册数学复习知识点整理

最新六年级上册数学复习知识点整理

最新六年级上册数学复习知识点整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、活动方案、合同协议、条据文书、讲话致辞、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, activity plans, contract agreements, documents, speeches, experiences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新六年级上册数学复习知识点整理最新六年级上册数学复习知识点整理(8篇)还在为没有系统的上册数学复习知识点而发愁吗?在日常过程学习中,说起知识点,应该没有人不熟悉吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

六年级数学上册知识点总结

六年级数学上册知识点总结

六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。

其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。

下面将对这些知识点进行总结。

一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。

需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。

2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。

此外,还会接触到小数与整数之间的运算和关系。

3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。

此外,还需要掌握分数的化简和比较大小。

4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。

5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。

6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。

这部分内容主要锻炼学生的应用能力和问题解决能力。

二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。

2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。

3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。

学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。

三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。

人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点涵盖了数的认识、数的运算、空间与几何、统计等内容。

一、数的认识1. 分数与小数的转化及基本概念,包括百分数、小数的换算与比较。

2. 分数的基本性质,如通分、约分等。

二、数的运算1. 整数四则运算及运算定律,如加法交换律、结合律等。

2. 分数四则运算,包括分数乘除法及运算顺序。

三、空间与几何1. 图形的基本认识,如点、线、面等。

2. 平面图形的认识,如长方形、正方形、平行四边形等的基本性质和面积计算。

3. 立体图形的认识,如长方体、正方体等的基本性质和体积计算。

四、统计1. 统计表和统计图的基本知识,如条形图、折线图等。

2. 数据的收集与整理,包括平均数、中位数等统计量的计算及其应用。

五、综合应用1. 实际问题中的数学应用,如比例尺的应用等。

2. 数学与生活的联系,如解决生活中常见的数学问题等。

具体来说,本册的数学学习过程中还包括有理数的基础知识、乘方的基础运算和运算顺序等内容的学习和掌握。

在学习过程中要能够通过解决实际问题和计算题目来检验学生对数学知识的理解和运用能力。

通过不断的学习和实践,培养学生的空间想象力、计算能力和数学逻辑思维,从而提升学生的综合素质。

六、实际问题与数学建模在六年级上册的数学学习中,学生将接触到更多实际问题与数学建模的结合。

例如,通过解决生活中的购物问题、行程问题等,学生将学习如何运用数学知识和方法去解决实际问题。

此外,学生还将学习如何利用比例、百分数等数学知识去解决实际问题,并理解数学在现实生活中的广泛应用。

七、几何图形的变换本册还将涉及几何图形的变换,如平移、旋转等。

学生将学习这些基本变换的概念和性质,并通过实践操作和思考,培养空间想象能力和几何思维。

八、解题技巧和思维能力在学习过程中,学生需要掌握一定的解题技巧和思维能力。

如:对数学题目的分析和理解能力、逻辑思维能力和创造性思维能力等。

这些能力将有助于学生更好地理解和掌握数学知识,并能够更好地解决实际问题。

小学六年级数学总复习知识点归纳

小学六年级数学总复习知识点归纳

小学六年级数学总复习知识点归纳小学六年级数学总复习知识点归纳在日常的学习中,大家最熟悉的就是知识点吧?知识点在教育实践中,是指对某一个知识的泛称。

那么,都有哪些知识点呢?以下是店铺整理的小学六年级数学总复习知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学总复习知识点归纳篇1一、与圆有关的概念1、圆是由一条曲线围成的平面图形。

而长方形、梯形等都是由几条线段围成的平面图形把圆对折,再对折(对折2次)就能找到圆心。

因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。

半圆只有1条对称轴。

常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

2、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

3、圆内最长的线段是直径,圆规两脚之间的距离是半径。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。

(d=2r, r =d÷2)5、圆心决定圆的位置,半径决定圆的大小。

6、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母π表示。

π是一个无限不循环小数。

π=3.141592653……我们在计算时,一般保留两位小数,取它的近似值3.14。

π>3.147、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

8、几个直径和为n的圆的周长=直径为n的圆的周长几个直径和为n的圆的面积<直径为n的圆的周长(如图)略9.大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n×n倍)10、常用的3.14的倍数:3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 03.14×6=18.84 3.14×7=21.983.14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.503.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.3411、常用的平方数:11?=121 12?=144 13?=169 14?=196 15?=225 16?=256 17?=28918?=324 19?=361 20?=400二、圆的周长公式1、已知圆的半径(r),求圆的周长(c):C=2πr2、已知圆的直径(d),求圆的周长(c)C=πd3、已知圆的周长,求圆的半径:r=C÷π÷24、已知圆的周长,求圆的直径:d=C÷π5、求半圆的弧长,半圆的弧长等于圆周长的一半:半圆的弧长=πr 或者半圆的弧长=πd÷26、求半圆的周长,半圆的周长等于圆周长的一半加一条直径:C半圆= πr+2rC半圆= πd÷2+d7、车轮滚动一周前进的路程就是车轮的周长。

数学六年级上册人教版知识点总结

数学六年级上册人教版知识点总结

数学六年级上册人教版知识点总结一、分数乘法。

1. 分数乘法的意义。

- 分数乘整数:表示几个相同分数相加的简便运算。

例如:(2)/(3)×3表示3个(2)/(3)相加。

- 一个数乘分数:表示求这个数的几分之几是多少。

例如:5×(3)/(4)表示5的(3)/(4)是多少。

2. 分数乘法的计算方法。

- 分数乘整数:用分子乘整数的积作分子,分母不变。

能约分的先约分再计算。

例如:(2)/(3)×3=(2×3)/(3) = 2。

- 分数乘分数:用分子相乘的积作分子,分母相乘的积作分母。

例如:(2)/(5)×(3)/(4)=(2×3)/(5×4)=(3)/(10)。

3. 分数乘法的简便运算。

- 整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

- 例如:(1)/(2)×(3)/(5)×2=(1)/(2)×2×(3)/(5)=1×(3)/(5)=(3)/(5)(运用乘法交换律);- ((1)/(3)+(1)/(4))×12=(1)/(3)×12+(1)/(4)×12 = 4 + 3=7(运用乘法分配律)。

二、位置与方向(二)1. 确定位置的要素。

- 要确定一个物体的位置,需要知道观测点、方向和距离。

- 例如,以学校为观测点,图书馆在学校东偏北30^∘方向,距离学校500米处。

2. 描述路线图。

- 描述路线图时,要按照行走的路线,依次描述出每一段的方向和距离。

- 例如,从家出发,先向东走300米到超市,再从超市向南偏东45^∘方向走400米到公园。

三、分数除法。

1. 分数除法的意义。

- 分数除法是分数乘法的逆运算。

已知两个因数的积与其中一个因数,求另一个因数的运算。

例如:如果(2)/(3)× x=(4)/(9),那么x=(4)/(9)÷(2)/(3)。

人教版六年级上册数学总复习知识点和典型例题

人教版六年级上册数学总复习知识点和典型例题

小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。

一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。

也可以说成:小明在小华的 方向上,距离 。

相对位置:小明在小华的东偏北30°方向上,距离15米。

小华在小明的 方向上,距离 。

第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

(如:75×4表示4个75是多少或75的4倍是多少。

) 2、一个数乘分数的意义就是求这个数的几分之几是多少。

(如:6×53表示6的53是多少; 65×52表示65的52是多少。

) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。

(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。

5、乘积是1的两个数互为倒数。

1的倒数是1,0没有倒数。

[典型练习题](1)38 +38 +38 +38 =( )×( )=( ) (2)12个 56 是( );24的 23 是( )。

(3)边长 12 分米的正方形的周长是( )分米。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。

3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。

4、两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比 的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示。

六年级上册数学知识点总结

六年级上册数学知识点总结小学六年级上册数学知识点总结篇一1、理解比例的意义和基本性质,会解比例。

2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

7、比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:8、组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

11、正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④y=5x,y和x成正比例,因为:y÷x=5(一定)。

六年级数学总复习知识点整理(完整版)

六年级数学总复习知识点整理(完整版)很快就小升初了,数学应该怎样复习呢?小学数学下面整理了六年级数学总复习知识点整理,供你参考。

六年级数学总复习知识点整理第一章数和数的运算一概念1 整数的意义自然数和0都是整数。

2 自然数我们在数物体的时候,用来表示物体个数的1,2,3 叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12 其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

六年级数学总复习知识点归纳

六年级数学总复习知识点归纳一、常用的数量关系式1、每份数乘以份数等于总数,总数除以每份数等于份数,总数除以份数等于每份数。

2、1倍数乘以倍数等于几倍数,几倍数除以1倍数等于倍数,几倍数除以倍数等于1倍数。

3、速度乘以时间等于路程,路程除以速度等于时间,路程除以时间等于速度。

4、单价乘以数量等于总价,总价除以单价等于数量,总价除以数量等于单价。

5、工作效率乘以工作时间等于工作总量,工作总量除以工作效率等于工作时间,工作总量除以工作时间等于工作效率。

6、加数加上加数等于和,和减去一个加数等于另一个加数。

7、被减数减去减数等于差,被减数减去差等于减数,差加上减数等于被减数。

8、因数乘以因数等于积,积除以一个因数等于另一个因数。

9、被除数除以除数等于商,被除数除以商等于除数,商乘以除数等于被除数。

二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长等于边长乘以4,C=4a,面积等于边长的平方,S=a×a。

2、正方体(V:体积 a:棱长)表面积等于棱长的平方乘以6,S表=a×a×6,体积等于棱长的立方,V=a×a×a。

3、长方形(C:周长 S:面积 a:边长)周长等于长和宽的和乘以2,C=2(a+b),面积等于长乘以宽,S=ab。

4、长方体(V:体积 s:面积 a:长 b:宽 h:高)表面积等于长乘以宽加上长乘以高加上宽乘以高的和乘以2,S=2(ab+ah+bh),体积等于长乘以宽乘以高,V=abh。

5、三角形(s:面积 a:底 h:高)面积等于底乘以高除以2,s=ah÷2,三角形的高等于面积乘以2除以底,三角形的底等于面积乘以2除以高。

6、平行四边形(s:面积 a:底 h:高)面积等于底乘以高,s=ah。

7、梯形(s:面积 a:上底 b:下底 h:高)面积等于上底加下底的和乘以高除以2,s=(a+b)×h÷2.8、圆形(S:面积 C:周长 d:直径 r:半径)周长等于直径乘以π或者半径乘以2π,C=πd=2πr,面积等于半径的平方乘以π,S=πr²。

六年级上册数学知识点总结

六年级上册数学知识点总结六年级上册数学知识总结1圆一、圆的特征1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。

圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。

在同一个圆里,有无数条半径,且所有的半径都相等。

半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。

在同一个圆里,有无数条直径,且所有的直径都相等。

直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。

同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π = 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册总复习知识点
一、分数乘法
(一)分数乘整数
1,分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。

2,计算方法:分母不变,分子乘整数。

(二)分数乘分数
1,意义:表示求一个分数的几分之几是多少。

2,计算方法:分子乘分子,分母乘分母,能约分的要先约分。

(三)分数乘加、乘减混合运算及简算
1,分数混合运算的运算顺序与整数混合运算的运算顺序相同。

2,整数乘法的运算定律对于分数乘法也同样适用。

3,合理地应用运算定律,可以使一些分数计算变得简便。

(四)求一个数的几分之几是多少的问题
解题规律:一个数×几分之几
二,分数除法
(一)倒数的认识
1,乘积是1的两个数互为倒数。

2,求一个数(0除外)的倒数的方法:把这个数的分子、分母调换位置;也可以用1除以这个数来求。

(二)分数除法
1,意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2,计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。

(三)已知一个数的几分之几是多少,求这个数的问题的解法
1,除法:多少÷一个数
2,方程解法:设这个数为x,几分之几× x = 多少
(四)已知比一个数多(或少)几分之几的数是多少,求这个数的问题的解法
1,组合除法:多少÷(1±几分之几)
2,方程解法:设这个数为x, x ±几分之几× x = 多少
三,比
(一)比的意义
1,比的意义:两个数相除又叫两个数的比。

2,比与分数、除法的关系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商。

3,求比值:用比的前项除以后项,求出商。

(二)比的基本性质
1,比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2,化简比:把两个数的比化成最简单的整数比。

(三)比的应用
按比例分配问题的解题方法:先求出总份数,再求各部分量占总量的几分之几,最后求出各部分量。

四,百分数
(一)百分数的意义
表示一个数是另一个数的百分之几的数叫百分数。

百分数也叫百分率或百分比。

(二)百分数与小数的互化
“添右去左”
(三)百分数与分数的互化
1,百分数化成分数的方法:先把百分数改写成分母是100的分数,再化成最简分数。

2,分数化成百分数的方法:一般是先把分数化成小数,再把小数化成百分数,除不尽的小数要保留三位小数,百分数的分子保留一位小数。

有的分数,当分母是100的因数或倍数时,可把分数先改写成分母是100的分数,再改写成百分数。

(四)百分数解决问题
1,例1,课本p84,求命中率等常见的百分率
方法:命中率= ×100%,成活率= ×100%,
发芽率= ×100%,出勤率= ×100%
合格率= ×100%,及格率= ×100%
2,例2,课本p85,求一个数的百分之几是多少(此类型对分数同样适用)
单位“1”:一个数。

方法:一个数×百分之几
3,例3,课本p89,求一个数比另一个数多(或少)百分之几,即求增减幅度。

(此类型对分数同样适用)
单位“1”:另一个数。

方法:差量÷单位“1”
4,例4,课本p90,求比一个数多(或少)百分之几的数是多少。

(此类型对分数同样适用)
单位“1”:一个数。

方法:一个数±一个数×百分之几
一个数×(1±百分之几)
5,例5,课本p90,求一个数连续两次增减变化。

单位“1”:有两个。

方法:有设数法和设1法。

即:一个数×(1±百分之几)×(1±百分之几)
6,补充例1,已知一个数的百分之几是多少,求这个数?(此类型对分数同样适用)单位“1”:一个数。

方法(简单除法):多少÷百分之几
7,补充例2,已知两个数,求一个数是(或占或相当于)另一个数的百分之几?(此类型对分数同样适用)
单位“1”:另一个数。

方法:一个数÷另一个数。

8,补充例3,已知比一个数多(或少)百分之几的数是多少,求这个数?(此类型对分数同样适用)
单位“1”:一个数。

方法(组合除法):多少÷(1±百分之几)
方程解法:设这个数为x,x ±百分之几×x = 多少
领域二图形与几何
一位置与方向
(一)在平面图上标出物体位置的方法
1、面对地图,上北下南,左西右东。

2、在平面图上标出物体位置的方法,先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。

(二)描述简单的行走路线
每走一步,都要说清从哪里走(观测点),向哪个方向走多远的距离。

(三)绘制简单的路线图
1、确定方向标和单位长度。

2、以起点为观测点,从起点出发,根据描述确定所走的方向和距离。

每走一段路,都要重新确定新的观测点。

二圆
(一)圆的各部分名称
1、圆心:圆中心的一点叫做圆心,一般用字母O表示。

2、半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。

3、直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

(二)圆的特征
1、圆具有对称性,圆是轴对称图形,圆有无数条对称轴。

2、在同圆或等圆中,半径的长度都相等,直径的长度都相等,直径的长度是半径长度的2倍。

d=2r,或r= 。

(三)用圆规画圆的方法
1、先把圆规的两脚分开,定好两脚间的距离;
2、再把带有针尖的一只脚固定在一点上;
3、然后把装有铅笔的一只脚旋转一周,就画出一个圆。

(四)圆的周长
1、圆的周长:围成圆的曲线的长叫做圆的周长。

一般用字母C表示。

2、圆周率:圆的周长和它的直径的比值叫做圆周率。

一般用字母π表示。

3、圆的周长计算公式:C=πd,或C=2πr。

4、半圆的周长=πr+d或=πr+2r
5、圆周长的一半=πr
(五)圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积,一般用字母S表示。

2、圆的面积计算公式:S=πr2
3、圆的面积公式的推导:把一个圆切成若干偶数等分,拼成一个长方形。

拼成的长方形的长等于圆周长的一半,宽等于圆的半径。

4、半圆的面积=πr2÷2
(六)圆环的面积
1、圆环的面积公式:S环=πR2-πr2或S环=π(R2-r2)
2、扇环的面积= (πR2-πr2)
(七)扇形
1、弧:圆上任意两点之间的部分叫做弧。

2、扇形:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

3、圆心角:由两条半径组成,顶点在圆心的角叫做圆心角。

4、扇形的大小与这个扇形的圆心角和半径的大小有关。

5、扇形的面积= πr2(n取决于扇形的圆心角的大小)
(八)圆的半径、直径、周长、面积的变化
1、一个圆的半径扩大或缩小多少倍,它的直径、周长也扩大或缩小多少倍,而它的面积扩大或缩小平方倍。

2、两个圆的半径之比=直径之比=周长之比,面积之比=半径之比的平方倍。

(九)求图形阴影部分的面积的方法
加法、减法、切割法、平移法。

扇形统计图
(一)扇形统计图的表示方法
用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。

(二)扇形统计图的特点
可以很清楚的表示出各部分数量与总数之间的关系。

(三)解决问题
1、能读懂扇形统计图,并能根据统计图的信息,应用百分数知识解决问题。

2、基本公式:总数×百分比=部分,变化公式:总数=部分÷百分比,百分比=部分÷总数
3、画扇形统计图的步骤
(1)把一个圆平均分成100份或10份的扇形。

(2)在相应的扇形内填上部分的名称和百分数
(四)选择合适的统计图
1、常用的统计图有条形统计图、折线统计图和扇形统计图。

2、用统计图表示数据时,要根据实际情况选择合适的统计图:
(1)要表示出各种数量的多少时,选用条形统计图;
(2)既要表示出各种数量的多少,又要表示出数量增减变化的情况时,选用折线统计图;
(3)要表示出各部分数量与总数之间的关系时,选用扇形统计图。

相关文档
最新文档