高效率音频功率放大器的设计

高效率音频功率放大器的设计
高效率音频功率放大器的设计

高效率音频功率放大器的设计

摘要:由于D类音频功率放大器与传统的模拟功放相比,具有体积小,效率高,低失真,大功率的特点所以具有广阔的发展前景。D类音频功率放大器通常包括PWM脉宽调制器、高速开关功率放大器、低通滤波器这三个部分,加上信号转换、测量显示以及短路保护部分就构成了一个完整的音频功率放大系统。本文先简单介绍音频功率放大器的发展进程及该领域内的新兴技术,接着介绍音响和放大器的基本知识,由此提出设计的任务与要求,主要对系统内各组成部分电路的设计方案进行论证与比较,并择优选用D类音频功率放大器以及其它部分电路完成本系统的设计工作,最后对该系统进行实验测试,结果显示达到了设计要求。

关键词:D类音频功率放大器 PWM脉宽调制器高速开关功率放大器低通滤波器

Abstract: Compared with the traditional analog amplifier, the class-D amplifier possesses large developmental foreground. The reason is the later has several characters, such as small volume, high efficiency, low distortion and high power. the class-D amplifier usually includes the PWM pulse width modulator, the high-speed switch power amplifier and the low-pass filter. Besides of it, an integrity of the audio frequency power enlarge system still includes signal conversion part, measure manifestation part and short-circuit proof part. This text first introduces the amplifier’s development progress and those newly arisen techniques in the realm of the amplifier in brief, introduces the basic knowledge of the sound box and amplifier second. After these, it puts forward the mission and request of this design, and Mainly carry on argument to each circuit’s design project of which constitute the system. Then compare them , choosing the class-D amplifier and other optimization parts, and complete the design work of the system. finally, start an experiment and test to that system, the result come to the design’s request.

Keywords:the Class-D amplifier the PWM pulse width modulator the high-speed switch power amplifier the low-pass filter

引言

低失真、大功率、高效率是对功率放大器提出的普遍要求。模拟功率放大器通过采用优质元件,复杂的补偿电路,深负反馈,使失真变得很小,但大功率和高效率一直没有很好的解决。工作在开关状态下的D类功率放大器却很容易实现大功率、高效率、低失真。

传统的音频功放工作时,直接对模拟信号进行放大,工作期间必须工作于线性放大区,功率耗散较大,虽然采用推挽输出,减小了功率器件的承受功率,但在较大功率情况下,仍然对功率器件构成极大威胁。功率输出受到限制。此外,模拟功率放大器还存在以下的缺点:电路复杂,成本高,常常需要设计复杂的补偿电路和过流、过压、过热等保护电路,体积较大,电路复杂;效率低,输出功率不可能做的很大。

D类开关音频功率放大器的工作基于PWM模式:将音频信号与采样频率比较,经自然采样,得到脉冲宽度与音频信号幅度成正比例变化的PWM 波,然后经过驱动电路,加到功率放大器的栅极,控制功率器件的开关,实现放大,将放大的PWM送入滤波器,则还原为音频信号。

D类功率放大器工作于开关状态,理论效率可达100%,实际运用也可达80%~95%。功率器件的耗散功率小,产生热量少,可以大大减小散热器的尺寸,连续输出功率很高,而且不会引入非线性失真。

近年来,国外的公司对D类功率放大器进行了研究和开发,提出了一些方案,但是尚存在较大的难度,由于采用PWM方式,为了提高音质,降低失真,必须提高调制频率,但是在较高频率下,会产生一定的问题,同时,D类功率放大器对器件的要求较高,不利于降低成本。但由于其效率极高,目前得到了广泛的应用。

1 音频功率放大器的发展进程及新兴技术

1.1 音频功率放大器的发展进程

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。下面就简要说明一下音频功率放大器的发展进程。

1.1.1 早期的晶体管功放

半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V~40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。下面讲一下晶体管功放的发展和互调失真。

随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路。最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是准互补电路,通过小功率硅管与一只大功率的NPN硅管复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。到了六十年代末,大功率的PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些璀璨夺目的名机,如JBL的SA600,Marantz互补对称电路Model15等等尽管电子管的

拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。

瞬态互调失真的提出是认识上的一次飞跃,七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真(Transient lntermodulation)及其测量方法的提出。1963年,芬兰Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。这一现象引起了当时同一工厂的Otala博士的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至1971年,Otala博士及其研究小组就TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。

TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发TIM失真。严重的TIM失真反映在听感上类似高频交选失真,而较弱的TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。

1.1.2 性能较好的模拟功放

接下来的很长一段时间,A类、B类以及AB类音频功率放大器(额定输出功率)一直占据“统治”地位,其发展经历了这样几个过程:所用器件从电子管、晶体管到集成电路过程;电路组成从单管到推挽过程;电路形式从变压器输出到OTL、OCL、BTL形式过程。其基本类型是模拟音频功率放大器,它的最大缺点是效率太低。A类音频功率放大器的最高工作效率为50%,B类音频功率放大器的最高工作效率为78.5%,AB类音频功率放大器的工作效率介于二者之间。无论A类、B类、AB类音频功率放大

器,当它们的输出功率小于额定输出功率时,效率就会明显降低,播放动态的语言、音乐时平均工作效率只有30%左右。音频功率放大器的效率低就意味着工作时有相当多的电能转化为热能,也就是说,这些类型的音频功率放大器要有足够大的散热器。例如,一台额定功率为1000W的A类音频功率放大器需要2000W的散热器,一台额定功率为1000W的B类音频功率放大器需要400W的散热器,因此,A类、B类和AB类音频功率放大器效率低、体积大。人们曾努力想设计出效率高的音频放大器,如C类音频功率放大器,但其最高效率仍然不大于78.5%,因此,模拟音频功率放大器效率低,所需散热器大、笨重,不符合当前节能环保的要求,在这种情况下,D类音频功率放大器应运而生了。

1.1.3 D类音频功率放大器

为了提高音频功率放大器的效率,科研技术人员做了大量的研究试验工作。早些时候人们已经论证了D类音频功率放大器的存在,它不同于模拟音频功率放大器,是全新的结构方式,是PWM开关脉冲功率放大器。D 类音频功率放大器通常由PWM调制器、高速开关功率放大器、低通滤波器这三部分组成,工作过程简单描述如下:输入的音频信号经PWM调制器变成与其幅度相对应脉宽的高频率PWM脉冲信号,经驱动电路驱动高速开关功率放大器对信号进行放大,放大后的信号经低通滤波器进行滤波后带动扬声器。由于D类音频功率放大器只工作在开关状态,其功率开关器件要么导通,要么截止,不在“放大区”停留,因此功耗极小、效率极高,理论上可达100%,实际电路中可达90%以上,所以D类音频功率放大器是高效、节能、数字化音频功率放大器。但是,早些时候晶体管、集成电路的开关性差,不能满足D类音频功率放大器的技术要求,因此,对D类音频功率放大器的研究开发有相当的困难,研究开发仅停留在理论上。近几年出现的VMOS管,IGBT管的开关特性很好,工作频率高、开关速度快、管压降小、功耗低,适合用于D类音频功率放大器的研究开发。所以,近来D类音频功率放大器的研究开发有了突破性的进展。几家著名的研究机构及公司已试验性地向市场提供了D类音频放大器评估模块及技术,这一技术一经

问世立即显示出其高效、节能、数字化的显著特点,引起了科研、教学、电子工业以及商业界的特别关注。下表是某一实验中对D类和B类音频功率放大器的效率以及功耗进行了比较。

比较条件:电源电压24V,负载4Ω,1000Hz,连续输出,整机效率,得到下表:

由此表可以看出,D类音频功率放大器有着模拟功放所无法比拟的优势,所以不久的将来,D类音频功率放大器必将取代传统的模拟音频功率放大器。

1.2 音频功率放大器的新兴技术

传统的音频功率放大器在解决失真与效率的矛盾问题上总显得有点力不从心,但以下的几种新技术却很好地解决了这个矛盾.

1.2.1 超甲类功率放大器

按甲类方式工作,理论上不会存在开关失真,而其效率可达到甚至超过乙类放大。它解决了乙类的失真和甲类的低效率问题。图1是超甲类功放的输出级,它采用活动偏置电路来代替传统的固定偏置。活动偏置电路具有以下两种功能:第一是在信号输出的整个周期内没有开关现象;第二是波形的正、负半周过渡平滑,使合成波不会出现交越失真。电路中A1和A2代表两个检波放大级,用来检测加到功率级输入端激励信号的变化,并加以放大,然后以控制电流的形式输出给可控电压源U B1和U B2。U B1和U B2把来自A1和A2的电流变化转换成电压变化以控制末级电路的基极偏压,使

AB两端的偏压随激励信号的大小变化,实现了“动态偏流”。E1为稳压电源,用来确定静态时末级电流并实现温度补偿。从上述可知,超甲类功放的效率基本与乙类相似,而又大大地减少了波形的开关失真,是解决失真与效率之间矛盾较为理想的方法。

图1 超甲类功率放大器

1.2.2 S类功率放大技术

其特点是用电压控制放大器与电流驱动放大器构成电桥,使电压控制放大器工作在无负载的状态(即输出电流为零),即使接类似于扬声器之类的复合动态阻抗的负载,其电压控制放大器仍然能工作在十分理想的甲类状态。由一个大功率的乙类放大器负责供给负载电流,所以大大地减小交越失真和其它失真,同时又具有乙类的高效率。

图2是S类放大器的基本电路。电路的构成是由甲类电压控制放大器A1之后接有乙类电流驱动放大器A2,这两个放大器和负载R L之间通过电桥耦合。假如放大器A2的增益接近于无穷大,那么A与B点同电位,R1与R3,R2与R4上的电压分别相等,即I2R1=I3R3,I0R2=I4R4。设A2的输入阻抗为无穷大,则I3=I4,可得I0R2=I3R4,I2=R2R3I0/(R1R4)。电桥平衡时有:R1R4=R2R3,于是I2=I0(即输出电流完全供给负载);I1=I2-I0=0(即电压放大器空载工作)。就是说驱动负载的电流完全是由电流驱动放大器提供,甲类电压放大器总是工作在无负载的状态而与负载阻抗及其变化无关。这样,甲类电压放大器可将工作点选择在最佳工作区;而电流放大器可以工作在效率最

高的乙类放大状态。

图2 S类放大电路原理图

综上所述,S类放大器既有乙类的高效率,又有甲类甚至超过一般甲类放大器的低失真。故其性能十分优良。

1.2.3 电流倾注式乙类放大技术

由Quad 公司注册的“电流倾注式”功率放大器,利用其“电流倾注”技术,不仅使放大器的失真降低至很低的水平,而且末级采用了纯乙类方式。其方法是:设法从

功放主要失真源的末级取出一部分信号与输入信号比较,从而得到一个能反映末级失真程度的“误差信号”,然后将它放大到所需的幅度和相位直接加到负载中去,即可抵消功放末级产生的各种失真,包括负反馈难以克服的交越失真和开关失真,对提高功放的性能和降低末级功率管的要求极为有利。

电流倾注式功放原理见图3,A1为小功率甲类激励级,大功率乙类末级用等效互补管表示。从图3可看出,如果把R2去掉,该电路与一般功放在电路结构上没有多大区别,此时R1为负反馈电阻,C1为相位补偿电容,L为高频防振电感。由于加进R2,并对C1、

R1、R2、L适当地取值,工作情况大为改观。这时,上述4个元件构成一个

桥路,桥路的一个对角线接乙类末级,当A1的增益相当大时,A点相当于运放的虚地,负载R L就等效于接在桥路的另一对角线上。如果桥路达到平衡,即L=R1R2C1时,B、D间主放大器产生的失真电压便不会反映在A、C 两端的负载R L上。

上述电路的工作过程简述如下:当输入信号较小时,末级因无偏置而处于截止状态,负载中的输出电流是由甲类功放A1通过R2馈入负载R L的,因此不存在交越失真现象。随着输入信号的增大,R2上的压降随之增大,当此压降大于乙类功放的死区电压(约0.5V)时,乙类功放两管开始轮流导通向负载R L提供输出电流。由于L的阻抗远小于R2,故大信号时负载电流主要由乙类功放提供。此时甲类功放的作用除激励乙类功放外,主要是经R2向负载直接馈送抵消乙类功放输出电流失真的误差成分,它是由作为失真电流的取样元件L取出并与输入信号U i相比较而得到。如果桥路元件达到平衡,馈入负载的误差电流恰好与乙类功放失真电流在幅度上相等而相位相反,从而使其失真在理论上可完全消除。

图3 电流倾注式功放原理图

在实际电路中,由于元器件误差电流倾注功放并不可能完全抵消失真,电桥更不可能在很宽的音频范围内达到精确平衡。所以为了在整个声频段内获得很低的失真,中高频段由桥路平衡来保证,低频段则由负反馈加以改善。

1.2.4 负阻抗驱动功率放大器

在放声系统中,实现电/声转换的扬声器所产生的非线性失真和瞬态失真总是难以有效地克服或减小。由于扬声器的振膜和音圈有固有的质

量,在输入信号停止以后,扬声器的振膜并不能立即停止振动,而是衰减振荡,特别是在扬声器单元的谐振频率f

处更为严重,使得重放的声音含

糊不清、拖泥带水;而且由于扬声器在振动过程中会产生相应的反电动势阻碍扬声器振动,使失真不可避免。为解决这个问题,可使用具有负阻抗输出的功率放大器来驱动扬声器。这样,在功放和扬声器构成的输出回路中总的阻抗减小或趋近于零,既可以增加大动态的阻尼,实现对扬声器的准确控制,又可将扬声器产生的反电动势及失真短路,在理论上把扬声器系统的失真降为零。

图4为负阻抗输出功率放大器的基本回路。A1及其外围电路构成主放大器,R f与R0

构成电压并联负反馈;A2及其外围电路构成负阻驱动电路,将取样电阻R S 检测的输出电流加以放大,并与主放大器A1构成正反馈,形成负阻输出。放大器的输出阻抗可推导为Z0=R S[1-R1R E/(R2R0)]。为了保证电路能稳定工作,必须使放大器与扬声器回路总阻抗大于零(不可为负值,否则放大器会产生自激),同时考虑到扬声器音圈电阻随工作温

度有所变化,一般取值为Z0=-(0.6~0.9)R V(其中R V为扬声器音圈电阻)。

需要说明的是,负阻输出功率放大器仅对低频段的非线性失真改善较有效,对中高频作用不是很大,故一般只在低频范围内才引起正反馈。所以负阻输出功率放大器常用在有源低音炮中来改善扬声器的瞬态失真。

图4 负阻抗功放的基本电路

1.2.5 柔性剪峰放大器及技术

现代晶体管功率放大器就谐波失真而言其谐波失真可达万分之几,然而听感却比不上谐波失真达百分之二的电子管功放。其中原因虽颇有争议,但有一点是公认的,即电子管功放的过负荷能力远比晶体管功放强,且出现过负荷时,其听感仍然较为柔顺,不易被人察觉;而晶体管机出现过负荷时,必然会产生削波失真,很容易被人感觉到。原因是两者失真的过程大不一样,如图5所示,(a)表示晶体管放大器的削波失真,失

真较严重,故听感上破裂、生硬;(b)表示电子管放大器的削波失真,其过程较圆滑,故听感较柔顺。

柔性剪峰电路可使一般的晶体管削波失真转换成类似电子管的过荷

失真,使晶体管机音色甜美圆润,类似电子管的韵味。因此有人称之为“模拟胆声电路”,输出波形如图(c)所示。柔性剪峰电路的原理如图6所示。图中功率放大部分采用±28V双电源供电,在8Ω负载上可以得到40W的正弦有效不失真输出功率,计算输出电压的有效值为17.89V,峰值为25.29V,该部分电压放大倍数Au=1+R11/R10=15.4倍,则最大输入峰值电压为

1.64V。超过该值,放大电路必定产生削波失真。

当开关K未合上时,柔性剪峰电路不起作用。此时A点电位U A=2.15V,使D3导通(即柔性剪峰电路起控)的条件是:U C>(2.15+0.6)V>2.75V。同理,要使D4导通的条件是:

图5 三种削波失真

图6 柔性剪峰电路原理图

U C<-2.75V。所以使柔性剪峰电路起控的输入电压峰值必须达到2.75V,这时即使电路起控,其输入电压已超过了后级功放的允许最大输入峰值(1.64V),同样会产生削波现象。

当开关K合上时,R3、R4相连,开关两侧的电位为零,相当于一个虚地,同样方法计算得U A为+0.84V,U B为-0.84V,则U C点电位为±1.4V时,电路开始起控。输入电压经D3对电容C2充电(正半周时),使输入电压的增加速度变慢,负半周时输入电压经D4对电容C1充电,同样使输入信号变化速率下降。这样当输入信号幅度超过1.4V 时,将超过的部分进行压缩,以免超过后级功放允许的最大峰值1.64V而出现失真。使输出信号在±22V 处开始圆滑过渡,如图5(c)所示,类似于电子管机的过负荷失真,使听感柔顺许多。

1.2.6 失真伺服技术及电路

负反馈技术使放大器的失真大大降低的同时会产生新的失真,特别是大环路负反馈时,会产生较大的瞬态失真;况且负反馈对交越失真、开关失真等无能为力。所以现代功率放大器越来越倾向于“无负反馈”设计,通常是将功率放大器的末级排除在反馈环路之外,但由于元器件的非线性,末级将不可避免地产生失真。为了解决这些问题,以DENON公司的Distortion Servo(失真伺服)和YAMAHA公司ALA(完全线性)电路为代

表的失真处理技术应运而生。这两种电路虽然不尽相同,但在原理上都是通过检测输出信号,与输入信号比较,产生一独立的“误差信号”,再反相回送来抵消末级放大器本身产生的失真,包括晶体管的非线性以及扬声器的反电动势引起的各种失真。

图7为一款利用DENON的失真伺服技术构成的无负反馈功放原理图。该电路由电压放大级(仅画出由BG3,BG4等构成的输出级)和带有失真伺服电路的电流放大级构成,电流放大级产生的所有失真由失真伺服电路抵消。失真伺服电路的核心是一个比较器,用高速运算放大器(这里选用LF356)构成。对于高频部分为防止正反馈产生振荡,加了C1、C8作为防振电容;R5~R10则组成电压加法电路,在有失真校正电压产生时,让校正信号有一恰当的叠加通路,C2~C5是加速电容,当瞬间大信号到来时,使末级的开关动作提前,以利于提高瞬态和高频性能;D1、D2则为输入端保护二极管,防止运放因输入信号过大而损坏。通过调整R W可使输出失真降至最低,如果忽略前级电压放大器产生的失真,理论上可将功率放大器的失真降为零。

图7 DENON的失真伺服技术无负反馈功放原理图

1.2.7 功率放大器的其它处理技术

一台优质的功率放大器,可能因成本限制,使用场合不同,而采用不同的电路和技术。有些可能采用多项技术进行综合处理,以期达到较好的重放效果。下面对一些常见的处理技术进行简单的介绍。

①直流伺服技术

放大器的直流化是现代功放的发展趋势,传统的方式一般利用直流负反馈来稳定中点电压,不仅效果有限,而且常需要隔直电容,这对功放来讲总是音质劣化的隐患。利用直流伺服电路来稳定中点电位可使零漂达10mV以下,使功放与音源之间可采用直耦的方式,这对于重放CD之类的数字音源十分有利,因为数字音源越来越重视超重低音的录制,以改善放音的真实感和自然感。图8为一常见的直流伺服电路。

图8 直流伺服电路

②浮地技术

为减小不同信号之间的相互串扰,对接地的处理是相当重要的。一般功放通过合理的布线,减小接地电阻和一点接地等可收到较好的效果,但明显不够。一个完善的地回

路设计要尽量避免输入的小信号回路、输出的强信号回路和供电回路之间的相互串扰。为此,许多高档功放的制作采用了“浮地”技术。其方法是用一只低值电阻接在输入信号地与负载地和电源地之间,使后两者对信号地“悬浮”起来,只要浮置电阻大于功放负载阻抗(常取4.7~10Ω)就能较好地避免输出大电流回路的寄生信号串入输入回路,使相互串扰的影响降到最低。

③恒流驱动技术

一般音频功率放大器是以定压方式驱动扬声器,引入的电压负反馈可有效地改善电路的非线性失真。但是扬声器是一个复合负载,又具有反电动势,且还有一定的顺性,利用定压驱动方式会产生较大的瞬态互调失真。为解决这一问题,可用线性元件电阻把流过扬声器音圈的电流取样反馈给功放输入端,使放大器以恒流方式驱动扬声器。如图9所示为恒流驱动功放的原理电路,实际效果较同类放大(定压驱动)电路要好得多。不过恒流式功放为了达到最佳效果,最好是前级分频后驱动单一的低音或高音单元的功率放大。

图9 恒流驱动功放原理

2 音响和音频功率放大器的基本知识

2.1 音响的基本知识

音响是将电信号还原成声音信号的一种装置,还原真实性将作为评价音响性能的重要标准。

2.1.1 声音的基本特性

音量:它与声波的物理量“振幅”有关,声波的振幅大,人耳就感觉声音响,音量大,反之,则声音轻,音量小,音量的大小是人耳听音的主观感觉。

音调:是人耳对声音调子高低的主观感觉,声调的高低与声音的物理量“频率”相对应。

人耳的听觉范围:20hz~20KHz称之为可听声,低于20Hz称为次声,

高于20KHz称为超声,人耳对3KHz~4KHz的声音最敏感。

音色:又叫音品或音质,它是由声音的波形决定的,电子管功放的偶次谐波多,奇次谐波少,声音柔美,甜润,晶体管功放奇次谐波多,声音冷艳,清丽。

2.1.2 音响的主要结构及参数

音响的主要结构有前置放大器和功率放大器,前置放大器承担控制任务为主,对各种节目源信号进行选择和处理,对微弱信号放大到0.5~1 V,进行各种音质控制,以美化音色;功率放大器,承担放大任务,是将前置放大器输出的音频信号进行功率放大,以推动扬声器发声,包括电压放大和电流放大,要求是宏亮而不失真。

音响的主要参数包括功率、频率范围与频率响应、响度、失真度、灵敏度、阻抗以及信噪比等,这些参数的大小和音响的性能好坏息息相关,了解音响的这些有关知识有助于设计的完成。

2.2 音频功率放大器的基本知识

音频功率放大器是音响扩声系统中的一个重要组成部分。其主要作用就是将调音台、信号处理器等前端设备(或者前级电路)送来的比较弱的信号进行不失真地放大,并输出一定的功率,去推动扬声器发出优美而宏亮的声音。由于音频功率放大器处于扩声系统的中间位置,起着承前启后的作用,因而对其电声指标也提出了一定的要求。本章主要讨论音频功率放大器的基本工作原理。

2.2.1 音频功率放大器基础

所谓放大器是指能够对电压(或电流)信号进行不失真放大的有源电路,在实际应用中通常将其分为前级放大和后级放大两种。前级放大也称为前置放大,在专业音响系统中通常将其安排在调音台部分。其主要作用是将音频信号进行初步的电压放大,以便其它电路对音频信号进行处理;后级放大称为音频功率放大,在专业音响系统中通常是一台独立的设备,其主要作用是将经过调音设备处理后的信号进行功率放大,以提供足够大的功率去推动音箱工作。

就其功能来说,功率放大器比前置放大器的电路简单,但其消耗的功率远比前置放大器大。因为功率放大器的实质就是将直流电能转化为音频信号的交流电能。功率放大器一般包括有输入级、预激励级、激励级以及功率输出级等。

输入级起着缓冲作用,其输入阻抗较高。通常要引入一定的负反馈,增加整个功放电路的稳定性并减小噪声,减小本级电路对前级电路的影响。

预激励级的作用是控制其后的激励级和功率输出级的两推挽管的直流平衡,并提供足够的电压增益,输出较大的电压以推动激励级和功放级的正常工作。

激励级的作用是给功率输出级提供足够大的激励电流及稳定的静态偏压。激励级和功率输出级则向扬声器提供足够的激励电流,以保证扬声器正常工作。此外,功率输出级还向保护电路、功率指示电路提供控制信号,向输出级提供负反馈信号。

2.2.2 音频功率放大器的分类

2.2.2.1 按功率放大器与音箱的配接方式分类

①定压式功放

为了远距离传输音频功率信号,减少在传输线上的能量损耗,该方式以较高电压形式传送音频功率信号。一般有75V、120V、240V等不同电压输出端子供使用者选择。使用定压功放时要求功放和扬声器之间使用线性变压器进行阻抗匹配。如果使用多只扬声器,则需要用公式进行计算,多只扬声器的功率总和不得超过功率放大器的额定功率。另外,传输线的直径不要过小,以减小导线的电流损耗。

②定阻式功放

功率放大器以固定阻抗形式输出音频功率信号,也就是要求音箱按规定的阻抗进行配接,才能得到额定功率的输出分配。例如,一台100W的

功率放大器,它实际的输出电压是28.3V(在一个恒定音频信号输入时),那么接上一只8Ω音箱时,可获得l00W的音频功率信号。如果两只8Ω音箱串联,即阻抗为16Ω,那么功放实际输出功率为50W。如果两只8Ω音箱并联,即阻抗为4Ω,那么实际输出功率为200W。这时,功放已经超负荷了,机器会开始发热,最后将会损坏功率放大器。

2.2.2.2 按功率放大器的使用元件分类

①电子管功率放大器

电子管在音频领域里发挥过重要的作用,尤其是在20世纪60年代以前均是使用电子管制作功率放大器的,后来被体积小、功率大、耗能少、技术参数高的晶体管所取代。

②晶体管功率放大器

晶体管功率放大器具有体积小、功率大、耗能少等特点,技术参数指标很高,具有良好的瞬态特性等优点。它有分立式的电路结构,这种电路用在很多功率放大器中。

③集成电路功率放大器

由于大功率晶体管的品种日益繁多,使得集成大功率优质功放得以大量应用。并且在电路设计中采用了大电流、超动态、超线性的DD电路(菱形差动放大电路)和霍尔电路,或者采用动态偏置、双电流供电以及全互补等一系列技术,使得集成功放的谐波失真大大降低(小于0.05%以下),频率响应达到20Hz~20KHz以上,而且在电路中还可以方便地加入各种保护电路。目前专业音频功率放大器几乎都采用集成功率放大模块作为功放的输出级。

④ V-MOS功率放大器

随着场效应管生产技术的不断发展,大功率的场效应管的品种也日趋丰富。因为场效应管是电压控制的器件,它具有负温度特性,因此无需对输出管进行复杂的保护,而且它具有和电子管相似的音色。采用场效应管

制作的功放具有噪声低、动态范围大、无需保护等特点。其电路简单,而性能却十分优越。

2.2.2.3 按晶体管的工作特性分类

① A类功率放大器

这类功率放大器的晶体管工作在特性曲线的直线段,用一只晶体管将声波的正负半波完整地进行放大。因此,正弦波波形非常完整,不存在交越失真的问题,失真度很小。但其效率很低,最多只能达到50%,因此大多只作电压放大,不作为功率放大。

② B类功率放大器

它是用两只晶体管共同完成声波的能量放大。一只管子担任正半波的放大工作,另一个管子完成负半波的放大工作。最后合成为一完整的正弦波。用这种方式对音频信号进行放大的功放称为B类功放。由于两只功放管共同完成了声波的放大,所以,其输出功率较大,但存在着交越失真。在正负半周的波形连接处,由于晶体管的非线性,波形的合成总是存在着一些不够平滑的现象。这种由于两个电路合成时所产生的波形失真称为交越失真。B类功率放大器的效率最高可达78.5%。

③ AB类功率放大器

这是一种介于A类和B类之间的功率放大器。它能在较小失真的情况下,获得较高的功率输出。其效率略低于B类,但远高于A类。

④ C类功率放大器

在高频功率放大器中,还普遍采用一种器件电流的流通角小于180o的工作方式,称为C类放大器,通常它与LC谐振回路一同构成功率电路,LC回路对频率的选择特性会滤去谐波成分。分析指出,C类放大器有比B 类放大器更高的效率。

⑤ D类放大器

如果不考虑电流的流通角,而使器件工作在开关状态的功率放大器称

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

双声道音频功放的设计

双声道音频功放的设计 1引言 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程。1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术 的先河。1927年贝尔实验室发明了负反馈技术后,使音响技术的发 展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电 子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。 音频放大器的目的是在产生声音的输出元件上重建输入的音频 信号,信号音量和功率级都要理想——如实、有效且失真低。音频范围为约20Hz~ 20kHz,因此放大器在此范围内必须有良好的频率响 应(驱动频带受限的扬声器时要小一些,如低音喇叭或(高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC音频的数瓦,再到“迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压成比例的输出电压。正向电压增益通常

很高(至少40dB)。如果反馈环包含正向增益,则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪音,所以经常采用反馈。 高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或;宽带高频功率放大器的输出电路则是或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

音频功率放大器模拟电路设计

1方案设计 (4) 2方案比较 (7) 3单元模块设计 (8) 3.1直流稳压电源 (8) 3.2前置放大 (10) 3.3 滤波器设计 (11) 3.3.1主要元器件 (11) 3.3.2 低频滤波器电路 (13) 3.3.3 带频滤波器电路 (13) 3.3.3 带频滤波器电路 (14) 3.4功率放大器电路 (14) 3.4.1主要元器件介绍 (14) 3.4.2 电路工作原理介绍 (16) 4 软件设计 (16) 4.1P ROTEL 99SE软件 (17) 4.2W ORD 2003软件 (17) 5系统调试 (17) 系统总图 (17) 6 系统功能 (18) 7.总结与体会 (19) 文献 (20) 附录:电路原理图 (21) 相关设计图 (21) 相关设计软件 (21)

- 2 - 音频功率放大器 摘要:本音频功率放大器由四部分组成:电源,前置放大级,滤波器,功率放 大电路。电源电路输入交流电,输出18V 的直流电,为集成功率放大器供电;再经过变换输出+12V 与-12V 的直流电,为滤波器及前置放大级的运算放大器的供电。前置放大级将音频信号放大至功率放大器所能接受的范围。滤波器电路,分为高通滤波器、中通滤波器、低通滤波器,将输入的音频信号分为不同频率音频信号,并设有开关可以按个人喜好调节输出音频信号。功率放大电路,将输入的信号功率放大。 关键字:音频功率放大器、电源、滤波器、功放电路 Abstract: The audio power amplifier consists of four parts: power supply, level preamp, filter, power amplifier circuit. AC input power supply circuit, output DC 18V, power supply for the integrated power amplifier; another transform output +12 V and-12V DC, in order to filter and preamp-level op-amp power supply. Preamp-level audio signal amplification will be acceptable to the scope of power amplifier. Filter circuit, is divided into high-pass filter, in-pass filter, low pass filter, the input audio signal into different frequency audio signal and a switching regulator in accordance with personal preference, audio output. Power amplifier circuit, the input signal power amplifier. Key words: Audio power amplifier, power supply, filter, power amplifier circuit

音频功率放大电路的设计

音频功率放大电路的设计 王##(安庆师范大学物理与电气工程学院安徽安庆246011) 指导老师:祝祖送 摘要:本文的内容是音频功率放大电路的设计,其有操控简单、音质好等特点。本设计电路使用的是TDA2030为音频功率放大器,其工作电压为+15V。它将输入电路的电流放大,之后再将扬声器驱动工作。采用LF353对输入的音频信号前级放大,采用DAC0832对前级放大进行控制,采用STC89C52单片机控制电路的放大倍数,最后由液晶显示器显示出放大倍数。 关键词:功率放大器,前级放大,保护电路 1引言 对音频功率放大电路进行研究,其意义是目前在该领域有很好的发展前景,在我们的实际生活中的应用也是十分广泛的。小至我们经常使用的音乐MP4,大到城市报警系统。该设计的研究分别为硬件及软件两部分。扬声器输入电路、功率放大电路、前级放大电路、以及单片机电路构成本设计的硬件电路;液晶显示、键盘扫描、单片机控制等构成本设计的软件部分。 音频功率放大电路设计过程中困难的是选择各部分硬件电路,由于功率放大器的技术要求比较详细,电路各部分的数据选择及硬件的选择会更加复杂,为达到相应的技术指标,需要多次对电路进行调试。熟练使用C语言,加强分层设计编程能力和程序编写程序的可读性,不断修改程序,以达到设计目的。 2 总体方案 2.1设计思路概述 2.1.1设计要求及目的 (1)学习电路的设计及C语言编程。 (2)了解功率放大电路的工作原理,绘制相应的功率放大电路。 (3)完成硬件电路的制作,完成软件程序的编辑。 (4)完成论文。 2.1.2技术指标 (1)由麦克风输入音频信号,音频功率的范围是10Hz-10KHz。 (2)失真度为0.4%-1%。 (3)输入电压范围为150mV-5V。 (4)输出负载能力为7Ω/3Ω。 2.2总体设计方案 方案一:音频功率放大器使用模电设计,硬件原理图见图1。主要设计电源和功放两部分,稳压电源由稳压电路、整流电路、滤波电路等部分组成;功放电路由TDA2030、耦合电容等部分组成。电源电压可以根据电路需要来改变电压值,而不同的电压值对应的放大器的承载能力是不同的。由扬声器提供信号源,通过功放管进行功率放大,从而达到目的,最后结果由示波器显示出来。 优点:电路中设计了电源部分,所以在连接电源的的时候方便快捷。 缺点:由于元器件较多,在选择时就比较困难,在焊接时难度较大。

基于TDA2030的音频功放设计报告

基于TDA2030的音频功放设计 院(系)名称信息工程学院 专业班级09 普本电信一班学号 学生姓名 指导教师

2012年5月25日 基于TDA2030的音频功放设计报告 1整体设计思路 音频功率放大器主要由前置级、音调级、功率放大级3部分组成。前置级要求输入阻抗高、输出阻抗小、频带宽、噪声小;音调级对输入信号主要起到提升、衰减作用;功率放大级是音频功率放大器的主要部分,它决定输出功率的大小,要求输出功率高,输出功率大的特点。 将功率集成块按一定方式组合,构成音频功率放大集成电路,其频响宽、噪声低、失真小。运用已有的集成电路,可以大大简化了电路的制作过程。 TDA2030是飞利浦公司生产的,实物图如图1 2.集成音频功率放大器TDA2030 TDA2030简介:TDA 2030是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动的减流或截止,使自己得到保护。 TDA2030集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑料大功率管,这就给使用带来不少方便。

音频功率放大器的设计与实现

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

高保真音频功率放大器设计

电子技术课程设计报告——高保真音频功率放大器 上海大学机自学院自动化系 自动化 姓名:吴青耘 学号:16121324 指导老师: 李智华 2018年6月29日

一、项目名称 高传真音频功率放大器 二、用途 家庭、音乐中心装置中作主放大器 三、主要技术指标 1. 正弦波不失真输出功率Po>5W (f=1kHz,RL=8Ω) 2. 电源消耗功率P E<10W ( Po>5W ) 3. 输入信号幅度VS=200~400mV (f=1kHz,RL=8Ω, Po>5W ) 4. 输入电阻Ri>10kΩ( f=1kHz ) 5. 频率响应BW=50Hz~10kHz ( R L=8Ω,Po>5W) 四、设计步骤 1.电路形式

电路特点分析: 较典型的OTL 电路,局部反馈稳定了工作点,总体串联电压负反馈控制了放大倍数并提高输入电阻和展宽频带,退耦滤波电容及校正电容是为防止寄生振荡而设。 功率放大器通常由功率输出级、推动级(中间放大级)和输入级三部分组成。 功率输出级由互补对称电路组成。推动级(中间放大级)一般都是共射极放大电路,具有一定的电压增益。输入级的目的是为了增大开环增益,以便引入深度负反馈,改进电路的各项指标。 2.设计计算: 设计计算工作由输出级开始,逐渐反推到推动级、输入级。 (1) 电源电压的确定 输出功率 W P 50> )(228588 .01 V V cc =??= (2) 输出级(功率级)的计算 W P P V Vcc V A RL V I M M C ce cc CM 12.0112 1 375.18/112/0======= 功率管需推动电流:mA I I CM M b 5.2750/375.1/3===β 耦合电容:uF R f C L L 200021 ) 5~3(6≈=π,现取2200uF/25V 稳定电阻R 12:过大则损失功率过大,过小温度稳定性不良,通常取0.5~1欧姆。

高效率音频功率放大器设计【开题报告】

开题报告 高效率音频功率放大器设计 专业:电子信息工程 一、综述本课题国内外研究动态,说明选题的依据和意义: 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获得了良好的效果。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%,考虑到晶体管的饱和压降及穿透电流造成的损耗,A类功率放大器的最高效率仅为45%左右。B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率。一般的功放电路可以由两种方式实现:用分离元件组成或用集成器件实现。分立元件是电子电路的基础,一般的功放电路都能用分立元件实现,但由于使用分立元件所用的单个器件比较多,从而考虑的各种反馈电路和保护电路会比较多,实现起来会相对复杂。由于电子技术的日益更新,集成器件发展的比较快,在一定程度上已经可以代替分立元件。 二、功率放大电路的特殊问题

音频功率放大器

河南城建学院 《电子线路设计》课程设计说明书 设计题目:音频功率放大器 专业:计算机科学与技术 指导教师:杜小杰 班级:0814141 学号:081414109 姓名:罗含霜 同组人:娄莉娟 计算机科学与工程学院 2016 年6月6日

前言 在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。 THD+N性能指标 THD+N表示失真+噪声,因此THD+N自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。 这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。若改变了其中的条件,其THD+N值是不同的。例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=0.003%,若将RL改成16欧,使Po 增加到50mW,VDD及FIN不变,所测的TDH+N=0.005%。 一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般与为10-4;输出功率在1~2W,其THD+N 更大些,一般为0.1~0.5%.THD+N这一指标大小音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。 这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。 过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。这话的意思指的是输出的峰峰值没有“削顶”现象出现,即Vout(P-P)=Vcc-(上压差+下压差)这种说法是不科学的。即使不产生削顶,它也有一定的失真。较科学的说法是THD+N在某一指标下可输出的功率是多少。

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

音频放大电路设计

课程设计

摘要 音频放大电路已经应用到了电子世界的各个方面,随着科学技术的发展,,人类对电子的依赖性更强,这样也就注定了与电子相关的技术更显重要。音频放大电路是大部分电子产品一基本而且重要的组成部分。设计好音频放大器,优化音频放大电路结构,增强音频放大的性能的电路设计已成为他、一个重要课题。 以往的音频放大器大部分有独立元件组成,随着集成运放和功放的出现,集成音频放大器因具有工作稳定,性能好,易于安装和调试,成本低等优点,故得到广泛的应用。集成功放加上前置的话筒放大电路,音频控制电路就构成了简单的音频放大器。 关键词LM324 LA4102 功率放大器运算放大器音频控制

Abstract Modern transportation conductor system in,crossroad message number conductor light all is no man auto control.The design method of transportation light is varied,the most original traffic sign light completely uses an electric circuit design,not only structure complications,the physical volume is more big,and support very difficult.Nowadays the transportation light design realm,widespread adopt a single slice machine,PLC etc.modern technique.The single slice representative with the most typical machine is serieses MCS-51s,80C51 series single slice the machine product be numerous,AT89 the serieses single slice machine of ATMEL company integrates flash saving machine technique, applied convenience, in keeping with raw recruit usage,so this system adoption AT89S51 single slice mechanism makes electric circuit. The electric circuit adoption exterior flaps to concuss an electric circuit design and use a 6 Ms crystal flap a mold piece, provide stable clock pulse signal for the single slice machine.The electric circuit still has an urgent circumstance manifestation the function of the red light. Keywords LM324 LA4102

完整word高效率PWM音频功率放大器

高效率PWM 音频功率放大器 本设计主要由功率放大器、信号变换电路、输出功率显示电路和保护电路组成。功率放 大器部分采用D 类功率放大器确保高效,在 5V 供电情况下输出功率大于 1W ,且输出波形 无明显失真,低频输出噪声电压很低 (输出频率为20kHz 以下时,低频噪声电压约 1mV ); 信号变换部分采用差分放大电路,将双端输出信号变为 1 : 1的单端输出信号;输出功率显 1、题目分析及设计方案论证与比较 根据题目要求,整个系统由D 类PWM 功率放大器、信号转换电路及功率测量显示装置 组成。其中核心部分为 D 类PWM 功率放大器。之所以选择此方案是因为 D 类PWM 功放 能够达到更高的效率,且更好地确保波形不失真,加之以合理的滤波网络又进一步克服了高 频干扰, 从而使系统成为高效率、低失真、低干扰的功率放大系统。系统组成框图如图 3.1 所示。下面我们分别论述框图中各部分设计方案。 图3.1系统组成框图 2、总体设计思路 根据题目要求,经过认真分析,决定采用脉宽调制方式实现低频功率放大器 (即D 类功 率放大器)。脉宽调制电路(PWM )的脉宽调制原理 如图3.2所示。 图3.2脉宽调制原理图 一般的D 类放大器电路的工作原理是用 “振荡发生器”输出的三角波与来自外部的模拟 音频信号进行比较,在“脉宽调制比较器”输出端产生一个其脉宽变化与音频信号幅值成正 比例的可变脉宽方波。此方波通过“数字逻辑电路”输出反相的方波。 在音频信号的前半周 (正电压),脉宽调制方波的占空比小于 50%,使高端MOS 管饱和导通,输出瞬间脉冲电压 V ec — 0=V cc 。在音频信号的后半周(负电压),低端MOS 饱和导通,电压 0— V ec = — V cc o 将输 亠 PWM — 高速开关电路 及滤波网络 D 类功率放大器 796D Vin=O,占空比-50%

D类音频功放设计

D类音频放大器的设计与制作 摘要:本项目涉及高效节能、数字化、体积小、重量轻等特点的D类功率音频放大器。适应便携设备高效及节能的客观要求。顺应了市场的客观要求。从而在音频集成领域具有很大的优势。随着设计技术不断进步D类功率放大器的要求也在不断提高本文通过基于CMOS工艺的D类功率音频放大器构成,驱动实现、失真度等方面的特性来进行电路的设计。本课题的目标是设计一个D类音频功率放大器,能对音频信号进行放大,放大器的通频带达到300~10000Hz,输出功率IW,输出信号无明显失真。根据D类功放的原理分别设计了前置放大模块、三角波产生模块、比较器模块、驱动模块、H桥互补对称输出及低通滤波模块等。其中三角波产生器及比较器共同组成脉宽调制(PWM)模块,H桥互补对称输出电路采用驱动电流小、低导通电阻及良好开关特性的VMOSFET管,滤波器采用Butterworth低通滤波器。 关键词:D类功率放大器H桥驱动脉宽调制 目录 1. 引言 (1) 2. 系统方案 (1) 2.1 总体方案设计 (1) 2.2 三角波模块设计方案 (2) 2.3高速开关电路设计方案 (3) 3. 硬件电路设计 (4) 3.1 三角波发生器 (4) 3.2 放大电路 (5) 3.3脉宽调制比较器 (5) 3.4驱动电路、H桥 (6) 4. 测试方案与测试结果: (7) (1)列出主要的测试仪器、仪表; (7) (2)系统测试: (7) (3)测试结果分析: (7) 5. 设计总结: (7) 参考文献: (7) 附录: (8) 系统原理图; (8)

1.引言 近几年,国际上加进了对D类音频功率放大器的研究与开发,并取得了一定的进展,各项实用性指标和可靠性指标都有很大改善,并不断在向更大的输出功率,更小的体积,更轻的重量,更多的功能和智能化方向发展。20世纪80年代初,欧洲有些专业公司开始研究晶体管功放与电子管功放之间的性能差异及解决办法。电子管是一种电压控制器件,需要的控制功率极微,开关速率很快。晶体管是一种电流控制器件,需有较大的控制电流,转换速率较慢,这是最基本的差别。数字功放的概念早在20 世纪60年代就有人提出了,由于当时技术条件的限制,进展一直较慢。 这一技术一经问世立即显示出其高效,节能,数字化的显著特点,引起了科研,教学,电子工业,商业界的特别关注。不久的将来,D类音频功率放大器必然取代传统的模拟音频功率放大器。 2.系统方案 2.1总体方案设计 D类功放是放大元件处于开关状态时的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状体,晶体管相当于一个接通的开关,把电源与负载直接接通。 D类音频功放按其结构可以分为三个部分。 2.1.1调制器 最简单的只需要用一个运放构成的比较器即可完成。把原始的音频信号加上一定的直流偏置后放在运放的正输入端,在将一个有自激震荡生成的三角波添加到运放的负输入端。当正向输入端上的电位高于负端三角波的电位时比较器输出为高电平,反之则输出低电平,当音频输入信号输入时,正半轴期间,比较器输出高电平的时间比低电平的时间长,方波的占空比大于1山负半轴期间,由于还有直流偏置,所以比较器正输入端的电平还是大于零,但音频信号幅度高于三角波幅度的时间却大为减少,方波的占空比小于1:10这样,比较器输出的波形就是一个脉冲宽度被音频信号輻度调制后的波形,成为PWM (Pulse Width Modulation脉宽调制)或者(I)M (Pulse Duration Modulation脉冲持续时间调制)波形。音频信号被调制到脉冲波形中

相关文档
最新文档