基于msp430的tlv430驱动程序
基于MSP430的模拟SPI串口通信的实现

基于MSP430的模拟SPI串口通信的实现MSP430是德州仪器(Texas Instruments)公司生产的一款微控制器,内置有模拟外设接口和数字外设接口,非常适合用于嵌入式系统的开发。
SPI(Serial Peripheral Interface)是一种同步串行通信协议,常用于微控制器之间的通信。
在基于MSP430的模拟SPI串口通信实现中,我们需要使用MSP430的GPIO(General-Purpose Input/Output)外设模拟SPI通信协议的时序。
以下是基于MSP430的模拟SPI串口通信实现的步骤:1.配置MSP430的GPIO口为输出模式,并将片选信号(CS)、时钟信号(CLK)、主设备输入信号(MISO)设置为低电平,主设备输出信号(MOSI)设置为高电平。
2.配置MSP430的GPIO口中的片选信号(CS)为输出模式,并将其设置为高电平。
3.编写SPI通信的初始化函数,设置SPI的参数,如时钟分频比、数据位长度等。
4.实现SPI通信的发送函数。
将待发送的数据放入发送缓冲区,按照SPI通信协议的时序,通过MSP430的GPIO口将数据逐位发送出去。
5.实现SPI通信的接收函数。
按照SPI通信协议的时序,通过MSP430的GPIO口接收从外设传入的数据,并存储到接收缓冲区。
6.实现SPI通信的片选控制函数。
控制片选信号的输出,使得与其他外设通信时只选中对应的外设。
7.在主函数中调用上述SPI通信的功能函数,进行数据的发送和接收。
需要注意的是,以上步骤仅是基于MSP430的模拟SPI串口通信实现的一般步骤,具体的实现细节还需根据具体的硬件设备和通信协议来进行调整。
总结起来,基于MSP430的模拟SPI串口通信的实现主要包括配置GPIO口、初始化SPI通信参数、实现发送和接收函数,以及控制片选信号的输出等步骤。
通过这些步骤的完成,可以实现MSP430与其他外设之间的SPI串口通信。
msp430单片机程序(LT-1B_Programs)

一、基础实验【10个】1、入门试验:LED闪烁(1个)2、时钟实验:设置MCLK、ACLK、SMCLK(1个)3、低功耗实验:设置低功耗模式(1个)4、IO端口试验:IO端口寄存器设置(1个)5、定时器:看门狗定时器、TimerA寄存器设置(2个)6、比较器:比较器A寄存器(1个)7、Flash:flash读写(1个)8、异步通信:异步通信寄存器设置(1个)9、ADC:ADC12寄存器设置(1个)二、开发板模块简单程序【56个】1、LED流水灯实验(红、黄、绿)(1)LED1:检测开发板(2)LED2:普通IO控制闪烁(3)LED3:PWM信号控制闪烁2、蜂鸣器实验(1)蜂鸣器1:单频音(步进变音调)(2)蜂鸣器2:奏乐(祝你平安)3、数码管实验(1)数码管1(显示123456)(2)数码管2(动态显示0~F)(3)数码管3(流动光圈)(4)数码管4(来回光标)4、4×1独立按键实验(1)4×1键盘1:扫描数码管显示(2)4×1键盘2:中断数码管显示(3)4×1键盘3:控制LED(4)4×1键盘4:控制蜂鸣器5、4×4矩阵键盘实验(1)4×4键盘1:行列扫描数码管显示(2)4×4键盘2:行列扫描1602液晶显示(3)4×4键盘3:控制LED蜂鸣器6、1602液晶实验(1)1602液晶1:动态字符显示(2)1602液晶2:静态字符显示(3)1602液晶3:内部时钟显示7、3.3V-5V电平转换实验(1)电平转换1:输出5V方波(2)电平转换2:输出不同占空比的方波(3)电平转换3:MCLK,SMCLK,ACLK8、RS232接口实验(1)RS232接口1:MCU发送数据PC机显示(2)RS232接口2:按键控制MCU发送数据PC机显示(3)RS232接口3:PC机发送数据MCU液晶显示(4)RS232接口4:MCU回发接收到的PC机数据(5)RS232接口5:RS232控制蜂鸣器9、RS485接口实验(1)RS485接口1:发送程序(2)RS485接口2:接收程序10、USB接口实验(1)USB接口1:简单连接测试(2)USB接口2:USB接收数据(3)USB接口3:USB发送数据11、PS2接口实验(1)PS2接口1:PS2控制1602显示(2)PS2接口2:PS2控制数码管显示(3)PS2接口3:PS2控制LED和蜂鸣器12、12-Bit高精度温度传感器实验(1)温度传感器1:DS18B20在数码管显示(2)温度传感器2:DS18B20在液晶显示13、RTC实时时钟实验(1)实时时钟1:DS1302测试(2)实时时钟2:DS1302电子钟14、2k Bit EEPROM实验(1)EEPROM1:AT24C02测试(2)EEPROM2:读出数据通过串口在PC机显示15、12-Bit模数转换器(ADC)接口实验(1)模数转换器1:ADC在数码管显示(2)模数转换器2:ADC在1602液晶在显示(3)模数转换器3:ADC通过串口在PC机显示16、8-Bit数模转换器(DAC)实验(1)数模转换器1:DAC控制LED(2)数模转换器2:DAC输出电压,ADC采样转换并在液晶上显示17、12864液晶实验(与12864液晶配套)(1)12864液晶并口1:字符显示(2)12864液晶并口2:汉字显示(3)12864液晶并口3:图形显示(4)12864液晶并口4:综合演示(5)12864液晶串口5:字符显示(6)12864液晶串口6:汉字显示(7)12864液晶串口7:图形显示(8)12864液晶串口8:综合演示18、射频模块CC1000实验(1)射频模块1:发送数据(2)射频模块2:接收数据19、ucos移植注:17、18程序随模块赠送三、开发板综合程序【30】1、键盘综合实验(1)4×4键盘+蜂鸣器+LED+数码管显示(2)4×4键盘+蜂鸣器+LED+1602液晶显示(3)4×4键盘+蜂鸣器+LED+PC机显示(4)PS2键盘+UART+PC机显示(5)PS2键盘+USB+PC机显示2、接口综合实验(1)USB UART(2)UART USB(3)RS232 RS485(4)RS485 RS2323、温度时间综合实验(1)DS18B20 + DS1302 + 数码管(2)DS18B20 + DS1302 + USB(3)DS18B20 + DS1302 + UART(4)DS18B20 + DS1302 + 16024、AD DA综合实验(1)ADC + 1602(2)ADC + UART(3)ADC + USB(4)DAC + LED + KEY(5)DAC + UART(6)DAC + USB(7)ADC + UART + DS1302(8)ADC + DAC + 1602 + KEY(9)ADC + DAC + UART + KEY5、其他综合实验(1)AT24C02高级应用(搜索,擦除,读出全部)(2)DS1302高级应用(内部RAM存取数据)6、12864液晶综合实验(1)汉字库(2)图形库7、3.2寸TFT触摸屏实验(1)静态图片(2)动画/*************************************************** 程序功能:BoardConfig.h 头文件---------------------------------------------------***************************************************/ typedef unsigned char uchar;typedef unsigned int uint;//控制位的宏定义#define Ctrl_Out P3DIR |= BIT3 + BIT6 + BIT7;#define Ctrl_0 P3OUT &= ~(BIT3 + BIT6 + BIT7)#define SRCLK_1 P3OUT |= BIT7#define SRCLK_0 P3OUT &= ~BIT7#define SER_1 P3OUT |= BIT6#define SER_0 P3OUT &= ~BIT6#define RCLK_1 P3OUT |= BIT3#define RCLK_0 P3OUT &= ~BIT3//板上资源配置函数void BoardConfig(uchar cmd){uchar i;Ctrl_Out;Ctrl_0;for(i = 0; i < 8; i++){SRCLK_0;if(cmd & 0x80) SER_1;else SER_0;SRCLK_1;cmd <<= 1;}RCLK_1;_NOP();RCLK_0;/*************************************************** 程序功能:控制8个LED闪烁,用于测试下载功能是否正常---------------------------------------------------测试说明:观察LED闪烁***************************************************/ #include <msp430x14x.h>/****************主函数****************/void main(void){WDTCTL = WDTPW + WDTHOLD; //关闭看门狗BoardConfig(0xf0); //关闭数码管和电平转换,打开流水灯CCTL0 = CCIE; //使能CCR0中断CCR0 = 2047; //设定周期0.5STACTL = TASSEL_1 + ID_3 + MC_1; //定时器A的时钟源选择ACLK,增计数模式P2DIR = 0xff; //设置P2口方向为输出P2OUT = 0xff;_EINT(); //使能全局中断LPM3; //CPU进入LPM3模式}/*******************************************函数名称:Timer_A功能:定时器A的中断服务函数参数:无返回值:无********************************************/#pragma vector = TIMERA0_VECTOR__interrupt void Timer_A (void){P2OUT ^= 0xff; //P2口输出取反/***********************************************程序功能:实现流水灯以三种流动方式和四种流动速度的不同组合而进行点亮"流动"------------------------------------------------测试说明:观察流水灯流动顺序和速度的变化************************************************/#include <msp430x14x.h>#include "BoardConfig.h"uint i = 0,j = 0,dir = 0;uint flag = 0,speed = 0; //flag--灯光流动方式,speed--灯光流动速度/****************主函数****************/void main(void){BoardConfig(0xf0);CCTL0 = CCIE; //使能CCR0中断CCR0 = 50000;TACTL = TASSEL_2 + ID_3 + MC_1; //定时器A的时钟源选择SMCLK,增计数模式P2DIR = 0xff; //设置P2口方向为输出P2OUT = 0xff;_EINT(); //使能全局中断LPM0; //CPU进入LPM0模式}/*******************************************函数名称:Timer_A功能:定时器A的中断服务函数,在这里通过标志控制流水灯的流动方向和流动速度参数:无返回值:无********************************************/#pragma vector = TIMERA0_VECTOR__interrupt void Timer_A (void){if(flag == 0){P2OUT = ~(0x80>>(i++)); //灯的点亮顺序D8 -> D1}else if(flag == 1){P2OUT = ~(0x01<<(i++)); //灯的点亮顺序D1 -> D8}else{if(dir) //灯的点亮顺序D8 -> D1,D1 -> D8,循环绕圈{P2OUT = ~(0x80>>(i++));}else{P2OUT = ~(0x01<<(i++));}}if(i == 8){dir = ~dir;}j++;if(j == 40){i = 0;j = 0;flag++;if(flag == 4) flag = 0;switch(speed){case 0:TACTL &=~ (ID0 + ID1);TACTL |= ID_3;break;case 1:TACTL &=~ (ID0 + ID1);TACTL |= ID_2;break;case 2:TACTL &=~ (ID0 + ID1);TACTL |= ID_1;break;case 3:TACTL &=~ (ID0 + ID1);TACTL |= ID_0;break;default:break;}if(flag != 3) speed++;if(speed == 4) speed = 0;}/******************************************************* 程序功能:用从P2.3和P2.4输出的PWM波形驱动LED闪烁P2.3口输出方波的占空比为75%P2.4口输出方波的占空比为25%-------------------------------------------------------测试说明:观察LED的亮灭的时间长短*******************************************************/ #include <msp430x14x.h>#include "BoardConfig.h"{WDTCTL = WDTPW + WDTHOLD; // 关狗BoardConfig(0xb0); // 关闭数码管和电平转换,打开流水灯P2DIR = 0xff; // P2端口设置为输出P2OUT = 0xff; // 关闭其他LEDP2SEL |= BIT3 + BIT4; // P2.3和P2.4连接内部模块CCR0 = 4096-1; // PWM周期为1SCCTL1 = OUTMOD_7; // CCR1 reset/setCCR1 = 3072; // CCR1 PWM duty cycleCCTL2 = OUTMOD_7; // CCR2 reset/setCCR2 = 1024; // CCR2 PWM duty cycleTACTL = TASSEL_1 + ID_3 + MC_1; // ACLK/8, up mode_BIS_SR(LPM3_bits); // Enter LPM3}//****************************************************************************** // MSP-FET430P140 Demo - Basic Clock, Output Buffered SMCLK, ACLK and MCLK//// Description: Output buffered MCLK, SMCLK and ACLK.// ACLK = LFXT1 = 32768, MCLK = DCO Max, SMCLK = XT2// //* XTAL's REQUIRED - NOT INSTALLED ON FET *//// //* Min Vcc required varies with MCLK frequency - refer to datasheet *////// MSP430F149// -----------------// /|\| XIN|-// | | | 32k// --|RST XOUT|-// | |// | XT2IN|-// | | XTAL (455k - 8Mhz)// |RST XT2OUT|-// | |// | P5.4|-->MCLK = DCO Max// | P5.5|-->SMCLK = XT2// | P5.6|-->ACLK = 32kHz//// M. Buccini// Texas Instruments Inc.// Feb 2005// Built with IAR Embedded Workbench V ersion: 3.21A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xb8);WDTCTL = WDTPW +WDTHOLD; // Stop Watchdog Timer DCOCTL = DCO0 + DCO1 + DCO2; // Max DCOBCSCTL1 = RSEL0 + RSEL1 + RSEL2; // XT2on, max RSELBCSCTL2 |= SELS; // SMCLK = XT2P5DIR |= 0x70; // P5.6,5,4 outputsP5SEL |= 0x70; // P5.6,5,5 optionswhile(1){}//****************************************************************************** // MSP-FET430P140 Demo - Basic Clock, LPM3 Using WDT ISR, 32kHz ACLK//// Description: This program operates MSP430 normally in LPM3, pulsing P3.4// at 4 second intervals. WDT ISR used to wake-up system. All I/O configured// as low outputs to eliminate floating inputs. Current consumption does// increase when LED is powered on P3.4. Demo for measuring LPM3 current.// ACLK= LFXT1/4= 32768/4, MCLK= SMCLK= default DCO// //* External watch crystal on XIN XOUT is required for ACLK *//////// MSP430F149// ---------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P3.5|-->LED//// Dasheng// LiTian Electronic Inc.// Feb 2008// Built with IAR Embedded Workbench V ersion: 3.42A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xb8);BCSCTL1 |= DIV A_2; // ACLK/4WDTCTL = WDT_ADLY_1000; // WDT 1s/4 interval timerIE1 |= WDTIE; // Enable WDT interruptP1DIR = 0xFF; // All P1.x outputsP1OUT = 0; // All P1.x resetP2DIR = 0xFF; // All P2.x outputsP2OUT = 0; // All P2.x resetP3DIR = 0xFF; // All P3.x outputsP3OUT = 0x30; // All P3.x resetP4DIR = 0xFF; // All P4.x outputsP4OUT = 0; // All P4.x resetP5DIR = 0xFF; // All P5.x outputsP5OUT = 0; // All P5.x resetP6DIR = 0xFF; // All P6.x outputsP6OUT = 0x80; // All P6.x resetwhile(1){uint i;_BIS_SR(LPM3_bits + GIE); // Enter LPM3P3OUT &= ~BIT5; // Set P3.5 LED onfor (i = 18000; i>0; i--); // DelayP3OUT |= BIT5; // Clear P3.5 LED off}}#pragma vector=WDT_VECTOR__interrupt void watchdog_timer (void){_BIC_SR_IRQ(LPM3_bits); // Clear LPM3 bits from 0(SR)//******************************************************************************* // MSP-FET430P140 Demo - Software Toggle P3.4//// Description: Toggle P3.4 by xor'ing P3.4 inside of a software loop.// ACLK= n/a, MCLK= SMCLK= default DCO ~800k//// MSP430F149// -----------------// --|RST XOUT|-// | |// | P3.4|-->LED//// Dasheng// LiTian Electronic Inc.// Feb 2008// Built with IAR Embedded Workbench V ersion: 3.42A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xb8);WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timerP3DIR |= BIT4; // Set P3.4 to output directionfor (;;){volatile unsigned int i;P3OUT ^= BIT4; // Toggle P3.4 using exclusive-ORi = 50000; // Delaydo (i--);while (i != 0);}//****************************************************************************** // MSP-FET430P140 Demo - WDT, Toggle P3.4, Interval Overflow ISR, DCO SMCLK//// Description: Toggle P3.4 using software timed by the WDT ISR. Toggle rate// is approximately 30ms based on default ~ 800khz DCO/SMCLK clock source// used in this example for the WDT.// ACLK= n/a, MCLK= SMCLK= default DCO~ 800k//// MSP430F149// -----------------// /|\| XIN|-// | | |// | P3.4|-->LED//// Dasheng// LiTian Electronic Inc.// Feb 2008// Built with IAR Embedded Workbench V ersion: 3.42A//****************************************************************************** #include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xbf); //关闭数码管、流水灯和电平转换WDTCTL = WDT_MDLY_32; // Set Watchdog Timer interval to ~30ms IE1 |= WDTIE; // Enable WDT interruptP3DIR |= BIT4; // Set P3.4 to output direction_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}// Watchdog Timer interrupt service routine#pragma vector=WDT_VECTOR__interrupt void watchdog_timer(void){P3OUT ^= BIT4; // Toggle P3.4 using exclusive-OR//****************************************************************************** // MSP-FET430P140 Demo - WDT, Toggle P3.4, Interval Overflow ISR, 32kHz ACLK//// Description: Toggle P3.4 using software timed by WDT ISR. Toggle rate is// exactly 250ms based on 32kHz ACLK WDT clock source. In this example the// WDT is configured to divide 32768 watch-crystal(2^15) by 2^13 with an ISR// triggered @ 4Hz.// ACLK= LFXT1= 32768, MCLK= SMCLK= DCO~ 800kHz// //* External watch crystal installed on XIN XOUT is required for ACLK *////// MSP430F149// -----------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P3.4|-->LED// LiTian Electronic Inc.// Feb 2008// Built with IAR Embedded Workbench V ersion: 3.42A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xb8);WDTCTL = WDT_ADLY_250; // WDT 250ms, ACLK, interval timer IE1 |= WDTIE; // Enable WDT interruptP3DIR |= BIT4; // Set P3.4 to output direction_BIS_SR(LPM3_bits + GIE); // Enter LPM3 w/interrupt}// Watchdog Timer interrupt service routine#pragma vector=WDT_VECTOR__interrupt void watchdog_timer(void){P3OUT ^= BIT4; // Toggle P3.4 using exclusive-OR//****************************************************************************** // MSP-FET430P140 Demo - Timer_A, Toggle P3.4, CCR0 Cont. Mode ISR, DCO SMCLK//// Description: Toggle P3.4 using software and TA_0 ISR. Toggles every// 50000 SMCLK cycles. SMCLK provides clock source for TACLK.// During the TA_0 ISR, P3.4 is toggled and 50000 clock cycles are added to// CCR0. TA_0 ISR is triggered every 50000 cycles. CPU is normally off and// used only during TA_ISR.// ACLK = n/a, MCLK = SMCLK = TACLK = default DCO ~800kHz//// MSP430F149// ---------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |// | P3.4|-->LED//// Dasheng// Built with IAR Embedded Workbench V ersion: 3.42A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTBoardConfig(0xb8); //关闭数码管、流水灯和电平转换P3DIR |= BIT4; // P3.4 outputCCTL0 = CCIE; // CCR0 interrupt enabledCCR0 = 50000;TACTL = TASSEL_2 + MC_2; // SMCLK, contmode_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}// Timer A0 interrupt service routine#pragma vector=TIMERA0_VECTOR__interrupt void Timer_A (void){P3OUT ^= BIT4; // Toggle P3.4CCR0 += 50000; // Add Offset to CCR0//****************************************************************************** // MSP-FET430P140 Demo - Timer_A, Toggle P3.4, CCR0 Up Mode ISR, DCO SMCLK//// Description: Toggle P3.4 using software and TA_0 ISR. Timer_A is// configured for up mode, thus the timer overflows when TAR counts// to CCR0. In this example, CCR0 is loaded with 20000.// ACLK = n/a, MCLK = SMCLK = TACLK = default DCO ~800kHz//// MSP430F149// ---------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |// | P3.4|-->LED//// Dasheng// LiTian Electronic Inc.// Built with IAR Embedded Workbench V ersion: 3.42A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTBoardConfig(0xb8);P3DIR |= BIT4; // P3.4 outputCCTL0 = CCIE; // CCR0 interrupt enabledCCR0 = 20000;TACTL = TASSEL_2 + MC_1; // SMCLK, upmode_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}// Timer A0 interrupt service routine#pragma vector=TIMERA0_VECTOR__interrupt void Timer_A (void){P3OUT ^= BIT4; // Toggle P3.4//****************************************************************************** // MSP-FET430P140 Demo - Timer_A, Toggle P3.4, Overflow ISR, DCO SMCLK//// Description: Toggle P3.4 using software and Timer_A overflow ISR.// In this example an ISR triggers when TA overflows. Inside the TA// overflow ISR P3.4 is toggled. Toggle rate is approximatlely 12Hz.// Proper use of the TAIV interrupt vector generator is demonstrated.// ACLK = n/a, MCLK = SMCLK = TACLK = default DCO ~800kHz//// MSP430F149// ---------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |// | P3.4|-->LED//// Dasheng// LiTian Electronic Inc.// Feb 2008// Built with IAR Embedded Workbench V ersion: 3.42A#include <msp430x14x.h>#include "BoardConfig.h"void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTBoardConfig(0xb8);P3DIR |= BIT4; // P3.4 outputTACTL = TASSEL_2 + MC_2 + TAIE; // SMCLK, contmode, interrupt_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}// Timer_A3 Interrupt V ector (TAIV) handler#pragma vector=TIMERA1_VECTOR__interrupt void Timer_A(void){switch( TAIV ){case 2: break; // CCR1 not usedcase 4: break; // CCR2 not usedcase 10: P3OUT ^= BIT4; // overflowbreak;}//****************************************************************************** // MSP-FET430P140 Demo - Timer_A, Toggle P3.4, Overflow ISR, 32kHz ACLK//// Description: Toggle P3.4 using software and the Timer_A overflow ISR.// In this example an ISR triggers when TA overflows. Inside the ISR P3.4// is toggled. Toggle rate is exactly 0.5Hz. Proper use of the TAIV interrupt// vector generator is demonstrated.// ACLK = TACLK = 32768Hz, MCLK = SMCLK = default DCO ~800kHz// //* An external watch crystal on XIN XOUT is required for ACLK *////// MSP430F149// ---------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P3.4|-->LED//// Dasheng// Feb 2008// Built with IAR Embedded Workbench V ersion: 3.42A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){WDTCTL = WDTPW + WDTHOLD; // Stop WDTBoardConfig(0xb8);P3DIR |= BIT4; // P3.4 outputTACTL = TASSEL_1 + MC_2 + TAIE; // ACLK, contmode, interrupt_BIS_SR(LPM3_bits + GIE); // Enter LPM3 w/ interrupt}// Timer_A3 Interrupt V ector (TAIV) handler#pragma vector=TIMERA1_VECTOR__interrupt void Timer_A(void){switch( TAIV ){case 2: break; // CCR1 not usedcase 4: break; // CCR2 not usedcase 10: P3OUT ^= BIT4; // overflowbreak;}}#include <msp430x14x.h>#include "BoardConfig.h"void main(void){WDTCTL = WDTHOLD + WDTPW; // 关看门狗BoardConfig(0xb0); //开流水灯,关数码管和电平转换CACTL1 = CARSEL + CAREF0 + CAON ; // Vcc/4 = - cmpCACTL2 = P2CA0; // 使用CA0P2DIR = 0xff;P2OUT = 0xff;while(1){if((CACTL2 | 0xfe) ==0xff){ // 比较电压是否超过0.25VccP2OUT &= ~BIT4;CACTL1 &= 0xfe; // CAIFG = 0}else{P2OUT |= BIT4;}}}//**************************************************************************** // MSP-FET430P140 Demo - Flash In-System Programming, Copy SegA to SegB//// Description: This program first erases flash seg A, then it increments all// values in seg A, then it erases seg B, then copies seg A to seg B.// Assumed MCLK 550kHz - 900kHz.// //* Set Breakpoint on NOP in the Mainloop to avoid Stressing Flash *////// MSP430F149// -----------------// /|\| XIN|-// | | |// --|RST XOUT|-// | |//// M. Mitchell// Texas Instruments Inc.// Feb 2005// Built with IAR Embedded Workbench V ersion: 3.21A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"uchar value; // 8-bit value to write to segment Auchar DataBuffer[128];// Function prototypesvoid write_SegA (uchar value);void copy_A2B (void);{BoardConfig(0xb8);WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timerFCTL2 = FWKEY + FSSEL0 + FN0; // MCLK/2 for Flash Timing Generator value = 0; // Initialize valuewhile(1) // Repeat forever{write_SegA(value++); // Write segment A, increment valuecopy_A2B(); // Copy segment A to B_NOP(); // SET BREAKPOINT HERE}}void write_SegA (uchar value){uchar *Flash_ptr; // Flash pointeruint i;Flash_ptr = (uchar *) 0x1080; // Initialize Flash pointerFCTL1 = FWKEY + ERASE; // Set Erase bitFCTL3 = FWKEY; // Clear Lock bit*Flash_ptr = 0; // Dummy write to erase Flash segmentFCTL1 = FWKEY + WRT; // Set WRT bit for write operationfor (i=0; i<128; i++){*Flash_ptr++ = value; // Write value to flash}FCTL1 = FWKEY; // Clear WRT bitFCTL3 = FWKEY + LOCK; // Set LOCK bit}void copy_A2B (void){uchar *Flash_ptrA; // Segment A pointeruchar *Flash_ptrB; // Segment B pointeruint i;Flash_ptrA = (uchar *) 0x1080; // Initialize Flash segment A pointerFlash_ptrB = (uchar *) 0x1000; // Initialize Flash segment B pointerFCTL3 = FWKEY; // Clear Lock bit*Flash_ptrB = 0; // Dummy write to erase Flash segment B FCTL1 = FWKEY + WRT; // Set WRT bit for write operationfor (i=0; i<128; i++){DataBuffer[i] = *Flash_ptrA++;*Flash_ptrB++ = DataBuffer[i]; // Copy value segment A to segment B}FCTL1 = FWKEY; // Clear WRT bitFCTL3 = FWKEY + LOCK; // Set LOCK bit//****************************************************************************** // MSP-FET430P140 Demo - USART0, Ultra-Low Pwr UART 2400 Echo ISR, 32kHz ACLK //// Description: Echo a received character, RX ISR used. In the Mainloop UART0// is made ready to receive one character with interrupt active. The Mainloop// waits in LPM3. The UART0 ISR forces the Mainloop to exit LPM3 after// receiving one character which echo's back the received character.// ACLK = UCLK0 = LFXT1 = 32768, MCLK = SMCLK = DCO~ 800k// Baud rate divider with 32768hz XTAL @2400 = 32768Hz/2400 = 13.65 (000Dh)// //* An external watch crystal is required on XIN XOUT for ACLK *////// MSP430F149// -----------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P3.4|----------->// | | 2400 - 8N1// | P3.5|<-----------////// M. Buccini// Texas Instruments Inc.// Feb 2005// Built with IAR Embedded Workbench V ersion: 3.21A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xb8);WDTCTL = WDTPW + WDTHOLD; // Stop WDTP3SEL |= 0x30; // P3.4,5 = USART0 TXD/RXDME1 |= UTXE0 + URXE0; // Enable USART0 TXD/RXDUCTL0 |= CHAR; // 8-bit characterUTCTL0 |= SSEL0; // UCLK = ACLKUBR00 = 0x0D; // 32k/2400 - 13.65UBR10 = 0x00; //UMCTL0 = 0x6B; // ModulationUCTL0 &= ~SWRST; // Initialize USART state machineIE1 |= URXIE0; // Enable USART0 RX interrupt// Mainloopfor (;;){_BIS_SR(LPM3_bits + GIE); // Enter LPM3 w/interruptwhile (!(IFG1 & UTXIFG0)); // USART0 TX buffer ready?TXBUF0 = RXBUF0; // RXBUF0 to TXBUF0}}// UART0 RX ISR will for exit from LPM3 in Mainloop#pragma vector=UART0RX_VECTOR__interrupt void usart0_rx (void){_BIC_SR_IRQ(LPM3_bits); // Clear LPM3 bits from 0(SR)}//****************************************************************************** // MSP-FET430P140 Demo - USART0, Ultra-Low Pwr UART 9600 Echo ISR, 32kHz ACLK //// Description: Echo a received character, RX ISR used. In the Mainloop UART0// is made ready to receive one character with interrupt active. The Mainloop// waits in LPM3. The UART0 ISR forces the Mainloop to exit LPM3 after// receiving one character which echo's back the received character.// ACLK = UCLK0 = LFXT1 = 32768, MCLK = SMCLK = DCO~ 800k// Baud rate divider with 32768hz XTAL @9600 = 32768Hz/9600 = 3.41 (0003h 4Ah )// //* An external watch crystal is required on XIN XOUT for ACLK *////// MSP430F149// -----------------// /|\| XIN|-// | | | 32kHz// --|RST XOUT|-// | |// | P3.4|----------->// | | 9600 - 8N1// | P3.5|<-----------////// M. Buccini// Texas Instruments Inc.// Feb 2005// Built with IAR Embedded Workbench V ersion: 3.21A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){BoardConfig(0xb8);WDTCTL = WDTPW + WDTHOLD; // Stop WDTP3SEL |= 0x30; // P3.4,5 = USART0 TXD/RXDME1 |= UTXE0 + URXE0; // Enable USART0 TXD/RXDUCTL0 |= CHAR; // 8-bit characterUTCTL0 |= SSEL0; // UCLK = ACLKUBR00 = 0x03; // 32k/9600 - 3.41UBR10 = 0x00; //UMCTL0 = 0x4A; // ModulationUCTL0 &= ~SWRST; // Initialize USART state machineIE1 |= URXIE0; // Enable USART0 RX interrupt// Mainloopfor (;;){_BIS_SR(LPM3_bits + GIE); // Enter LPM3 w/interruptwhile (!(IFG1 & UTXIFG0)); // USART0 TX buffer ready?TXBUF0 = RXBUF0; // RXBUF0 to TXBUF0}}// UART0 RX ISR will for exit from LPM3 in Mainloop#pragma vector=UART0RX_VECTOR__interrupt void usart0_rx (void){_BIC_SR_IRQ(LPM3_bits); // Clear LPM3 bits from 0(SR)//****************************************************************************** // MSP-FET430P140 Demo - USART0, UART 19200 Echo ISR, XT2 HF XTAL ACLK//// Description: Echo a received character, RX ISR used. Normal mode is LPM0,// USART0 RX interrupt triggers TX Echo. Though not required, MCLK = XT2.// ACLK = n/a, MCLK = SMCLK = UCLK0 = XT2 = 8MHz// Baud rate divider with 8Mhz XTAL @19200 = 8MHz/19200 = 416.66 ~ 417 (01A0h)// //* An external 8MHz XTAL on X2IN X2OUT is required for XT2CLK *//// //* Min Vcc required varies with MCLK frequency - refer to datasheet *//////// MSP430F149// -----------------// /|\| XT2IN|-// | | | 8Mhz// --|RST XT2OUT|-// | |// | P3.4|------------>// | | 19200 - 8N1// | P3.5|<------------////// M. Buccini// Texas Instruments Inc.// Feb 2005// Built with IAR Embedded Workbench V ersion: 3.21A//******************************************************************************#include <msp430x14x.h>#include "BoardConfig.h"void main(void){volatile unsigned int i;BoardConfig(0xb8);P3SEL |= 0x30; // P3.4,5 = USART0 TXD/RXDWDTCTL = WDTPW + WDTHOLD; // Stop WDTBCSCTL1 &= ~XT2OFF; // XT2ondo{IFG1 &= ~OFIFG; // Clear OSCFault flagfor (i = 0xFF; i > 0; i--); // Time for flag to set}while ((IFG1 & OFIFG)); // OSCFault flag still set?BCSCTL2 |= SELM_2 + SELS; // MCLK = SMCLK = XT2 (safe)ME1 |= UTXE0 + URXE0; // Enable USART0 TXD/RXDUCTL0 |= CHAR; // 8-bit characterUTCTL0 |= SSEL1; // UCLK = SMCLKUBR00 = 0xA0; // 8Mhz/19200 ~ 417UBR10 = 0x01; //UMCTL0 = 0x00; // no modulationUCTL0 &= ~SWRST; // Initialize USART state machineIE1 |= URXIE0; // Enable USART0 RX interrupt_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt}#pragma vector=UART0RX_VECTOR__interrupt void usart0_rx (void){while (!(IFG1 & UTXIFG0)); // USART0 TX buffer ready?TXBUF0 = RXBUF0; // RXBUF0 to TXBUF0//****************************************************************************** // MSP-FET430P140 Demo - USART0, UART 115200 Echo ISR, XT2 HF XTAL ACLK//// Description: Echo a received character, RX ISR used. Normal mode is LPM0,// USART0 RX interrupt triggers TX Echo. Though not required, MCLK= XT2.// ACLK = n/a, MCLK = SMCLK = UCLK0 = XT2 = 8MHz// Baud rate divider with 8Mhz XTAL = 8000000/115200 = 0069 (0045h)// //* An external 8MHz XTAL on X2IN X2OUT is required for XT2CLK *//// //* Min Vcc required varies with MCLK frequency - refer to datasheet *//////// MSP430F149// -----------------// /|\| XT2IN|-// | | | 8Mhz// --|RST XT2OUT|-// | |// | P3.4|------------>// | | 115200 - 8N1// | P3.5|<------------////。
手把手教你使用TI MSP430 LaunchPad

手把手教你使用TI MSP430 LaunchPad1、用USB线连接电脑PC和目标板LaunchPad。
Windows会自动搜索驱动,当然,一般来说,都是安装失败的。
2、LaunchPad套件并没有提供光盘,驱动在哪里?IAR for MSP430已经集成了TI USB FET 的驱动,所以,我们先把IAR for MSP430给安装上,驱动也就有了。
这里驱动路径如下:D:\Programs\IAR Systems\Embedded Workbench 6.0 Evaluation\430\drivers\TIUSBFET 至于软件安装时的注册/和谐问题,大家都是很有办法的,你懂的。
3、安装了IAR for MSP430之后,重新拔插USB,Windows 7会自动重新搜索驱动,一般是可以安装成功的。
如果安装失败了,指定刚刚的路径安装驱动即可。
在设备管理器可以看到如下端口MSP430 Application UART(COM28),端口号视实际情况而定。
有些地方,端口号并不支持到那么大,可以通过高级设置更改,更改方法如下面链接所示:/viewthread.php?tid=237823&page=1&fromuid=194149#pid827 620很好,驱动安装完毕。
下面开始用IAR for MSP430建立工程。
工程建立1、运行IAR Embedded Workbench,点击菜单栏Project –> Create New Project…选择C –> main,这里也可以选择Empty project,但选择C -> main的话,它会自己帮你新建一个main.c文件,并且把它加入到工程中。
给工程指定一个工程名称Blinky,如下图:2、编写如下代码:#include "io430.h"int main( void ){// Stop watchdog timer to prevent time out resetWDTCTL = WDTPW + WDTHOLD;P1DIR |= 0x01; // Set P1.0 to output direction while(1){volatile unsigned inti;P1OUT ^= 0x01; // Toggle P1.0 using exclusive-ORi = 50000; // Delaywhile (i--);}}编写完成后,点击工具栏的Make按钮:提示Save Workspace As,这里给它指定一个工作空间名称也是Blinky,编译之后,信息栏显示编译通过:3、编译通过之后,右击工程,选择Options…:这里主要配置三个地方,一是在General Options的Target选项卡里选择对应的器件Device,这里是MSP430G2231:二是Debugger里选择FET Debugger:三是检查FET Debugger里的设置是否正确,这里是Texas Instrument USB-IF采用Automatic方式:4、经过以上设置,重新编译一下,点击Make按钮,编译无误之后,点击工具栏绿色小三角的Download and Debug按钮,就可以进入仿真了。
msp430全部基础程序集合

本文档由“X-TAB论坛”提供()1 [入门必修]按键检测与程序结构...菜菜//// MC430F224// -----------------// /|\| |// | | |// --|RST in1 |--~^~-------|GND KEY1 1// | in2 |--~^~-------|GND KEY2// | in3 |--~^~-------|GND KEY3// | |// | out1 |------|<|---|Vcc D1 LED// | out2 |------|<|---|Vcc D2 LED// | out3 |------|<|---|Vcc D3 LED////************************MC430F224*********************** *********************#includ e <msp430x22x4.h>//初级用户要习惯采用宏定义,以方便的编写和修改#define keyio 0xf1 //定义按键IO口,所有键口为0.#define key_1 0xfd //定义返回键值1#define key_2 0xfb //定义返回键值2#define key_3 0xf7 //定义返回键值3#define LED_D1_flas h P1OUT^= BIT1#define LED_D2_flas h P1OUT^= BIT2#define LED_D3_flas h P1OUT^= BIT3#define bell_d elay7000//声明子程序unsign ed char key_ch cek(void);void displa y_upd ate(unsign ed char dta);void key_pr ocess_0(void);void key_pr ocess_1(void);void key_pr ocess_2(void);//********************************************************** ***************//将单片机初始化程序放在m ain()前面是方便查看单片机的初始化状态情况.void MCU_in t(void){//默认MCLK主时钟频率为DCO=~800KP1OUT|= BIT1+BIT2+BIT3; //设置LED,上电为灭.电路可以查看M C430F14电路图.P1DIR|= BIT1+BIT2+BIT3; //P1.1设置为输出.//MSP430单片机IO口上电默认方向为输入,所以接按键的I O无需再设为输入.}//********************************************************** ***************void main (void){ unsign ed char key_va lue; //定义键值全局变是WDTCTL = WDTPW + WDTHOL D;//关狗MCU_in t(); //初始化单片机while(1) //主程序主循环{key_va lue=key_ch cek(); //检测,有键按下并松开,返回一个键值.switch(key_va lue) //对键值进行处理.采switc h 语法结构查询{case key_1: key_pr ocess_0(); //调用键处理程序1b reak;case key_2: key_pr ocess_1(); //调用键处理程序2b reak;case key_3: key_pr ocess_2(); //调用键处理程序2b reak;defaul t: ; //调用键处理程序4b reak;}displa y_upd ate(key_va lue); //如果有需要可以在这里加上显示更新程序.key_value=0x00; //最后清除键值.将继续主循环.}}//********************************************************** ***************//按键检测程序//返回值: 无符号字符型键值unsign ed char key_ch cek(void){unsign ed int i;unsign ed char timp,active;active=0;while(!active){while(0xff ==( P2IN | keyio)); //一直等待有键按下timp = P2IN | keyio;//若有键接下了,则读入IO状态.for(i=0;i<7000;i++); //延时,是为了去按键抖动.if (timp ==(P2IN | keyio))//经延时后,还是那键吗?{ active = 1; //是,则按键有效.while(0xff !=( P2IN | keyio)); //一直等待按键松开}else{ //去按键抖动后读入的键值与之前不同.则先效.active = 0; //再循环检测.}}return timp; //返回一个键值.}//********************************************************** ***************void key_pr ocess_0(void) //值处理,用户可以自己修改... {LED_D1_flas h;}//********************************************************** ***************void key_pr ocess_1(void) //值处理,用户可以自己修改... {LED_D2_flas h;}//********************************************************** ***************void key_pr ocess_2(void) //值处理,用户可以自己修改... {LED_D3_flas h;}//********************************************************** ***************void displa y_upd ate(unsign ed char dta){; //用户可以根据需要来放置显示程序,如LCD,LED,Digita l-LED....//灵活应用,}//********************************************************** ***************2 [入门必修]串行异步通讯例子..菜菜微控网原创复制代码//********************************************************** ******************//描述:在微控MC430F224开发板上实现UAR T模块串行异步通讯实验。
MSP430UIF仿真器驱动安装说明

MSP430-UIF全功能仿真器使用说明书2012-09一、功能描述✧USB 接口的 JTAG 仿真器;✧对 MSP430 FLASH 全系列单片机进行编程和在线仿真;✧完全兼容德州仪器原厂 MSP-FET430UIF 开发工具;✧采用德州仪器标准的 2¡7 PIN(IDC-14)标准连接器;✧支持IAR430、AQ430、HI-TECH、GCC 以及TI 一些第三方编译器集成开发环境下的实时仿真、调试、单步执行、断点设置、存储器内容查看修改等;✧支持程序烧写与读取;✧支持 JTAG、SBW(2 Wire JTAG)接口;✧支持固件升级功能。
二、JTAG 连接仿真器 14PIN 的连接头定义(注意第一脚的方向)。
①TI标准4线JTAG接口,(有些比如5系列需要接第8脚TEST引脚)图1:Signal Connections for 4-Wire JTAG Communication②仿真器SBW的接线【以msp430f2010举例】:仿真器--- msp430f2010VCC --- VCCGND --- GNDTDO --- RSTTCK --- TESTSBW接线方式只需要直连即可,目标板的RST、TEST线路上不能有电容、上拉电路等器件。
图2:Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire)三、安装IAR软件:首先安装IAR软件,安装好后设备管理器中,端口下会识别到如下设备:无须再次安装驱动即可直接使用仿真器安装说明:首先运行EW430-IAR-430-510.exe,点击下一步,直到出现下图对话框,要求输入license,此时打开光盘内的注册机IAR kegen PartA.exe,如下图,选择product为430 v5.1,输入注册机内的LICENSE number内容到上图红框中,点击next:此时在下图的框中,输入注册机内的LICENSE key。
MSP430实验板USB_BSL_下载程序说明VER4.0

MSP430实验板USB_BSL_下载程序说明VER4.0MSP430实验板USB(BSL)下载说明书VER4.02012-02-05注:该说明适用于MSP430F148、MSP430F149、MSP430F156、MSP430F169、MSP430F2410、MSP430F2618等64引脚LQFP封装的CPU。
一、安装USB驱动程序首先安装USB驱动程序,安装完成后在Windows的设备管理器中查看串口序号。
图1二、在BSL编程软件中选择串口,并做相应设置1、按照串口序号,选择COM3,BSL编程软贴图如下:图22、可以选择较高的通信波特率以提高下载速度,注意,如果选择了较高的波特率可能会出现下载失败的情况。
图33、点击“载入文件”,选定要下载的文件,注意,下载文件必须是TI-txt 格式,关于TI-txt格式文件的生产方法请参加后面章节。
图4 4、点击“执行”即可实现下载。
图55、选中“自动加载文件”之后,每次下载之前会自动加载所下载的程序代码。
图66、选中“自动下载文件”之后,每次在IAR里面重新编译之后,该下载软件会自动加载并下载重新生成的的程序代码,此时,“自动加载文件”选项会不可用。
注意:要想实现该项功能,必须选中项目工程“…\Debug\Exe\xx.txt”下的xx.txt文件,这样,每次点击IAR里面的编译按钮重新更新xx.txt文件后,下载软件就会自动加载并下载新生成的程序代码。
图77、选中“自动运行代码”之后,每次下载完成,程序会自动复位运行。
图8三、在实验板上做相应跳线使用USB接口下载程序的时候,把J26(J26和J27这两个排针是连接在一起了)BSL_R-TXD、BSL_T-RXD用跳线帽短接起来,再把J27的RTS-TCK、DTR-RST 用跳线帽短接,参见下图所示,然后用USB线和PC机连接好,打开上位机编程软件,参见第二步“在BSL 编程软件中选择串口,并做相应设置”,即可使用USB接口下载程序。
msp430中文资料_数据手册_参数
因此,寄存器操作执行时间是CPU时钟的一个周期。R0到R3中的四个寄存器分别是程序
计数器、堆栈指针、状msp430态寄存器和常量生成器。外围设备通过数据、地址和控制
总线连接到CPU,可以使用所有指令进行处理。指令msp430集指令集由51条指令组成,
有三种格式和七种地址模式。可对字和字节数据进行操作。表1显示了三种结构格式的示
例;地址模式为listedin表外 通过数据、地址和控制总线连接到CPU,可以使用所有指
令进行处理。有完 的模块描述,
MSP430x1xx家庭用户指南,literaturenumber
SLAU049。时钟系统由基本的时钟模块 ,包括对32768-Hz 表晶体 、内部数字
控msp430制振荡器(DCO)和高频晶体振荡器的 。基本 条模块的设计是为了 低
是一种超低功率混合msp430信号单片机,内置16位定时器和14个I/O引脚。典型的应用包
括捕捉模拟信号、将它们转换为数字值、然后处理数据并显示它们或将它们传输到主机
系统的传感器系统。独立射频传感器前端是另一个msp430应用领域1998年12月
MSP430x11xMIXED信号MICROCONTROLLERSSLAS196D 修订655303年9月20044邮政
列超msp430功率微控制器由几个不同的设备组成,其外围设备针对不同的应用。该体系
结构与五种低功耗模式相结合,优化后msp430可在便携式测量应用中延长电池寿命。该
设备具有强大的16位RISC CPU、16位寄存器和常量生成器,这些属性都具有最高的代码
效率。数控振荡器(DCO)允许从低功耗模式唤醒activemode在不到6 s。MSP430x11x系列
体谐振器 外部时钟的16位Timer_A ThreeCapture /比较RegistersD串行机上
MSP430教程16:MSP430单片机的框架程序
MSP430单片机的框架程序(转)下面给出MSP430的程序框架,我们可以在此基础上修改以及添加自己所需的程序。
/******************************************************************* **********文件名:main.c描述:MSP430框架程序。
适用于MSP430F149,其他型号需要适当改变。
不使用的中断函数保留或者删除都可以,但保留时应确保不要打开不需要的中断。
保留中断函数,编译器将会为BSL密码填充所有的字节。
版本:1.0 2005-1-13************************************************************************ *****///头文件#i nclude <MSP430x14x.h>//函数声明void InitSys();int main( void ){WDTCTL = WDTPW + WDTHOLD; //关闭看门狗InitSys(); //初始化start://以下填充用户代码LPM3; //进入低功耗模式n,n:0~4。
若不希望进入低功耗模式,屏蔽本句goto start;/******************************************************************* **********系统初始化************************************************************************ ******/void InitSys(){unsigned int iq0;//使用XT2振荡器BCSCTL1&=~XT2OFF; //打开XT2振荡器do{IFG1 &= ~OFIFG; // 清除振荡器失效标志for (iq0 = 0xFF; iq0 > 0; iq0--); // 延时,等待XT2起振}while ((IFG1 & OFIFG) != 0); // 判断XT2是否起振BCSCTL2 =SELM_2+SELS; //选择MCLK、SMCLK为XT2//以下填充用户代码,对各种模块、中断、外围设备等进行初始化_EINT(); //打开全局中断控制,若不需要打开,可以屏蔽本句}/******************************************************************* **********端口2中断函数************************************************************************ ******/#pragma vector=PORT2_VECTOR__interrupt void Port2(){//以下为参考处理程序,不使用的端口应当删除其对于中断源的判断。
msp430f系列中文资料
超低功耗微控制器MSP430F40xi n de s i g n x31xLCD92x32xLCD84ADC14x33xLCD120Timer_A USART MPY8-bit T/Cx11x1Comp_AX12x USARTi n de s i g n F13xTimer_B ADC12USART Comp_AF14xTimer_B ADC122 USART MPY Comp_ANewNewF41xi n de s i g n F42xi n de s i g n F44xi n de s i g nUltra -low power design withM S P430August 00 / 11FLASH 型的时钟系统(F13x,F14x)2 个晶振, 1 个DCO, 适应不同频率需要采样/转换控制可编程参考源选择片内温度传感器Ultra -low power design withM S P430August 00 / 34F11x 应用实例)Floating Point Package)Starter Kit MSP-STK430X320TI 软件包仿真器评估板TI 软件库C-编译器编程器)TI Programming AdapterAugust 00 / 37New电源的高效率y电池缩减/ 电池寿命延长y电源电路简化/ 可远程供电硬件简化y外部元件极少y集成实时钟y集成LCD 驱动电路y集成ADC加速产品开发y用Flash 或OTP 型可快速制作样机y用Flash 型可作现场更新y容易学习和设计程序y代码效率高廉价的微控制器MSP430和开发工具FET/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)/sc/docs/products/micro/msp430E-mail: lierda@ (wzptt)。
MSP430软件开发指南
4.
3.3.1. 创建 Grace 工程.................................................................................................... 28 3.3.2. 使用 Grace 配置 I/O 口及外设 ............................................................................ 29 3.3.3. 生成可编译文件 ................................................................................................... 35 MSP430 软件开发编程介绍................................................................................................. 37 4.1. MSP430 软件开发流程................................................................................................. 37
3.
Grace ..................................................................................................................................... 28 3.1. 3.2. 3.3.
2.
1.4.1. 创建目标配置文件 ............................................................................................... 14 1.4.2. 启动调试器 ........................................................................................................... 17 430Ware 使用指南 ............................................................................................................... 22 2.1. 430Ware 使用说明 ....................................................................................................... 22 Grace 软件介绍 ............................................................................................................ 28 Grace 安装 .................................................................................................................... 28 Grace 开发实例 ............................................................................................................ 28