高中数学新课标人教A版必修一第二章章节测试题
高中数学优质课件精选人教版A版必修一第二章习题课

B.[2 2,+∞) D.[3,+∞)
解析答案
类型三 对数函数的综合应用 例3 已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图象上任意一点P 关于原点对称的点Q在函数f(x)的图象上. (1)写出函数g(x)的解析式; 解 设P(x,y)为g(x)图象上任意一点, 则Q(-x,-y)是点P关于原点的对称点, ∵Q(-x,-y)在f(x)的图象上, ∴-y=loga(-x+1), 即y=g(x)=-loga(1-x).
第二章 基本初等函数 (Ⅰ)
习题课 对数函数
学习目标
1.巩固和深化对数及其运算的理解和运用; 2.掌握简单的对数函数的图象变换及其应用; 3.会综合应用对数函数性质与其他有关知识解决问题.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 对数概念及其运算 1.a>0,且 a≠1
由指数式对数式互化可得恒等式: alobg=aNN=b⇒ alogaN= N .
解析答案
返回
达标检测
1.若
7 logx
y=z,则(
B
)
A.y7=xz
B.y=x7z
C.y=7xz
D.y=z7x
解析
由
7 logx
y=z,得
xz=7
y,
∴7 y7=(xz)7,则 y=x7z.
1 23 45
解析答案
1-x 2.已知函数 f(x)=lg1+x,若 f(a)=b,则 f(-a)等于( B )
2.对数logaN(a>0,且a≠1)具有下列性质: (1)0和负数没有对数,即N > 0; (2)loga1= 0 ; (3)logaa= 1 .
2020届高中数学(人教版A版必修一)配套课时作业:第二章 基本初等函数 (Ⅰ) 2.2.2(二) Word版含解析

2.2.2 对数函数及其性质(二)1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( ) A .5B.15C.1eD.122.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3 C .y =log a x 2和y =2log a x D .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________.6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x (-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)二、填空题7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________.8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________.9.若log a 2<2,则实数a 的取值范围是______________. 三、解答题10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f(x)=log a x(a>0,a≠1),若f(x1x2…x2010)=8,则f(x21)+f(x22)+…+f(x22010)的值等于( )A.4B.8C.16D.2log8413.已知log m4<log n4,比较m与n的大小.且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.2.2.2 对数函数及其性质(二)双基演练 1.A2.D [y =log a a x =x log a a =x ,即y =x ,两函数的定义域、值域都相同.]3.C [由题意得:2≤12log x ≤4,所以(12)2≥x ≥(12)4,即116≤x ≤14.] 4.A [∵3x +1>1,∴log 2(3x +1)>0.] 5.2解析 由已知得log a (b -1)=0且log a b =1, ∴a =b =2.从而f (2)=log 2(2+2)=2.6.(3,1)解析 若x -2=1,则不论a 为何值,只要a >0且a ≠1,都有y =1.作业设计1.D [因为0<log 53<log 54<1,1<log 45, 所以b <a <c .]2.D [∵-1≤x ≤1, ∴2-1≤2x≤2,即12≤2x≤2.∴y =f (x )的定义域为[12,2]即12≤log 2x ≤2,∴2≤x ≤4.] 3.C [∵log a 8=3,解得a =2,因为函数f (x )=log a |x |(a >0且a ≠1)为偶函数,且在(0,+∞)为增函数,在(-∞,0)上为减函数,由-3<-2,所以f (-3)>f (-2).]4.B [函数f (x )=a x +log a (x +1),令y 1=a x ,y 2=log a (x +1),显然在[0,1]上,y 1=a x 与y 2=log a (x +1)同增或同减.因而[f (x )]max +[f (x )]min =f (1)+f (0)=a +log a 2+1+0=a ,解得a =12.]5.B [f (-x )=lg 1+x 1-x =lg(1-x 1+x )-1=-lg 1-x1+x=-f (x ),则f (x )为奇函数, 故f (-a )=-f (a )=-b .]6.C [由y =3x(-1≤x <0)得反函数是y =log 3x (13≤x <1),故选C.] 7.b ≤1解析 由题意,x ≥1时,2x -b ≥1. 又2x ≥2,∴b ≤1. 8.[12,1)∪(1,2]解析 ∵|y |>1,即y >1或y <-1, ∴log a x >1或log a x <-1, 变形为log a x >log a a 或log a x <log a 1a当x =2时,令|y |=1, 则有log a 2=1或log a 2=-1, ∴a =2或a =12.要使x >2时,|y |>1.如图所示,a 的取值范围为1<a ≤2或12≤a <1.9.(0,1)∪(2,+∞)解析 log a 2<2=log a a 2.若0<a <1,由于y =log a x 是减函数,则0<a 2<2,得0<a <2,所以0<a <1;若a >1,由于y =log a x 是增函数, 则a 2>2,得a > 2.综上得0<a <1或a > 2.10.解 由a >0可知u =3-ax 为减函数,依题意则有a >1. 又u =3-ax 在[0,2]上应满足u >0, 故3-2a >0,即a <32.综上可得,a 的取值范围是1<a <32.11.解 (1)∵函数f (x )的图象关于原点对称, ∴函数f (x )为奇函数, ∴f (-x )=-f (x ),即12log 1+ax -x -1=-12log 1-ax x -1=12log x -11-ax ,解得a =-1或a =1(舍).(2)f (x )+12log (x -1)=12log 1+x x -1+12log (x -1)=12log (1+x ),当x >1时,12log (1+x )<-1,∵当x ∈(1,+∞)时,f (x )+12log (x -1)<m 恒成立,∴m ≥-1.12.C [∵f (x 1x 2…x 2010)=log a (x 1x 2…x 2010)=8,f (x 21)+f (x 22)+…+f (x 22010)=log a (x 21x 22…x 22010)=2log a (x 1x 2…x 2010)=2×8=16.]13.解数形结合可得0<n<m<1或1<n<m或0<m<1<n.。
高中数学人教A版必修一优化练习第二章章末检测含解析

一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选
项中,只有一项是符合题目要求的)
4
1. e-3 2=( ) A.e-3
B.3-e
C. 3-e
D.± 3-e
解析:∵e<3,∴e-3<0,
1
1
1
∴4 e-3 2=[(e-3)2] 4 =[(3-e)2] 4 =(3-e) 2 4 = 3-e.
A.0
B.1
C.ln(ln 2)
D.2
解析:∵0<ln 2<1,∴f(ln 2)=eln 2-1=2-1=1.
答案:B 4.函数 f(x)= x ·ax(a>1)的图象的大致形状是( )
|x|
解析:当 x>0 时,f(x)=ax,
1
当 x<0 时,f(x)=-ax,
则 f(x)=|xx|·ax(a>1)的图象为 B.
解析:题设等价于 ax=x+a 有两个解,即 y=ax 与直线 y=x+a 有两个交点,如
图所示:
答案:a>1 16. 已知 f(x)是定义在 R 上的偶函数,且在区间(-∞,0)上单调递增.若实数 a 满足 f(2a-1)>f(- 2),则 a 的取值范围是________. 解析:∵f(x)是偶函数,且在(-∞,0)上单调递增, ∴在(0,+∞)上单调递减,f(- 2)=f( 2), ∴f(2|a-1)| >f( 2),∴2 |a- 1<| 2=2 .
即 f(x)的定义域是(-∞,0)∪(0,+∞).
(2)由(1)知定义域是(-∞,0)∪(0,+∞),关于原点对称, 则 f(-x)=2-x1-1+21
【人教A版】高中数学必修一第一、二章复习题(含答案)

人教A 版必修一第一、二章阶段性复习试题一、选择题1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则u C A =( )A. {}2,4,6B. {}1,3,6,7C. {}1,3,5,7D. ∅ 2.下列函数中,在区间(0,)+∞上是增函数的是( )A. 21y x =-+B.23y x =-+C. 3log y x =D.1()2x y =3.函数f (x 3log (4)x -的定义域是( )A. ∅ B .()1,4 C. [)1,4 D. (-∞,1) [4,+∞]4.下列四组函数中表示同一函数的是( )(A )f (x )=x ,g (x )=2)x ( (B )f (x )=x 2,g (x )=xx 3(C )f (x )=2x ,g (x )=|x| (D )f (x )=0,g (x )=4x -+x 4-5.若==x x 则,25102( ) A 、51lgB 、5lgC 、5lg 2D 、51lg 2 6.函数223,[0,3]y x x x =-++∈的值域是( )A.(,4]-∞ B [4,)+∞ C.[0,3] D.[0,4]7.⎩⎨⎧>≤=0,log 0,3)(2x x x x f x 则)]41([f f =( )A 、9B 、91C 、1D 、 3 8.已知()bx ax x f +=2是定义在[]a a 2,1-上的偶函数,那么b a +的值是( ) A.31-B.31C.21D.21- 9.三个数为0.233log 0.2,3,0.2a b c ===,则,,a b c 的大小关系为( ) A.a c b >> B.a b c << C. a c b << D. a b c >> 10.已知42()f x ax bx x m =+-+,(2)1f =,则(2)f -=( ) A.5 B.0 C. 3 D. -211.设奇函数()x f 在()0,∞-上为减函数,且()02=f ,则()()023>--xx f x f 的解集为( )A.()()+∞⋃-,20,2B.()()2,02,⋃-∞-C.()()∞+⋃-∞-.22.D.()()2,00,2⋃- 12. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是( ) A.0<m ≤4 B.0≤m ≤1 C.m ≥4 D.0≤m ≤4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.幂函数()f x 的图象过点,则()f x 的解析式_____________ 14. 已知()x f 是在R 上的奇函数,当0<x 时,()xx f ⎪⎭⎫⎝⎛=31,那么___________21=⎪⎭⎫⎝⎛f 15.设.__________,12154==+==m ba mb a 则且,. 16.设函数()f x x x bx c =++,给出下列4个命题:①0,0b c =>时,方程()0f x =只有一个实数根;②0c =时,()y f x =是奇函数;③()y f x =的图象关于点()0,c 对称;④方程()0f x =至多有2个不相等的实数根.上述命题中的所有正确命题的序号是 . 三、解答题 17.化简求值(1)10.500.25325277()()()16988----+(2)2(lg 2)lg 2lg50lg 25+•+18. 已知集合A ={x |2-a ≤x ≤2+a },B ={x |x ≤1,或x ≥4}.(1)当a =3时,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围.19. 高一(1)班某个研究性学习小组进行市场调查,某生活用品在过去100天的销售量和价格均为时间t 的函数,且销售量近似地满足()()N t t t t g ∈≤≤+-=,1001110.前40天的价格为()()4018≤≤+=t t t f ,后60天的价格为()()10041695.0≤≤+-=t t t f . ⑴试写出该种生活用品的日销售额S 与时间t 的函数关系式; ⑴试问在过去100天中是否存在最高销售额,是哪天?20.已知f (x )=log 2(1+x )+log 2(1-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明; (3)求f ⎝⎛⎭⎪⎫22的值.21. (本小题满分12分)已知函数y =M 。
2020新版教材人教A版高中数学必修第一册第二章2.2.1基本不等式

b 2
ab
(a 0, b 0)
一、复习引入
重要不等式:如果a,b∈R,那么a2+b2≥2ab
(当且仅当a=b 时,取“=”)
注意:1.指出定理适用范围: a,b R
2.强调取“=”的条件: a b
如果a > 0,b > 0,我们用 a ,b 分别 代替上式中的 a,b, 可得:
a b 2 ab
x
因此f(x)≤ 1 2 6
当且仅当 2x 3 ,即 x2 3 时,式中等
x
2
号成立。
由于x>0,所以 x
6 2
,式中等号成立,
因此 f (x)max 1 2 6
,此时 x 6 。
2
重要不等式 a2 b2 2ab
基本不等式a b 2 ab (a、b∈R+) 结(1)两个正数积为定值,和有最小值。 论(2)两个正数和为定值,积有最大值。
当且仅当x 4 ,即x 2时,等号成立. x
2.求以下问题中的最值 :
(1)若a 0,则当a (2)x, y都为正数,
且 _232_x__y时,42a, xy的9a 有最最大小值值是__11__2____;.
2
3.已知x>0, y>0, xy=24, 求4x+6y的最小值,并说 明此时x,y的值.
AC=a,BC=b.过C点作垂直于AB的弦DE, 连
接AD,BD.你能利用这个图形,得出基本不等
式的几何解释吗?
D
A
a Cb B
E
证明:连接OD,OD a b .又 △ ACD ∽ △ DCB ,
则 CD ab
2
当a≠b时,OD>CD,即 当a=b时,OD=CD,即
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
高中数学必修一和必修二第一二章综合试题人教A版含答案
1 / 8高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分、选择题(每小题5分,共60分)1•设集合 A = {4,5,7,9} ,B = {3,4,7,8,9},全集 A . 3 个B.4个C2•下列函数为奇函数的是 ( )A . y = x 2B3.y = xC13.函数y = -+ log 2(x + 3)的定义域是()XA . RB . (— 3,+^) CA. 120B. 150C. 6. 已知f (x 3— 1) = x + 1,贝U f ⑺ 的值,为(A. ^7 — 1B.芋 + 1 C9 7. 已知 log 23 = a , log 25= b ,贝U log 2 等于(52A . a — bB . 2a — b&函数y = x 2 + x ( —1< x < 3)的值域是(1 A . [0,12] B . [ — 4, 12] 9•下列四个图象中,表示函数 f (x ) = x —丄的图象的是()xU = A U B , .5个则集合?U (A n BI 中的兀素共有(D.6个x.y =2D.y = log 2X(—m,- -3)D.(—3,0) U (0 ,+sABCD 的直观图(斜二测),若 AD 1 // y /轴,AB 」/ x /轴,AQ C 1D 1 32 , A 1D 1 则平面图形ABCD 的面积是(A.5B.10C.)5.2D.10 2180 D. 240) 3D. 22aC.bD.)13 C .[—2, 12] D .[4, 12] 4.梯形AB i C i D i (如图)是一水平放置的平面图形5.已知圆锥的表面积是底面积的 3倍,那么该圆锥的侧面展开图扇形的圆心角为(210. 函数y=—x + 8x—16 在区间[3,5]上( )A.没有零点 B .有一个零点 C .有两个零点 D .有无数个零点11. 给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直•其中真命题的个数是()A. 4 B . 3 C. 2 D. 112. 已知f(x)是定义在(0 ,+^)上的增函数,若f(x)>f(2 —x),则x的取值范围是()A. x>1 B . x<1 C . 0<x<2 D . 1<x<2二、填空题(每小题5分,共20分)13 .已知集合A= {x| x<—1 或2< x<3}, B= {x| —2< x<4},贝U A U B= ________ .14 .函数y= ―3 —4x 的定义域为 ____________ .15 .据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已2 2 2 知近两年污染区域由0.16 km 降至0.04 km,则污染区域降至0.01 km 还需要_______________________________________________________________________________________ 年.16 .空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC = 4、BD = 2. 5,那么AC与BD所成角的度数是__________ .三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17 . (10 分)已知集合A= {x|1 w x<4}, B= {x| x—a<0},(1) 当a= 3 时,求A n B;(2) 若A? B,求实数a的取值范围.⑵ 解方程:log 3(6x - 9) = 3.19. (12分)判断函数f (x ) = a x 丄〒+ x 3 + 2的奇偶性.a — 1 220. 如图,在长方体 ABC —ABGD 中,AB= 2, BB = BC= 1, E 为DC 的中点,连结 ED EC EB 和DB(1) 求证:平面 EDBL 平面EBC (2) 求二面角E — DB- C 的正切值.18. (12 分)(1)计算:(2詁 +(lg5) 0 + (分3 ;fi21. (12分)已知正方体ABCD A1B1C1D1, O是底ABCD对角线的交点求证:(1) C1O //面AB1D1;(2) AC 面AB1D1.22. ( 12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1) = 1, g(1) = 1,(1) 求f(x), g(x);(2) 判断函数h(x) = f (x) + g(x)的奇偶性;1(3) 证明函数S(x) = xf(x) + gq)在(0,+m)上是增函数.咼 数学期末考试模拟试题(答案)、选择题(每小题5分,共60分)1.解析: U = A U B= {3,4,5,7,8,9}, A n B= {4,7,9} , • ?u (A A B) = {3,5,8},有 3 个兀素,故选 A.答案:A2.解析: A 为偶函数,C D 均为非奇非偶函数. 答案:B3.解析: 要使函数有意义,自变量 x 的取值须满足x 工0x + 3>0,解得x >- 3且& 0.答案:D4.解析:梯形A 1B 1C 1D 1上底长为2,下底长为3腰梯形AD ,长为1,腰A 1D 1与下底GD ,的夹角为45,可知,平面图形 ABCD 的面积为5.答案: 5.、填空题(每小题5分,共20分) 13. 答案:{x |x <4}J 2 所以梯形 AB 1C 1D 1的高为一兰,所以梯形 215yf2 A 1B 1C 1D 1 的面积为一(2+3)-= 22J 2,根据S 直观=—S 平面 4 4 360 - 解析: 解析: 解析:解析:由 r 2 rl3 r 2知道I 2r 所以圆锥的侧面展图扇形圆心角度数为360 180 令 X 3 — 1 = 7, ,故选C 答案:C得x = 2 ,••• f(7) = 3.答案:C 9 〜log 2 = log 29 — log 25= 2log 23 — log 25= 2a — b .答案:B5 画出函数y = x 2 + x ( — K x < 3)的图象,由图象得值域是 [—1412].答案:B函数y = x , y =— g 在(0 ,+^)上为增函数,所以函数 f (x ) = x — x 在(0,+^)上为增函数,故满足条件的图象为 A.答案:A10.解析:•/ y =— x 2 + 8x — 16=— (x — 4)2,「.函数在[3,5]上只有一个零点4.答案:B 11 •解析:因为①②④正确,故选 B.x >012.解析:由题目的条件可得 2— x >0 x >2 — x,解得1<x <2,故答案应为D.答案:D114. 解析:根据对数函数的性质可得log 2(3 —4x)>0= log 21,解得3- 4x> 1,得x<色,所以定义域1 1为(一R, 2】.答案:(—R,2 t 2 1 1 1 t 2 215. 解析:设S= a,则由题意可得a2= 4,从而a=㊁,于是S=(㊁),设从0.04 km2降至0.01 km 2还1 1需要t年,则(2)t= 4,即t = 2.答案:216、解析:如图,取AD 中点Q,连PQ , RQ,则PQ .5 , RQ 2,而PR=3,所以PQ2 RQ2 PR2, 所以VPQR为直角三角形,PQR 90,即PQ与RQ成90的角,所以AC与BD所成角的度数是90 答案:90三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17. (10 分)已知集合A= {x|1 w x<4}, B= {x| x—a<0},(1) 当a= 3 时,求A n B;⑵若A? B,求实数a的取值范围.解:(1)当a= 3 时,B= {x| x—3<0} = {x| x<3},则有A n B= {x|1 w x<3}.(2) B= {x| x —a<0} = {x| x<a},当A? B时,有a>4,即实数a的取值范围是[4 ,+s).(2|)1 + (lg5) 0+ (欲3 ;18. (12 分)(1)计算:x⑵解方程:log 3(6 —9) = 3.25 10 3 3 —15 4解:(1)原式=(y)2 + (lg5) + [(才)]3= 3 + 1+ 3 = 4.(2)由方程log 3(6x—9) = 3 得6x—9= 33= 27,二6x= 36 = 62,二x = 2. 经检验,x= 2是原方程的解.1 3 119. (12分)判断函数f(x) =+ x3+的奇偶性.a —1 2解:由a x—1工0,得X M0,•••函数定义域为(—0, 0) U (0,+^), 131 a x 3 1f ( — x ) = —x + ( — x ) + = x — x + —a — 1 2 1 — a 2xa — 1 +1 3 1 x — x + ~ = 1 — a 2• f (x )为奇函数.20. (12分)如图,在长方体 ABC —ABCD 中,AB= 2, BB = BC = 1, E 为DC 的中点,连结 ED , EQEB 和 DB(1) 求证:平面 EDBL 平面EBQ (2) 求二面角E — DB- C 的正切值.证明:(1)在长方体 ABC — ABCD 中,AB= 2, BB = BC= 1, E 为DC 的中点.•••△ DDE 为等腰直角三 角形,/ DED= 45 ° .同理/ CEC= 45 ° .• DEC 90,即 DEL EC在长方体 ABC — A 1B 1C 1D 1 中,BC L 平面 D 1DCC 1,又 DE 平面 D 1DCC 1 ,⑵ 解:如图,过E 在平面D 1DCC 1中作EO L DC 于 O 在长方体 ABC — ABC 1D 1 中,T 面 ABCD L 面 D 1DCC 1 , • EO L 面 ABCD过O 在平面DBC 中作OF L DB 于F ,连结EF, • EF L BD / EFC 为二面角E — DB- C 的平面角.利用平面几何知识可得 OF = 1,( 第V520题)又 OE= 1,所以,tan EFO= .5 . 21. (12 分) 已知正方体 ABCDB 1C 1D 1 , O 是底ABCD 对角线的交点求证:(1) C 1O //面 AB 1D 1 ;(2 ) AC 面 AB 1D 1 .证明:(1)连结 A 1C 1,设 AC 1 I B 1D 1 O 1 连结 AO 1 ,• BC L DE 又 EC BC C ,• DEL 平面EBC •••平面 DEB 过DE 二平面 DE L 平面EBCx 3— 2——f (x ).C 1CQ ABCD A B1C1D1是正方体A1ACC1是平行四边形A1C1 PAC 且AG AC又O1,O分别是AG,AC的中点,OQ PAO且O1C1 AOAOC1O1是平行四边形C1O PAO1, AO1面AB1D1, C1O 面AB1D1GO P面AB1D1CC1 B1 D!Q CC1面AB1GD1又Q AG B1D1 , B1D1面AC1C即AC B1D1同理可证AC AB1,又D1B1 I AB1 B1AC 面AB1D122. (12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1) = 1, g(1) = 1, ⑴求f (x),g(x);(2)判断函数h(x) = f (x) + g(x)的奇偶性;1⑶证明函数S(x) = xf (x) + gq在(0,+m)上是增函数.k2解:(1)设f (x) = k1X(k工0), g(x) = 一(k2工0).x1T f (1) = 1, g(1) = 1,- k1= 1, k2= 1. ••• f (x) = x, g(x) = x・z\.1⑵由(1)得h(x)= x + x,则函数h(x)的定义域是z\.(— a, 0) U (0 ,+s),1 1h( —x) = —x+ —- = —(x + 一)=—h(x),•函数h(x) = f (x) + g(x)是奇函数.x x⑶证明:由(1)得S(x) = x2+ 2. 设X1, X2€ (0 ,+a),且X1<X2,2 2 2 2则S( X1) —S( X2) =(X1 + 2) —(X2 + 2) = X1 —X2 =(X1 —X2)( X1 + X2).■/ X1, X2 € (0 ,+a),且X1<X2,「. X1—X2<0, X1 + X2>0. • S(X1) —S( X2)<0. •• S( X1)< S( X2).1•函数S(x) = xf (x) + g(p在(0,+a)上是增函数.。
(完整word版)高中数学必修一和必修二第一二章综合试题(人教A版含答案)(word文档良心出品)
高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( )A.5B.10C.5.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是()10.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.19.(12分)判断函数f(x)=1a x-1+x3+12的奇偶性.20.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ; (2)1A C ⊥面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.D 1ODB AC 1B 1A 1C高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x-x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形D 1ODBAC 1B 1A 1C11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =11AOC O ∴是平行四边形111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111A C B D ⊥, 1111B D AC C ∴⊥面 111AC B D ⊥即 同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2, 则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。
高中数学人教A版(2019)选择性必修第一册第二章——2.2.3直线的一般式方程B含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!高中数学人教A 版(2019)选择性必修第一册第二章——2.2.3直线的一般式方程B未命名一、单选题1.下列有关直线():10l x my m +-=ÎR 的说法中正确的是( ).A .直线l 的斜率为m -B .直线l 的斜率为1m-C .直线l 过定点()0,1D .直线l 过定点()1,02.已知直线l :20ax y a -+-=的横截距与纵截距相等,则a 的值为( )A .1B .1-C .1-或2D .23.如果AB >0且BC <0,那么直线Ax +By +C =0不经过第( )象限A .一B .二C .三D .四4.“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.设11(,)M x y ,22(,)N x y 为不同的两点,直线:0l Ax By C ++=.记1122Ax By CAx By Cl ++=++,则下列结论中正确的个数是( )①不论l 为何值,点N 都不在直线l 上;②若1l =,则过,M N 的直线与直线l 相交;③若1l =-,则直线l 经过MN 的中点.A .0个B .1个C .2个D .3个.6.已知)(111,P a b 与)(222,Pa b 是直线2y kx =+(k 为常数)上两个不同的点,则关于111:20l a x b y +-=和222:20l a x b y +-=的交点情况是( )A .无论k ,1P ,2P 如何,总有唯一交点B .存在k ,1P ,2P 使之有无穷多个交点C .无论k ,1P ,2P 如何,总是无交点D .存在k ,1P ,2P 使之无交点二、多选题7.如果0AB <,0BC <,那么直线0Ax By C ++=经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.下列说法正确的是( )A .直线32()y ax a a R =-+Î必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=三、填空题9.过点()1,2C ,且与直线20x y --=垂直的直线方程为______.10.过点()1,1-且与直线210x y +-=垂直的直线方程为______.(用一般式表示)11.已知圆C :()2229x y -+=,点P 是圆C 上的动点,点()1,2M ,当MPC Ð最大时,PM 所在直线的方程是______.12.直线13kx y k -+=,当k 变动时,所有直线都通过定点______.四、解答题13.已知直线过点(2,1)A 和(6,2)B -两点(1)求出该直线的直线方程(用点斜式表示)(2)将(1)中直线方程化成斜截式,一般式以及截距式且写出直线在x 轴和y 轴上的截距.14.已知圆C :(x +2)2+y 2=5,直线l :mx ﹣y +1+2m =0,m ∈R .(1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程.15.已知直线l 分别交梯形ABCD 两底BC 、AD 于M 、N ,若l 恰平分梯形的面积,求证:直线l 恒过一定点.16.求满足下列条件的直线方程:(1)经过()1,3A -,且与直线360x y --=平行;(2)在y 轴上的截距与在x 轴上的截距之差为3,且垂直于过()2,3M 与()0,4N 两点的直线.参考答案:1.D【分析】讨论0m ¹和0m =两种情况可得.【详解】直线:10l x my +-=可化为()1my x =--.当0m ¹时,直线l 的方程可化为()11y x m=--,其斜率为1m -,过定点()1,0;当0m =时,直线l 的方程为1x =,其斜率不存在,过点(()1,0,所以A ,B ,C 不正确,D 正确.故选:D.2.C【解析】由直线方程,分别令0y =,0x =,然后根据直线横截距与纵截距相等求解.【详解】由题意得:0a ¹,由直线l :20ax y a -+-=,令0y =,得2a x a-=令0x =,得2y a=-因为直线l :20ax y a -+-=的横截距与纵截距相等,所以22a a a-=-,即220a a --=,解得2a =或1a =-,故选:C 3.C【分析】根据给定条件,确定直线的斜率和纵截距的取值即可判断作答.【详解】因AB >0且BC <0,则直线Ax +By +C =0的斜率20A ABk B B=-=-<,纵截距20C BCb B B=-=->,所以直线Ax +By +C =0必过第一、二、四象限,不经过第三象限.故选:C 4.A【分析】直线10x ay +-=与直线10ax y -+=相互垂直得到a R Î,再利用充分必要条件的定义判断得解.【详解】因为直线10x ay +-=与直线10ax y -+=相互垂直,所以1()(1)0a a ´+´-=,所以a R Î.所以1a =时,直线10x ay +-=与直线10ax y -+=相互垂直,所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的充分条件;当直线10x ay +-=与直线10ax y -+=相互垂直时,1a =不一定成立,所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的非必要条件.所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的充分非必要条件.故选:A【点睛】方法点睛:充分必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法. 要根据已知条件灵活选择方法求解.5.C【分析】①通过分母不为0,确定220Ax By C ++¹,可以判断①的对错;②③通过对条件整理变形,利用直线的相关性质判断.【详解】因为1122Ax By CAx By Cl ++=++,分母不为0,所以220Ax By C ++¹,所以不论l 为何值,点N 都不在直线l 上,①正确;当1l =时,设1122Ax By C Ax By C k ++=++=,(0k ¹),则11(,)M x y ,22(,)N x y 为直线:m Ax By C k ++=上的两个点,显然直线l 与直线m 平行,故过,M N 的直线与直线l 不会相交,②错误;当1l =-时,设11220Ax By C Ax By C +++++=,整理得:1212022x x y y A B C ++æöæö++=ç÷ç÷èøèø,因为11(,)M x y ,22(,)N x y ,所以MN 的中点坐标为1212,22x x y y ++æöç÷èø,故若1l =-,则直线l经过MN 的中点.③正确;正确的个数为2个故选:C 6.A【分析】根据1,P 2P 在直线2y kx =+可得()21,2i i b ka i =+=,从而可得12,l l 有唯一交点,从而可得正确的选项.【详解】因为)(111,P a b 与)(222,P a b 是直线2y kx =+(k 为常数)上两个不同的点,所以()21,2i i b ka i =+=即()()1201,2i i a k b i ´-+´-==,故(),1k -既在直线1l 上,也在直线2l 上.因为)(111,P a b 与)(222,P a b 是两个不同的点,故1l 、2l 不重合,故无论k ,1P ,2P 如何,总有唯一交点(),1k -.故选:A.7.ABC【分析】确定直线0Ax By C ++=在x 轴、y 轴上截距的正负,数形结合可知直线0Ax By C ++=所经过的象限.【详解】直线0Ax By C ++=在x 轴上的截距为0C BCA AB-=-<,在y 轴上的截距为0CB->,如下图所示:由图象可知,直线0Ax By C ++=经过第一、二、三象限.故选:ABC.8.ABD【分析】将方程化为点斜式,即可判断A ;令0x =,得出在y 轴上的截距,进而判断B ;将一般式方程化为斜截式,得出斜率,进而得出倾斜角,从而判断C ;由两直线垂直得出斜率,最后由点斜式得出方程,进而判断D.【详解】32()y ax a a R =-+Î可化为()23y a x -=-,则直线32()y ax a a R =-+Î必过定点(3,2),故A 正确;令0x =,则2y =-,即直线32y x =-在y 轴上的截距为2-,故B 正确;10y ++=可化为1y =-,则该直线的斜率为,即倾斜角为120°,故C 错误;设过点(1,2)-且垂直于直线230x y -+=的直线的斜率为k因为直线230x y -+=的斜率为12,所以112k ×=-,解得2k =-则过点(1,2)-且垂直于直线230x y -+=的直线的方程为22(1)y x -=-+,即20x y +=,故D 正确;故选:ABD【点睛】本题主要考查了求直线过定点,求直线的倾斜角,由两直线垂直求直线方程,属于中档题.9.30x y +-=【分析】先由垂直关系求出所求直线的斜率,再利用点斜式可求出直线方程【详解】解:因为所求直线与直线20x y --=垂直,所以所求直线的斜率为1-,因为所求直线过点()1,2C ,所以所求直线方程为2(1)y x -=--,即30x y +-=,故答案为:30x y +-=【点睛】此题考查两直线的位置关系,考查直线方程的求法,属于基础题10.230x y -+=【分析】与直线0Ax By n ++=垂直的直线方程可设为0Bx Ay m -+=,再将点的坐标代入运算即可得解.【详解】解:与直线210x y +-=垂直的直线方程可设为20x y m -+=,又该直线过点()1,1-,则()2110m ´--+=,则3m =,即过点()1,1-且与直线210x y +-=垂直的直线方程为230x y -+=,故答案为:230x y -+=.11.230x y -+=【分析】设PM x =,在PMC D 中,由余弦定理,得cos MPC Ð263x x=+,利用基本不等式可以找到PM ,易得此时PM MC ^,可得PM 的斜率,从而求得PM 的方程.【详解】设PM x =,则3MC PC ==,在PMC D 中,由余弦定理,得295cos 23x MPC x +-Ð=××22633x x =+³,当且仅当2x =时,等号成立,此时MPC Ð最大,且222PC PM MC =+,故PM MC ^,又20212MC k -==--,所以12PM k =,故PM 所在直线的方程为12(1)2y x -=-,即230x y -+=.故答案为:230x y -+=.【点睛】本题考查点斜式求直线的方程,涉及到余弦定理、基本不等式、圆等知识,考查学生的计算能力以及逻辑推理能力,是一道中档题.12.(3,1)【解析】将直线方程变形为(3)1k x y -=-,得到3010x y -=ìí-=î,解出,x y ,即可得到定点坐标.【详解】由13kx y k -+=,得(3)1k x y -=-,对于任意k ÎR ,式子恒成立,则有3010x y -=ìí-=î,解出3,1x y ==,故答案为:(3,1).【点睛】本题考查直线过定点问题,直线111222()0k A x B y C A x B y C +++++=一定过两直线1110A x B y C ++=、2220A x B y C ++=的交点.13.(1)32(6)4y x +=--;(2)答案见解析.【解析】(1)先求斜率,再利用点斜式写出直线方程;(2)由31(2)4y x -=--,得3542y x =-+,可化为34100x y +-=,从而可得答案【详解】解;(1)直线AB 的斜率为34AB k =-故直线AB 的点斜式方程为:31(2)4y x -=--或32(6)4y x +=--.(2)由31(2)4y x -=--,得3542y x =-+,可化为34100x y +-=,当0x =时,52y =,当0y =时,103x =,所以斜截式:3542y x =-+,一般式:34100x y +-=,截距式:110532x y +=,在x 轴上的截距为103;在y 轴上的截距为5214.(1)相交,理由见解析;(2)()2211224x y æö++-=ç÷èø【分析】(1)根据直线方程确定直线恒过的定点,结合点与圆的位置关系,即可容易判断直线与圆的位置关系;(2)根据AB 中点在直线l 上,结合CM AB ^,即可得到点M 的轨迹方程,注意讨论斜率是否存在.【详解】(1)直线l :120mx y m -++=,也即()12y m x -=+,故直线恒过定点()2,1-,又()222215-++<,故点()2,1-在圆C 内,此时直线l 一定与圆C 相交.(2)设点(),M x y ,当直线AB 斜率存在时,12AB y k x -=+,又2MC yk x =+,1AB MC k k ´=-,即1122y yx x -´=-++,化简可得:()()22112,224x y x æö++-=¹-ç÷èø;当直线AB 斜率不存在时,显然中点M 的坐标为()2,1-也满足上述方程.故M 点的轨迹方程为:()2211224x y æö++-=ç÷èø.【点睛】本题考查直线恒过定点的求解,点与圆的位置关系以及动点的轨迹方程,属综合中档题.15.证明见解析【分析】建立直角坐标系,设(,0)A a ,(,)B b h ,(,)C c h ,(0,0)D .设()1,M t h ,()2,0N t (其中a 、b 、c 、h 为常数,1t 、2t 为参变量),根据梯形的面积公式可得22()(42)0hx a b c y y h t -+++-=,由恒等式思想可得证.【详解】证明:建立如图所示的直角坐标系,设(,0)A a ,(,)B b h ,(,)C c h ,则(0,0)D .设()1,M t h ,()2,0N t (其中a 、b 、c 、h 为常数,1t 、2t 为参变量),则梯形ABCD 的面积11()2S a b c h =+-,梯形NMCD 的面积()21212S t t c h =+-.依题意,122S S =,()1211()222a b c h t t c h \+-=×+-,则122a b ct t +++=.①又直线l 的方程:()212h y x t t t =--,()122ht t x t y \-=-.②①-②消去1t ,得22()(42)0hx a b c y y h t -+++-=.对2t 的任意实数值,上式恒成立.2()0,420hx a b c y y h -++=ì\í-=î,4.2a b c x h y ++ì=ïï\íï=ïî(常数)故直线l 恒过定点,42a b c h ++æöç÷èø.16.(1)360x y -+=(2)220x y -+=【分析】(1)根据题意,设所求直线为30x y b -+=,进而将A 的坐标代入解出b ,最后得到答案;(2)根据题意先求出直线MN 的斜率,进而得到所求直线的斜率,并设为点斜式,然后根据截距关系求出答案.(1)解:设所求直线的方程为30x y b -+=,将A 的坐标代入,得6b =,则所求直线的方程为360x y -+=.(2)解:由题意得431022MN k -==--,所求直线的斜率12MN k k =-=.设所求直线的斜截式方程为2y x b =+.当0x =时,y b =,当0y =时,2b x =-,由32b b +=,得2b =,故所求直线的方程为220x y -+=.。
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(2)
一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞2.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .33.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-4.已知(1,0),(1,0)A B -,点M 是曲线x =上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ5.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<<D .2abv a b=+ 6.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .167.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+8.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15 D .a ≤159.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________.. 14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______.19.函数()2436x x f x x ++=-的值域为__________.20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知0,0x y >>,且440x y +=. (1)求xy 的最大值;(2)求11x y+的最小值.22.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.23.已知命题p :方程240x mx ++=无实数根:命题q :不等式()2310x m x +-+>在x ∈R 上恒成立.(1)如果命题p 是假命题,请求出实数m 的取值范围;(2)如果命题p q ∨为真命题,且命题p q ∧为假命题,请求出实数m 的取值范围.24.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .25.(理)已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >. (1)求实数a ,b 的值;(2)解关于x 的不等式()()0ax b x c -->(c 为常数).26.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥ 函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪,即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.4.C解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.5.C解析:C根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s s a b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.6.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->,所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.7.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15,所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<,即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A2211aba b a b>=++,所以排除选项B ;接着根据基本>=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误;对于选项B 2211aba b a b>=++,故选项B 错误;对于选项C>=C 错误;对于选项D :()22222222a b a ab b a b +>++=+, 所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x xm m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12xt =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)【分析】由条件可得()2112112x y x y x y x y y x ⎛⎫+=+=++⎪⎭+⎝+,利用均值不等式可得答案. 【详解】 ()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即x y ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故答案为:32+ 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题 解析:10【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】 49abc a b =+4994a b c ab ab +∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】 根据平行四边形性质可得()22222a b a b a b++-=+,再结合基本不等式即可求出b 的最小值.【详解】 由平行四边形性质可得:()22222a b a b a b ++-=+,由基本不等式可得:()2222a b a b a b a b ++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b ab a b ++-+≥,即()224212b +≥, 所以3b ≥,所以b 的最小值为.【点睛】 本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.19.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题解析:(),161667,⎡-∞-++∞⎣ 【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域.【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++, 当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣. 故答案为: (),161667,⎡-∞-++∞⎣. 【点睛】本题考查函数的值域,注意基本不等式的应用,属于基础题. 20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】 由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去),所以x+y 的最小值为6.当且仅当x=y=3时取等.故答案为6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.无22.无23.无24.无25.无26.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.若幂函数y=f(x)的图象经过点9,13,则f(25)=( )
A.15 B.13
C.125 D.5
解析: 设f(x)=xα,∵图象经过点9,13
∴9α=13,∴α=-12,即f(x)=x-12
f(25)=25-12=15,故选A.
3.函数f(x)=3x21-x+lg3x+1的定义域是( )
A.-13,+∞ B.-13,1
C.-13,13 D.[0,1)
解析: 要使函数有意义,只须使 1-x>03x+1>0lg3x+1≥0
∴ x<1x>-13x≥0
∴0≤x<1.故选D.
4.设2a=5b=m,且1a+1b=2,则m=( )
A.10 B.10
C.20 D.100
解析: 2a=5b=m
∴a=log2m,b=log5m
∴1a+1b=logm2+logm5=logm10=2
∴m=10
答案: A
5.设a>1,则log0.2a,0.2a,a0.2的大小关系是( )
A.0.2a<log0.2a<a0.2 B.log0.2a<0.2a<a0.2
C.log0.2a<a0.2<0.2a D.0.2a<a0.2<log0.2a
解析: ∵a>1,∴log0.2a<0
0<0.2a<1,a0.2>1
∴log0.2a<0.2a<a0.2
答案: B
6.若f(x)、g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有( )
A.f(2)
=ex,可得f(x)=ex-e-x2,g(x)=-e-x+ex2.
所以f(x)在R上为增函数,因此f(0)=0,g(0)=-1,f(3)>f(2)>f(0)=0,所以f(3)>f(2)>g(0),
故选D.
7.给定函数①y=x12,②y=log12(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单
调递减的函数的序号是( )
A.①② B.②③
C.③④ D.①④
解析: ①y=x12在(0,1)上为单调递增函数∴①不符题意,排除A、D.
④y=2x+1在(0,1)上也为单调递增函数,排除C,故选B.
答案: B
8.函数f(x)=loga|x|(a>1)的图象可能是下图中的( )
解析: 先去掉绝对值符号得f(x)= logax,x≥1,-logax,0
答案: A
9.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=3·ax-1在[0,1]上的最大值
是( )
A.6 B.1
C.3 D.32
解析: 由于函数y=ax在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故
有a0+a1=3,解得a=2,因此函数y=3·2x-1在[0,1]上是单调递增函数,最大值当x=1时取
到,即为3.
答案: C
10.已知函数f(x)= |lg x|, 0
则abc的取值范围是( )
A.(1,10) B.(5,6)
C.(10,12) D.(20,24)
解析: 函数f(x)的图象如图所示:
不妨设a<b<c,则10<c<12.
∵f(a)=f(b),∴-lg a=lg b.
即lg a+lg b=0
即lg ab=0
∴ab=1
又∵10<c<12,
∴10<abc<12.故选C.
答案: C
11.若函数y=(m+2)xm-1是幂函数,则m=________.
答案: -1
12.(log43+log83)(log32+log98)=________.
解析: 利用换底公式,得原式
=log232+log233log32+log38log39
=56log23·52log32=2512.
13.函数f(x)=-a2x-1+2恒过定点的坐标是________.
解析: 令2x-1=0,解得x=12,又f12=-a0+2=1,
∴f(x)过定点12,1.
14.已知函数f(x)满足:当x≥4时,f(x)=12x;当x<4时,f(x)=f(x+1).再f(2+log23)
等于________.
解析: 因为3=2+log22<2+log23<2+log24=4,所以f(2+log23)=f(3+log23),又因
为3+log23>4,所以f(2+log23)=f(3+log23)=123+log23=18×12log23=18×12log1213=18×
1
3
=124.
15.(本小题满分12分)(1)21412-(-2 009)0-338-23+32-2;
(2)log2.56.25+lg 0.001+lne+2-1+log23.
解析: (1)原式=32-1-49+49=12.
(2)原式=2-3+12+12×3=1.
16.(本小题满分12分)已知函数f(x)=2x+2ax+b,且f(1)=52,f(2)=174.
(1)求a、b;
(2)判断f(x)的奇偶性.
解析: (1)由已知,得 52=2+2a+b,174=4+22a+b,解得 a=-1,b=0.
(2)由(1)知f(x)=2x+2-x.
任取x∈R,则f(-x)=2-x+2-(-x)=f(x),
所以f(x)为偶函数.
17.(本小题满分12分)设a>0,f(x)=exa+aex在R上满足f(x)=f(-x).
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数.
解析: (1)依题意,对一切x∈R,有f(x)=f(-x),即exa+aex=1aex+aex,所以
a-1a
ex-
1
e
x
=0对一切x∈R成立, f(x1)-f(x2)=ex1+1ex1-ex2+1ex2 解析: (1)由 1+x>0,1-x>0,得-1
由此可得a-1a=0,即a2=1.
又因为a>0,所以a=1.
(2)在(0,+∞)上任取x1
=(ex2-ex1)·1ex1+x2-1
=(ex2-ex1)·1-ex1+x2ex1+x2.
由x2>x1>0,得x1+x2>0,ex2-ex1>0,1-ex1+x2<0.
∴f(x1)-f(x2)<0,即f(x)在(0,+∞)上是增函数.
18.(本小题满分14分)已知函数f(x)=lg(1+x)+lg(1-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.
(2)定义域关于原点对称,对于任意的x∈(-1,1),
有-x∈(-1,1),
f(-x)=lg(1-x)+lg(1+x)=f(x),
∴f(x)为偶函数.
(3)f(x)=lg[(1+x)(1-x)]=lg(1-x2)
令t=1-x2
∵x∈(-1,1),∴t∈(0,1]
又∵y=lg t,在(0,1]上是增函数.
∴y≤lg 1=0
∴函数f(x)的值域为(-∞,0].