一次函数及其应用
一次函数及其应用

一次函数的图形、性质、应用【学习目标】1. 掌握一次函数的性质图像;2.理解待定系数法;3. 能用待定系数法求一次函数,用一次函数表达式解决有关现实问题4.体会用"数形结合"思想解决数学问题.【知识梳理】知识点一.函数图象:画函数图像的一般步骤:列表,描点,连线;知识点二.正比例函数与一次函数的图像与性质1. 一次函数与坐标轴交点:一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0),正比例函数的图像都是过原点。
2.k>0k<0|k|的决定直线的倾斜程度:|k|越大直线越陡,越接近y轴;|k|越小直线越缓,越接近x 轴;b代表与y轴交点的纵坐标。
3. 一次函数 y=kx+b与正比例函数 y=kx的图像间的关系:一次函数y=kx+b的图像可由正比例函数y=kx的图像平移得到,b>0,向上平移|b|个单位;b<0,向下平移|b|个单位。
知识点三.确定一次函数的表达式1.(1)图像过原点函数为正比例函数,可设表达式为y=kx,再找图像上一点的坐标带入表达式,即可求出K;(2)图像不过原点函数为一般的一次函数,可设表达式为y=kx+b,再找图像上两点的坐标带入表达式,即可求出K,b;知识点四.一次函数与一元一次方程的关系1、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 【经典习题】题型一:函数图像例1、若正比例函数的图象经过点(2,-3),则这个图象必经过点()A.(-3,-2)B.(2,3)C.(3,-2)D.(-2,3)例2、直线y=2x+1经过点(0,a),则a= .例3、若直线y=kx+b经过A(1,0),B(0,1),则()A. k=-1, b=-1B. k=1, b=1C. k=1, b=-1D. k=-1, b=1练习:1、函数y=kx的图象经过点P(3,-1),则k的值为()A.3B.-3C. 13D.132、当x=5时一次函数y=2x+k和y=3kx-4的值相同,那么k和y的值分别为()A. 1, 11B. -1, 9C. 5, 11D. 3, 3题型二:函数图像及其性质例4、在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限例5、设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2 B.k-1 C.k D.k+1例6、已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()A.B.C.D.例7、对于函数1223y x=-, y的值随x值的________而增大。
2015届四川中考数学总复习课件:3.2一次函数及其应用

3.函数y=kx+b的函数值y>0(或<0)时,自变量x的 取值范围就是不等式kx+b>0(或>0)时的解集, 此时需遵照一元一次不等式的一般步骤求解即可, 注意“系数化为1”时不等号方向是否改变.
例2 如图,一次函数y=kx+b的图象经过A、B两 点,与x轴交于点C.
求:(1)一次函数的解析式;
)
B. 第一、二、四象限
C. 第二、三、四象限 D. 第一、三、四象限
【思路点拨】先根据k值的正负确定函数图象在
一、三象限或二、四象,再根据b值的正负即可
最终确定直线图象所经过象限. 【解析】本题考查一次函数的图象与性质.一次函 数y=-x+1,k=-1<0,b=1>0,所以图象经过第一、二、
四象限.
(0≤x≤20);
(2)【思路点拨】根据购买中型客车的数量少于大型
客车的数量,得到x的取值范围,再根据y随着x的 增大而增大,得出x的值. 【自主解答】
由题意得20-x<x,解得x>10,
∵y=22x+800,
∴y随着x的增大而增大, 又∵10<x≤20,x为整数,
∴当x=11时,购车费用最省,为22×11+800=1042(万元),
高频命题点
一次函数解析式的确定
1. 用待定系数法确定一次函数解析式的一般步骤
见考点梳理;
2. 一次函数图象与三角形面积,解此类问题的关 键在于求解一次函数与x轴,y轴的交点坐标,若 设一次函数解析式为 y = kx+b,则与x轴交点坐标
b 为 ( - ,0) ,与y轴交点坐标为(0,b),则该函 k 1 b 数与坐标轴围成的三角形面积为 s - b 2 k
一次函数的性质与应用

一次函数的性质与应用一次函数,也叫线性函数,是数学中的基础函数之一。
它的一般形式可以表示为 y = ax + b,其中 a 和 b 分别是常数,a 称为斜率,b 称为截距。
一次函数的性质及其应用广泛存在于数学、经济学、物理学等各个学科领域中。
一. 一次函数的性质1. 斜率与图像关系:斜率代表直线的倾斜程度,正斜率表示直线向上倾斜,负斜率表示直线向下倾斜,斜率为零表示直线水平。
斜率的绝对值越大,越陡峭;绝对值越小,越平缓。
2. 截距与图像关系:截距表示直线与 y 轴的交点在 y 轴上的坐标。
当截距为正时,直线在 y 轴上方交 y 轴;当截距为负时,直线在 y 轴下方交 y 轴;当截距为零时,直线通过原点。
3. 函数图像的性质:一次函数的图像是一条直线。
当斜率a > 0 时,图像从左下方逐渐向右上方倾斜;当斜率 a < 0 时,图像从左上方逐渐向右下方倾斜;当斜率 a = 0 时,图像平行于 x 轴。
4. 定义域和值域:一次函数的定义域是全体实数,即 (-∞, +∞);值域也是全体实数,即 (-∞, +∞)。
二. 一次函数的应用1. 经济学应用:一次函数可以描述经济关系中的线性关系。
例如,产量与成本之间的关系可以用一次函数表示。
斜率表示每增加一个单位产量对应的成本变化,截距表示没有产量时的固定成本。
2. 物理学应用:物理学中的运动学问题常常可以用一次函数建模。
例如,匀速直线运动中,位移与时间之间的关系可以用一次函数表示。
斜率表示物体的运动速度,截距表示物体的初始位置。
3. 工程学应用:在工程学中,一次函数可以用来描述电阻和导线的关系、温度和热量的关系等。
例如,欧姆定律描述了电流和电阻之间的线性关系。
4. 统计学应用:统计学中的线性回归分析就是建立在一次函数的基础上。
通过一次函数模型,可以对变量之间的关系进行探索和预测。
综上所述,一次函数具有明确的性质和广泛的应用。
在数学和实际问题中,了解和掌握一次函数的性质和应用,对于解决问题和做出正确的决策具有重要意义。
一次函数的应用全文

(1)根据题意,填写下表:
一次复印页数(页)
5
Hale Waihona Puke 甲复印店收费(元)乙复印店收费(元)
…
2
30
3
___
2.4
3.3
…
20
0.5
10
1
___
0.6
1.2
…
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,
y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
第三章 函数及其应用
第三节
一次函数的应用
2
例 如图,直线 y=3x+4 与 x 轴、y 轴分别交于点 A 和点 B,点 C,D 分
别为线段 AB,OB 的中点,点 P 为 OA 上一动点,PC+PD 的值最小时点 P 的
坐标为(
C
)
A.(-3,0) B.(-6,0)
3
5
C.(-2,0) D.(-2,0)
小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商
店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:
篮球
排球
进价(元/个)
80
50
售价(元/个)
105
70
(1)商店用4 200元购进这批篮球和排球,求购进篮球和排球各多少个?
(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写
5x+1 200≥1 400,
130
解得 40≤x≤ 3 .∵x 取整数,∴x=40,41,42,
80x+50(60-x)≤4 300,
43,共有四种方案.方案 1:购进篮球 40 个,排球 20 个;方案 2:购进篮球
初中数学一次函数及其应用2含答案

一次函数及其应用2一.选择题(共33小题)1.一次函数图象与y轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是()A.y=2x﹣3B.y=2x+3C.y=﹣2x﹣3D.y=﹣2x+3 2.对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大3.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.4.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>O B.x>﹣1C.x<0D.x>25.把直线y=kx向上平移3个单位,经过点(1,5),则k值为()A.﹣1B.2C.3D.56.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+37.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)8.一次函数y=(m+2)x﹣m+1,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,则m的取值范围是()A.m>﹣2B.m<﹣2C.﹣2<m<1D.m<19.若一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,则a的取值范围是()A.a≠3B.a>0C.a<3D.0<a<310.把一次函数y=2x+1的图象向下平移1个单位后得到一个新图象,则新图象所表示的函数的解析式是()A.y=2x﹣1B.y=2x+2C.y=2x D.y=2x﹣311.将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,则L1与L2的距离为()A.B.C.D.12.已知(﹣1,y1),(1,y2)是直线y=﹣x+3上的两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定13.A点(﹣1,m)和点(0.5,n)是直线y=(k﹣1)x+b(0<k<1)上的两个点,则m,n关系为()A.m>n B.m≥n C.m≤n D.m<n14.甲、乙两辆塑料汽车同时沿直线轨道AC起作同方向的匀速运动,甲乙同时分别A,B 出发,沿轨道到达C处,已知甲的速度始终是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为S1,S2,S1,S2与t的函数关系如图,当两车的距离小于10米时,信号会产生相互干扰,那么t是下列哪个值时两车的信号在产生相互干扰()A.B.C.D.15.甲乙两人在同一条笔直的公路上步行从A地去往B地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A地21千米;④A、B两地距离为27千米.其中错误的个数为()A.1个B.2个C.3个D.4个16.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中,设小明出发第tmin时的速度为vm/min,离家的距离为sm,v与t之间的函数关系如图所示,下列说法错误的是()A.小明出发第2分钟时离家200mB.跑步过程中,小明离家的最远距离为780mC.当2<t≤5时,s与t之间的函数表达式为s=160t﹣120D.小明出发第5分钟时,开始按原路返回17.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x的关系如下表,则y与x的关系式是()x/g0204060……y/cm10111213……A.y=x B.y=0.1x+10C.y=0.05x+10D.y=0.2x+10 18.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等19.点(﹣2,6)在正比例函数y=kx图象上,下列各点在此函数图象上的为()A.(3,1)B.(﹣3,1)C.(1,3)D.(﹣1,3)20.直线不经过点()A.(﹣2,3)B.(0,0)C.(3,﹣2)D.(﹣3,2)21.已知一次函数y=3x+2上有两点M(x1,y1),N(x2,y2),若x1>x2,则y1、y2的关系是()A.y1>y2B.y1=y2C.y1<y2D.无法判断22.将直线y=2x经过平移可得到直线y=2(x+3)+4,平移方法正确的是()A.先向右平移3个单位,再向上平移4个单位B.先向右平移3个单位,再向下平移4个单位C.先向左平移3个单位,再向上平移4个单位D.先向左平移3个单位,再向下平移4个单位23.已知点(k,b)为第二象限内的点,则一次函数y=﹣kx+b的图象大致是()A.B.C.D.24.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限25.已知点A(5,y1)和点B(4,y2)都在直线y=﹣7x+b上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定26.一次函数y=mx+n的图象如图所示,则下面结论正确的是()A.m<0,n>0B.m>0,n<0C.m<0,n<0D.m>0,n>0 27.已知一次函数y=x+b不过第二象限,则b的取值范围是()A.b<0B.b>0C.b≤0D.b≥028.若a、b为实数,且,则直线y=ax+b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限29.将直线y=5x﹣1平移后,得到直线y=5x+7,则原直线()A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位30.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.1231.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④32.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量(m)38363432…下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=38﹣2t33.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量38363432…(m3)下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=40t二.填空题(共7小题)34.正比例函数y=kx(k≠0)经过点(2,1),那么y随着x的增大而_____.(填“增大”或“减小”)35.把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为_____.36.在一次函数y=kx﹣2x+2中,y随x的增大而增大,则k的取值范围为_____37.直线y=(3m﹣1)x﹣m,函数y随x的增大而增大,且图象经过一,三,四象限,则m的取值范围是_____.38.若(m,n)在函数y=3x﹣7的图象上,3m﹣n的值为_____.39.若y与x的函数关系式为y=2x﹣2,当x=2时,y的值为_____.40.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶_____小时,油箱的剩余油量为28升.三.解答题(共10小题)41.已知函数y=(m﹣2)是y关于x的正比例函数.(1)求m的值;(2)求出该正比例函数图象向右平移一个单位所得到的函数解析式.42.已知一次函数y=(2m+1)x+3﹣m(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过第一、二、三象限,求m的取值范围.43.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是_____km/h,往返长春和靖宇两地一共用时_____h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.44.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.45.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.46.如图①,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,整个容器容积是长方体C的容积的4倍(容器各面的厚度均忽略不计),现以速度v(单位:cm3/s)均匀地向容器内注水,直至注满为止.图②是注水全过程中容器内的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.(1)在注水过程中,注满A所用的时间为_____s,再注满B又用了_____s.(2)求A的高度h A及注水的速度V t.(3)求注满容器所需时间及容器的高度47.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过部分的种子的价格打8折.(1)填写下表购买种子数量/千克0.51 1.52 2.53 3.54…付款金额/元________________________(2)写出付款金额y(元)与购买数量x(千克)之间的函数关系式,并画出图象.48.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_____分钟时甲乙两人相遇,乙的速度为_____米/分钟;(2)求点A的坐标.49.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是_____千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.50.如图所示OA、BA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?一次函数及其应用2参考答案与试题解析一.选择题(共33小题)1.解:设一次函数表达式为:y=kx+b=kx+3,b=3,图象经过第四象限,则k<0,故选:D.2.解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.3.解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.4.解:由图象可得,当y>0时,x的取值范围是x>﹣1,故选:B.5.解:直线y=kx(k≠0)的图象向上平移3个单位长度后的解析式为y=kx+3,将点(1,5)代入y=kx+3,得:5=k+3,∴k=2,∴平移后直线解析式为y=2x+3.故选:B.6.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+12,即y=﹣2x+3故选:D.7.解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.8.解:∵y随x的增大而减小,∴m+2<0,解得m<﹣2;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.解得m<1.∴m的取值范围是m<﹣2.故选:B.9.解:∵一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,∴,解得:0<a<3.故选:D.10.解:由“上加下减”的原则可知,把一次函数y=2x+1的图象向下平移1个单位后所得直线的解析式为:y=2x+1﹣1,即y=2x.故选:C.11.解:∵将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,∴L2的解析式为:y=2x+2,∴L2:y=2x+2与y轴交于(0,2),如图,∵y=2x+2与x轴交于B(﹣1,0),与y轴交于A(0,2),y=2x﹣2与x轴交于F(1,0),与y轴交于E(0,﹣2),∴OB=OF,过O作OC⊥AB于C,反向延长OC交EF于D,∵AB∥EF,∴CD⊥EF,∴∠OCB=∠ODF=90°,∵∠BOC=∠DOF,∴△OBC≌△OFD,∴OC=OD,∵OA=2,OB=1,∴AB=,∴OC==,∴CD=,∴L1与L2的距离为,故选:D.12.解:∵k=﹣1<0,∴函数y随x增大而减小,∵﹣1<1,∴y1>y2.故选:A.13.解:∵0<k<1,∴直线y=(k﹣1)x+b中,k﹣1<0,∴y随x的增大而减小,∵﹣1<0.5,∴m>n.故选:A.14.解:乙的速度v2=120÷3=40(米/分),甲的速度v甲=40×1.5=60米/分.所以a==1分.设函数解析式为S1=kt+b,0≤t≤1时,把(0,60)和(1,0)代入得S1=﹣60t+60,1<t≤3时,把(1,0)和(3,120)代入得S1=60t﹣60;S2=40t,当0≤t<1时,S2+S1<10,即﹣60t+60+40t<10,解得t>2.5,因为0≤t<1,所以当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1<10,即40t﹣(60t﹣60)<10,所以t>2.5,当2.5<t≤3时,两遥控车的信号会产生相互干扰.∵,∴时两车的信号在产生相互干扰.故选:C.15.解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7﹣4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9﹣4)×7﹣9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9﹣4)=35千米,故④错误.综上所述:错误的只有④.故选:A.16.解:由图象可得,小明出发第2分钟时离家:100×2=200(m),故选项A正确;跑步过程中,小明离家的最远距离为:[100×2+160×(5﹣2)+80×(16﹣5)]÷2=780(m),故选项B正确;当2<t≤5时,s与t之间的函数表达式为s=100×2+(t﹣2)×160=160t﹣120,故选项C正确;小明出发5分钟时,离家的距离为:160×5﹣120=680<780,故此时小明没有达到离家的最远距离,没有按原路返回,还要继续向前走,故选项D错误;故选:D.17.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.18.解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.19.解:将点(﹣2,6)代入函数表达式:y=kx得:6=﹣2k,解得:k=﹣3,故函数的表达式为:y=﹣3x,当x=1时,y=﹣3,当x=3时,y=﹣9,当x=﹣3时,y=9,当x=﹣1时,y=3,故选:D.20.解:A、当x=﹣2时,y=﹣×(﹣2)=≠3,故直线不经过点(﹣2,3);B、当x=0时,y=﹣×0=0,故直线经过点(0,0);C、当x=3时,y=﹣×3=﹣2,故直线经过点(3,﹣2);D、当x=﹣3时,y=﹣×(﹣3)=2,故直线经过点(﹣3,2).故选:A.21.解:k=3>0,故函数y随x的增大而增大,∵若x1>x2,则y1>y2,故选:A.22.解:将直线y=2x先向左平移3个单位,再向上平移4个单位,得到直线的解析式为y =2(x+3)+4,故选:C.23.解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴﹣k>0.∴一次函数y=﹣kx+b的图象经过第一、二、三象限,观察选项,C选项符合题意.故选:C.24.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.25.解:∵﹣7<0,∴y随x的增大而减小,∵5>4,则y1<y2,故选:C.26.解:如图,∵该直线经过第二、四象限,∴m<0.又∵该直线与y轴交于正半轴,∴n>0.综上所述m<0,n>0.故选:A.27.解:一次函数y=x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=0;经过一三四象限时,b<0.故b≤0,故选:C.28.解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.29.解:∵将直线y=5x﹣1平移后,得到直线y=5x+7,而7﹣(﹣1)=8,∴原直线沿y轴向上平移了8个单位,故选:A.30.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故选:A.31.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.32.解:由表格可得,y随t的增加而减小,故选项A错误,放水时间为15分钟时,水池中水量为:40﹣(40﹣38)÷1×15=10m3,故选项B错误,每分钟的放水量是40﹣38=2m3,故选项C正确,y与t之间的关系式为y=40﹣(40﹣38)÷1×t=40﹣2t,故选项D错误,故选:C.33.解:设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y=kt+b,,解得:,∴y与t之间的函数关系式为y=﹣2t+40,D选项错误;∵﹣2<0,∴y随t的增大而减小,A选项错误;当t=15时,y=﹣2×15+40=10,∴放水时间为15分钟时,水池中水量为10m3,B选项错误;∵k=﹣2,∴每分钟的放水量是2m3,C选项正确.故选:C.二.填空题(共7小题)34.解:∵点(2,1)在正比例函数y=kx(k≠0)的图象上,∴k=,故y=x,则y随x的增大而增大.故答案为:增大.35.解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.36.解:∵一次函数y=kx﹣2x+2中,y随x的增大而增大,∴k﹣2>0,解得k>2.故答案为:k>2.37.解:根据题意可得:3m﹣1>0,﹣m<0,解得:m>,故答案为:m>,38.解:将点(m,n)坐标代入y=3x﹣7得:n=3m﹣7,即:3m﹣n=7,故答案为:7.39.解:把x=2代入y=2x﹣2,得y=2×2﹣2=2,故答案为2.40.解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.三.解答题(共10小题)41.解:(1)∵函数y=(m﹣2)是y关于x的正比例函数.∴m2﹣3=1,m﹣2≠0,解得:m=﹣2.(2)正比例函数y=﹣2x的图象向右平移一个单位后所得直线的解析式是:y=﹣2(x﹣1)=﹣2x+2,42.解:(1)由2m+1<0,可得m<﹣,∴当m<﹣时,y随着x的增大而减小;(2)由,可得﹣<m<3,∴当﹣<m<3时,函数图象经过第一、二、三象限.43.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1)×=135(km).246﹣135﹣66=45(km).答:这个服务区距离伊通的路程为45km.44.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)①当点M′落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(4,0),则t=2;②当点M′落在y轴上,同理可得:t=1,故t=1或2.45.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.46.解:(1)由图象可知注满A所用的时间为10s,注满B又用了18﹣10=9s;故答案为10,8;(2)由A注满时水的体积和容器容积相等,可得10v t=25h A,∴v t=2.5h A,B注满时水的体积和容器容积相等,可得8v t=10(12﹣h A),∴h A=4,∴v t=10,∴A的高度为4cm,注水的速度为10cm3/s;(3)由整个容器容积是长方体C的容积的4倍,有25h A+10(12﹣h A)+5h C=4×5h C,∴h C=12,∴容器的高度为4+8+12=24cm;注满C容器所需时间为5×12÷10=6s,∴注满整个容器所需时间为18+6=24s.47.解:(1)由题意可得,当购买种子0.5千克时,需要付款:0.5×5=2.5(元),当购买种子1千克时,需要付款:1×5=5(元),当购买种子1.5千克时,需要付款:1.5×5=7.5(元),当购买种子2千克时,需要付款:2×5=10(元),当购买种子2.5千克时,需要付款:2×5+(2.5﹣2)×5×0.8=12(元),当购买种子3千克时,需要付款:2×5+(3﹣2)×5×0.8=14(元),当购买种子3.5千克时,需要付款:2×5+(3.5﹣2)×5×0.8=16(元),当购买种子4千克时,需要付款:2×5+(4﹣2)×5×0.8=18(元),故答案为:2.5,5,7.5,10,12,14,16,18;(2)当0≤x≤2时,y=5x,当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,即y=,函数图象如右图所示.48.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).49.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.50.解:(1)由图象可得,出发时,乙在甲前面12米处;(2)由图象可得,甲的速度为:12÷1.5=8(米/秒),则当甲行驶64米时,用的时间为:64÷8=8(秒),由图可知,当在第8秒时,两人相遇,故当0≤t<8时,甲走在乙的后面,当t=8秒时,他们相遇,当t>8时,甲走在乙的前面.。
人教版八年级下册第十九章一次函数-求函数解析式及其应用教案

最后,关于教学评价,我认为除了课堂表现和作业完成情况外,还应关注学生在解决问题过程中的思维过程和方法。这样,才能更全面地了解学生的学习情况,及时调整教学策略,提高教学质量。
3.增强学生的数学建模意识:将实际问题转化为数学模型,培养学生的数学建模能力,强化数学与现实生活的联系。
4.培养学生的团队协作和交流能力:在小组讨论和问题解决过程中,鼓励学生相互交流、协作,共同完成任务。
三、教学难点与重点
1.教学重点
-一次函数的定义:强调形如y=kx+b(k≠0,k、b是常数)的函数是一次函数,理解k和b分别代表的意义。
4.一次函数的应用:解决实际问题,如行程问题、价格问题等。
本节课将重点探讨如何求一次函数的解析式及其在实际问题中的应用。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过分析实际问题,引导学生运用一次函数的解析式进行逻辑推理,解决具体问题。
2.提高学生的数据分析能力:学会从实际问题中提取数据,运用一次函数的知识分析数据,为解决问题提供依据。
人教版八年级下册第十九章一次函数-求函数解析式及其应用教案
一、教学内容
人教版八年级下册第十九章“一次函数”中的求函数解析式及其应用,主要包括以下内容:
1.一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数。
2.求一次函数的解析式:通过已知点斜率k和截距b,或两个已知点坐标来求解。
3.一次函数的性质:斜率k的正负与函数的增减性;截距b的几何意义。
一次函数图像和性质以及应用
一次函数及其图像 一、函数及图像学习目标:1.能由具体的情景理解函数的概念,会表述函数的三种表示方法。
2.会求具体函数的自变量的取值范围。
3、由函数的图像会发现信息。
一、自主探究:1.等腰三角形的周长是8,其要长是x ,底边长是y,则y 和x 的关系式是_______ 2、函数y=x 2+3的自变量的取值范围是__________3、函数y= 4的自变量取值范围是_________4、函数y =x 的取值范围是__________5.6、星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (时)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时; (3)小明去图书馆时的速度是______________千米/小时.7、某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为( )8、如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a 千米,小强在玉米地除草比在菜地浇水多用的时间为b 分钟,则a b 、值分别为: A .1.1,8 B .0.9,3 C .1.1,12 D .0.9,8知识点归纳:1、函数的定义是_____________2、函数的三种表示方法是_______________________3、画函数图象的步骤是_________________________4、自变量取值范围的类型有_____________________ 二、典例分析1、王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料.如图,是王芳离家的距离与时间的函数图象.若黑点表示王芳家的位置,则王芳走的路线可能是()2、如图,为直角三角形,,BC=2cm ,,四边形为矩形,,,且点、、、在同一条直线上,点与点重合.以每秒1的速度沿矩形的边向右平移,当点与点重合时停止. 设与矩形的重叠部分的面积为,运动时间. 能反映与之间函数关系的大致图象是( )三、练习1、一天,王老师从学校坐车去开会,由于途中塞车,他只好步行赶到会场,•开完会后,他直接回到学校,下图中能体现他离学校的距离y (千米)与时间x (•时)的关系的图象是()B .C .D .(时)2、如图,AB 是半圆O 的直径,点P 从点O 出发,沿线段OA -弧AB -线段BO 的路径匀速运动一周.设线段OP 长为s ,运动时间为t ,则下列图形能大致刻画s 与t 之间关系的是 ( )3、已知动点P 在边长为2的正方形ABCD 的边上沿着A→B→C→D 运动,x 表示点P 由A 点出发所经过路程,y 表示△APD 的面积,则y 与x 的函数关系图象大致为( )4、 广州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y 元与运输路程x 千米的函数图象是()5.如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )6、在物理实验课上,小明同学用弹簧秤将一铁块A 悬于盛有水的水槽中(如图所示),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间函数关系的图象大致是( )7、(2010 湖北省孝感市) 均匀地向如图所示的一个容器注水,最后把容器注满.在注水过程中,能大致反映水面高度h 随时间t 变化的图像是( )四、中考链接:9.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为20km .他们行进的路程s (km )与甲出发后的时间t (h )之间 的函数图像如图5所示.根据图像信息,下列说法正确的是 A .甲的速度是4 km/ hB .乙的速度是10 km/ hC .乙比甲晚出发1 hD .甲比乙晚到B 地3 h 9.如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x ≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是16.如图9,梯形ABCD 中,AB ∥DC ,DE ⊥AB ,CF ⊥AB ,且AE = EF = FB = 5,DE = 12动点P 从点A 出发,沿折线AD -DC -CB 以每秒1个单位 长的速度运动到点B 停止.设运动时间为t 秒,y = S △EPF , 则y 与t 的函数图象大致是图4xA .xB .xC .xD .tA .t B .tC .tD .xA .x B .xC .D .注水A .图5A B C D二、平面直角坐标系一、学习目标:1、理解构建平面直角坐标系的相关要素的意义;2、掌握不同位置点的坐标的特点;3、会描点、求出点的坐标。
一次函数应用专题课件
速度
通过求导数确定一次函数中 的斜率,即速度。
时间
根据距离和速度计算所需时 间,使用一次函数模型。
线性规划问题的引入
1
建立模型
2
将问题转化为一次函数模型,定义目
标函数和约束条件。
3
理解问题
识别线性规划问题,确定目标和约束 条件。
求解最优解
使用线性规划算法或图形法求解最优 解,并进行灵敏性分析。
最小二乘法及其应用
最小二乘法原理
通过最小化预测值和实际观测值之间的误差平方和,确定一次函数的最佳拟合线。
数据拟合
使用最小二乘法拟合一次函数模型到实际数据,进行数据分析和预测。
应用范围
适用于不确定性较大的数据集,如金融市场、气象预测等。
一次回归分析和预测
回归分析
使用一次函数拟合数据,确定 相关性和预测性。
数据分析
利用回归分析结果解读数据趋 势和关系,做出预测和决策。
斜率和截距
斜率表示每单位x变化对应的y 的变化量,截距表示函数与y轴 的交点。
制定简单的投资计划
1 目标
设定投资目标和时间,根据一次函数模型进行资金增长预测。
风险控制
调整投资比例,根据预测结果制定风险控制策略。
监测与调整
定期监测投资表现,根据市场变化调整投资计划。
求解距离、速度和时间的关系
距离
根据速度和时间计算距离, 使用一次函数模型。
预测应用
根据回归分析模型做出未来情 景预测,支持决策制定。Байду номын сангаас
利润最大化问题的求解
1
定义目标
制定利润最大化的目标函数和约束条
建模过程
2
件。
将问题转化为一次函数模型,确定决
一次函数在科学研究中的实际应用(四大类型)
一次函数在科学研究中的实际应用(四大类型)一次函数是数学中最基础且常见的函数类型之一。
它的形式为y = ax + b,其中a和b是常数。
一次函数在科学研究中有广泛的实际应用。
下面将介绍一些常见的应用领域及其实际应用。
线性关系一次函数可以描述两个变量之间的线性关系。
例如,当研究人员想要了解某个因变量如何随着自变量的改变而变化时,可以使用一次函数来建模这种线性关系。
这在众多科学领域中都有应用,比如物理学中的速度与时间的关系、经济学中的供求关系等。
一次函数可以用来描述线性关系,例如:y = 2x + 3趋势分析一次函数在趋势分析中也有应用。
通过对已有数据进行拟合,可以得到一次函数的斜率和截距,从而分析数据的趋势。
这在统计学和经济学等领域特别重要。
通过对一次函数的趋势分析,可以预测未来的变化趋势和做出相应的决策。
一次函数的趋势分析可以预测数据的未来变化趋势,例如:y = 0.5x + 10最小二乘法最小二乘法是一种常用的数据拟合方法,它使用一次函数来拟合实验数据。
通过最小化实际数据与一次函数之间的误差平方和,可以得到最佳拟合直线。
这在物理学、化学学以及工程学等领域中常被使用,用于分析实验数据并得出合适的模型。
最小二乘法可以通过一次函数来拟合实验数据,例如:y = 1.2x - 5统计回归分析统计回归分析是一种运用一次函数进行数据分析和预测的方法。
它将一次函数应用于多个自变量与一个因变量之间的关系,并通过统计学方法对数据进行分析。
这种分析常用于社会科学、生物学等领域,可以帮助研究者了解不同变量对目标变量的影响程度。
一次函数可以用于统计回归分析,例如:y = 2x1 + 3x2 - 5x3 + 10总结一次函数在科学研究中有多种实际应用。
它可以描述线性关系、进行趋势分析、拟合实验数据以及进行统计回归分析。
这些应用帮助研究者理解数据和变量之间的关系,并在科学研究中做出准确的预测和决策。
*注意:文档中的一次函数示例仅为说明目的,实际应用中的函数形式可能因研究对象和需求而异。
一次函数及其应用(复习)
一次函数及其应用(复习)过关练习题一、复习目标1、知道什么是一次函数和正比例函数,会画一次函数的图象,熟练掌握一次函数的性质。
2、熟练运用待定系数法确定一次函数表达式(重点)3、体会一次函数与方程(组)、不等式(组)之间的关系,并能解决简单的问题。
4、会用一次函数解决相关的实际问题(重点、难点)二、基本性质1、一次函数的一般形式是 ,特别地,当b=0时,函数即为 ;所以说正比例函数是一种特殊的一次函数.2、正比例函数y =kx (k ≠0)的图象是一条经过 的直线, 当k>0时, 函数图象经过第 象限,从左向右 ,即y 随x 的增大而 ; 当k <0时,函数图象经过第 象限,从左向右 ,即y 随x 的增大而 .3、一次函数y =kx +b 图象是一条直线,它可以看作是直线y =kx 向上(或向下)平移 个单位长度得到的,b>0时,向 平移; b <0时, 向 平移.当k>0时,直线y =kx +b 从左向右 ,即y 随x 的增大而 ;b>0时,函数图象经过第 象限;b <0时,函数图象经过第 象限; 当k <0时,直线y =kx +b 从左向右 ,即y 随x 的增大而b>0时,函数图象经过第 象限;b <0时,函数图象经过第 象限。
4、直线y =kx +b (k ≠0)与X 轴的交点A 的坐标是 ,与y 轴交点B 的坐标是 ;它与两坐标轴围成的三角形就是以 为直角顶点的三角形 ,所以 S △AOB =21OA ×OB= (用,k b 表示) ; (二)、常考类型剖析例1: (1)在一次函数y =(2-k )x +1中,y 随x 的增大而增大,则k 的取值范围是 。
(2)已知函数y =3x 的图象经过点A (-1,y 1)、B (-2,y 2),则y 1 y 2(填“>”、“<”、或“=”)(3)一次函数y =kx +b-2的图象如图所示,则k 、b 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 9'.一次函数及其应用一、知识回顾1、定义:若两个变量y x 、间的关系可以表示成)0,(≠+=k b k b kx y 为常数、的形式,则称y 是x 的一次函数(x为自变量,y 是因变量)。
特别地,当0=b ,y 是x 的正比例函数。
一般形式:(1)一次函数:)0,(≠+=k b k b kx y 为常数、 (2)正比例函数:)0,(≠=k k kx y 为常数 (3)定义域、值域 关系:正比例函数是特殊的一次函数。
2、一次函数的图象画法:一次函数的图象都是一条直线,因为两点确定一条直线,所以画一次函数的图象时只需要描出两个点,再连成直线即可。
解读:(1)一次函数b kx y +=是经过点),0()0,(b kb、-的一条直线。
(2)正比例函数kx y =是经过原点),1()0,0(k 、的一条直线。
(3)一次函数的性质①当0>k 时,y 随x 的增大而增大;②当0<k 时,y 随x 的增大而减小。
(4)位置关系(11b x k y +=;22b x k y +=表示两条直线) ①当2121b b k k ≠=且时,11b x k y +=与22b x k y +=平行;2 / 9'.②当121-=⋅k k 时,11b x k y +=与22b x k y +=相互垂直。
(5)一次函数图像过哪些象限。
①当0>k 时,函数图像过一、三象限;当0<k 时,函数图象过二、四象限。
①b 表示函数图象与y 轴的交点,也叫截距。
当0>b 时,函数图象与y 轴正半轴相交;当0<b 时,函数图象与y 轴负半轴相交。
具体图象位置关系如下:3、确定一次函数解析式 方法:待定系数法4、函数与函数间的交点问题。
方法:将两函数的解析式联立解方程组。
5、在平面直角坐标系下,任意两点间的距离若),(,,A2211yxByx)(;则221221)()(AB yyxx-+-=考点精析例1 (1)试着判断53,15321+=--=-=+-=xyxyxyxy、、一定不过那些象限?(2)若2-y与x成正比例,当3=x时,4-=y则求y与x的函数表达式。
变式练习1、当____=k时,3222-+=k xkky)(是正比例函数。
2、已知my+与)为常数,(0,≠⋅+nmnmnx成正比例,试说明(1)y是x的一次函数。
(2)在什么情况下,y是x的正比例函数。
3、已知两条直线bxyaxy--=+=、2的交点坐标在第一象限内,试着判断两直线分别过那些象限。
3 / 9'.例2 (1)已知,在直角坐标系中,)4,3(,2,1A B)(求直线AB的解析式并求出直线AB要过的两个定点。
(2)若a为任意实数,则一次函数aaxy41-+=的图象必过一定点,求此定点的坐标。
变式练习1、若一次函数5+=xy的图象经过点),(,,A dcBba)(,则)()(dcbdca---的值为___________。
2、若一次函数)44(--=mmxy的图象经过原点,则m的值为___.3、一次函数)44(--=mmxy,恒过的定点为________。
4、已知,在直角坐标系中,)6,3(,2,1A B)(求直线AB的解析式并求出直线AB要过的两个定点。
试着求出AB的长度?4 / 9'.5 / 9'.例3 已知一条直线解析式为32+=x y ,A (1,2)为直线外一点。
试求(1)过A 点与已知直线垂直的直线的解析式;(2)过A 点与已知直线平行的直线的解析式;例4 已知A (1,1)B (2,,3)C (2,5)D (-1,3)四点;试求(1)直线AB 、BC 、CD 、BD 的解析式;若所求直线均过(-1, a ),(1,b )试着比较a 、b 的大小?(2)直线AB 与BC 、CD 与BD 的交点坐标。
变式训练: 1、若n x y +=21与1-=mx y 交于一点)21(-,,则m 的值为____。
2、若2m x y +-=与14-=x y 相交于x 轴上一点,则m 的值为____。
3、若直线m x y +-=2经过),1(),1(b a 、-两点,试比较b a ____。
4、若直线b kx y +=与直线12+-=x y 平行,且与另一直线3+=x y 相交于y 轴上一点,则此直线的表达式为___________。
6 / 9'.5、若直线b kx y +=与直线12+-=x y 垂直,且与另一直线3+=x y 相交于y 轴上一点,则此直线的表达式为___________。
拓展练习1、若直线12+-=x y 与函数12+=x y 有交点,则交点坐标为____. 2、若函数22x y =与函数x y 2=有交点,则交点坐标为_______.3、已知正方形Λ,C C B A ,O C B A 23331222111C C B A ,按如图所示的方式放置。
点Λ321A A A ,,和点Λ321C C C ,,分别在直线b kx y +=和x 轴上,若点)()、,(2,3B 11B 21则点______B n =。
4、已知直线b kx y +=过点),(025且与坐标轴围成的三角形的面积为425,求该直线的函数表达式。
用函数观点看方程组与不等式知识点归纳一、一元一次方程与一次函数的联系(1)从“数”的方面看,当一次函数的值为0时,相应自变量的值即为方程的解;(2)从“形”的方面看,函数与x轴交点的横坐标即为方程的解。
解读:例:一元一次方程42=+x与一次函数42+=xy的联系,从“数”的方面看,当一次函数42+=xy的函数值为0时,相应的自变量2-=x即为方程042=+x的解;从“形”的方面看,一次函数42+=xy的图象与x轴的交点)(0,2-的横坐标2-=x,即为方程42=+x的解。
二、一元一次不等式与一次函数的关系(1)从“数”的方面看,任何一个一元一次不等式都可以转化为0>+bax或0<+bax的形式,所以解一元一次不等式可以看做当一元一次函数函数值大于0(或小于0),求自变量相应的取值范围。
(2)从“形”的方面看,不等式>+bax的解可以当成是一次函数baxy+=的图象在x轴上方的部分对应的自变量的取值范围;<+bax的解可以当成是一次函数baxy+=的图象在x轴下方的部分对应的自变量的取值范围。
解读:例:已知一次函数12-=xy,当x取何值时,函数值大于零?求不等式12>-x的解集。
7 / 9'.8 / 9'.⎩⎨⎧+=+=2211b x k y b x k y 三、二元一次方程与一次函数的关系关系:一般地,一个二元一次方程有无数个解,以这些解为坐标的点所组成的图形,是一条直线,也就是说,以一个二元一次方程的所有解为坐标的点所围成的图形可以看做是一个一次函数的图象。
解读:例:以方程42=+y x 的解为坐标的所有点组成的图形就是一次函数x y 24-=的图象。
四、二元一次方程组与一次函数的关系(1)一般地,一个二元一次方程组(两个二元一次方程组成)的解为坐标的点,可以看做是两个一次函数所组成的图象的交点(即两条直线的交点)。
(2)两个一次函数所组成的图象的交点(即两直线的交点),可以看成某个二元一次方程组的解。
(3)两直线2211,b x k y b x k y +=+=的交点与方程组的解的关系。
⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧≠=≠⎩⎨⎧≠==轴上一点,方程组有解两直线交于不在轴上一点,方程组有解两直线交于解两直线平行,方程组无无数组解两直线重合,方程组有y y b b b b k k b b b b k k 212121212121注意:在比较时,必须化简成上述标准的直线表达式b kx y +=。
9 / 9'.。