Neutrino Fluxes and Resonance Physics with Neutrino Telescopes

合集下载

邢志忠-Neutrino Physics

邢志忠-Neutrino Physics

Decision in 1952: neutrinos from a fission reactor.
two flashes separated by some s
Positive result?
Reines and Cowan’s telegram to Pauli on 14/06/1956:
★ Heisenberg’s idea: neutron is related to proton
Fermi’s paper
14
“I will be remembered for this paper!” ------ Fermi in Italian Alps, Christmas 1933
This is Fermi’s best theoretical work ---- C.N. Yang
Lectures at the Summer School of Hebei University, 21~22/5/2014
Neutrinos: how elusive they are?
SM
charge = 0 spin = ½ mass = 0 speed = c
Big Bang
neutrinos
Very intense sources of neutrinos (1950’s): fission bombs and fission reactors.
Frederick Reines & Clyde Cowan’s Project (1951).
Reactor antineutrinos
20
supernova & stellar ’s?
Ultrahigh-energy cosmic ’s? warm dark matter? matter-antimatter asymmetry…

中微子--选修课件

中微子--选修课件

最近发现
2011年9月,位于意大利格兰萨索国家实验室 (LNGS) 的 OPERA实验宣布观测结果,并刊登于英国《自然》杂 志。研究人员发现,中微子的移动速度比光速还快 。
1970年11月13日,中微子首先在氢气泡室中被观测。一个中 微子撞击氢原子中的一个质子。这撞击发生于照片右方,在 三条轨道散发出来之点。
关于中微子震荡
中微子振荡尚未完全研究清楚,它不仅在 微观世界最基本的规律中起着重要作用, 而且与宇宙的起源与演化有关,例如宇宙 中物质与反物质的不对称很有可能是由中 微子造成。

历史
1982年,日本科学家小柴昌俊在一个深达1000米 的废弃砷矿中领导建造了神冈探测器,最初目标 是探测质子衰变,也可以利用中微子在水中产生 的切连科夫辐射来探测中微子。 1987年2月,在银河系的邻近星系大麦哲伦云中 发生了超新星1987A的爆发。日本的神冈探测器 和美国的Homestake探测器几乎同时接收到了来 自超新星1987A的19个中微子,这是人类首次探 测到来自太阳系以外的中微子,在中微子天文学 的极洲冰层中建造一个立方公里大的中 微子天文望远镜——冰立方。法国、意大利、俄 罗斯也分别在地中海和贝加尔湖中建造中微子天 文望远镜。KamLAND观测到了来自地心的中微 子,可以用来研究地球构造。
1
中微子
Neutrino
简介

中微子(意大利语:Neutrino, 其字面上的意义为“微小的电中 性粒子”,又译作微中子),是 轻子的一种,其自旋量子数为½, 符号为希腊字母 v。
关于中微子

中微子有三种:电中微子、μ 中微子和 τ 中微子,分别对应于相应的轻子:电 子、μ 子和τ 子。
所有中微子都不带电荷,不参与电磁相互作 用和强相互作用,但参与弱相互作用。 中微子没有通常意义上的反粒子 有实验表明,中微子确实有微小但并不为零 的质量。

核子中奇异夸克分布不对称性与轻味夸克碎裂效应

核子中奇异夸克分布不对称性与轻味夸克碎裂效应

29 10 2005 10HIGH ENERGY PHYSICS AND NUCLEAR PHYSICSVol.29,No.10Oct.,2005*( 100871)– , . , .D ..1, –[1—3]. ,. ,, –(DIS) (global analysis)[4,5], ,(intrinsic sea theory) ,µ CCFR NuTeV,[6,7]. ,. ,[4,8—12]NuTeVWeinberg [13,14],.. ,Fν2 F¯ν2,:Fν2−F¯ν2=2x[s(x)−¯s(x)]. ,,. c.CCFR NuTeV µ [6,15,16].νµs→µ−c νµd→µ−c,Cabibbo ,c ;, ¯c.CCFR NuTeV µµ+(µ−) c(¯c) ,c→H(c¯q)→µ+X. µ,µ ,. ,CCFR νµ(¯νµ) ,c(¯c) µ+(µ−) ¯B c(¯B¯c):¯Bc−¯B¯c0.1147∼0−20%[6]., ,µ . ,CCFR NuTeV µ,.( c ¯c10 965dξd y =G2s2|V cd|2].(1)s=2MEν ,r2≡(1+Q2/M2W)2.ξ . , c ,ξ Bjorken:ξ≈x(1+m2c /Q2). (1)f c≡1−m2c/2MEνξ c, [18]., ¯cd2σ¯νµN→µ+¯c Xπr2f c•ξ[¯s(ξ)|V cs|2+¯d(ξ)+¯u(ξ)dξd y−d2σ¯νµN→µ+¯c Xπr2f c•ξ (s(ξ)−¯s(ξ))|V cs|2+d v(ξ)+u v(ξ)2ξ[d v(ξ)+u v(ξ)] ,|V cs|2≃0.95 |V cd|2≃0.05[19] .12S−|V cs|2+Q V|V cd|2,(4)S−≡ ξ[s(ξ)−¯s(ξ)]dξ,Q V≡ ξ[d v(ξ)+u v(ξ)]dξ., NuTeV.[9—12],NuTeV ., (4) ,c ¯c P SA( 1).1 NuTeV c ¯c P SADing-Ma[9]Q2030%—80%0.007—0.01812%—26% Alwall-Ingelman[10]20GeV230%0.00915% Ding-Xu-Ma[11]Q2060%—100%0.014—0.02221%—29% Wakamatsu[12]16GeV270%—110%0.022—0.03530%—40%966 (HEP&NP) 29 2S+|V cs|2+(Q V+2Q S)|V cd|2.(5)S+≡ ξ[s(ξ)+¯s(ξ)]dξ,Q S≡ ξ[¯u(ξ)+¯d(ξ)]dξ.CTEQ5 Q2=16GeV2 S+,Q V,Q S, |V cs|2=0.95,|V cd|2=0.05,1 2S−/Q V 0.007(0.022), R 20%(25%). ,c ¯c, c¯c.3 µ, , c,( µ) ( ) . cH+d3σνµN→µ−H+Xdξd y D H+q(z),(6)D H+q(z) q H+ ,z H+ q . H+ c D+(c¯d) D0(c¯u) ,H− D−(¯c d) ¯D0(¯c u).c H+ H+ . , Lund , q¯qexp(−bm2q)[20], s¯s λ∼0.3[21,22], c¯c 10−5., . µ [17]. . , e+e− . , , c ¯c , D , c , , , c(¯c) , µ . , c ¯c D(c¯q) ¯D(¯c q). , , , :u→cu),d→D−(dξd y d z=G2s2|V cd|2]+δ dσνN→µ−µ+Xdξd y d z LQF=G2s2|V ud|2(1−y)2,(8)D q(z)≡D Dq(z)+D D∗q(z), D Dq(z)≡D¯D0u(z)=D D0¯u(z)=D D−d(z)=D D+¯d(z),D D∗q(z)≡D¯D∗0u(z)=D D∗0¯u(z)=D D∗−d(z)=D D∗+¯d(z). , D q(z) q , . (8) ,¯BD(∗)+=1dξd y d z=G2s2|V cd|2]+δ dσ¯νN→µ+µ−Xdξd y d z LQF=G2s2•|V ud|2(1−y)2.(10)10 967(σνN→µ−µ+X−σ¯νN→µ+µ−X)total≈−1Q V|V cd|2+2S−|V cs|2•D q¯BD(∗)+¯f c ¯Bc.D q¯BD(∗)+d x d y d z=G2s2|V ud|2D q(z)B¯D0,(12),B¯D0 ¯D0 µ− , ¯D∗0¯D0 , B¯D0 .,µ+µ+d3σ¯νN→µ+µ+Xπr2x¯u(x)+¯d(x)σµ−µ+≈Q ud|V ud|2¯fc¯Bc,(14)Q ud≡1¯fc¯Bc,D qσµ−µ+.(15)CDHSW[26] ( )µ µ σµ−µ−/σµ−µ+(σµ+µ+/σµ+µ−). 2E vis 100—200GeV ,3 .2 , , σµ−µ−/σµ−µ+σµ−µ−/σµ− ,, σµ−µ−/σµ−µ+, ,.2CDHSW 100<E vis<200GeV µ [26]pµ>6GeV(3.5±1.6)%(1.6±0.74)×10−4(4.5±2.0)%(2.2±1.0)×10−4 pµ>9GeV(2.9±1.2)%(1.05±0.43)×10−4(4.4±1.8)%(1.7±0.7)×10−4 pµ>15GeV(2.3±1.0)%(0.52±0.22)×10−4(4.1±2.3)%(0.8±0.45)×10−4968 (HEP&NP) 29dξd y d z −d3σ¯νµN→µ+H−Xπr2f cξ[(s(ξ)−¯s(ξ))|V cs|2+ d v(ξ)+u v(ξ)πr2xd v(x)+u v(x)πr2xd v(x)+u v(x)10 969(References)1Brodsky S J,MA B-Q.Phys.Lett.,1996,B381:3172Signal A I,Thomas A W.Phys.Lett.,1987,B191:2053Burkardt M,Warr B J.Phys.Rev.,1992,D45:9584Olness F et al.hep-ph/03123235Barone V et al.Eur.Phys.J.,2000,C12:2436Bazarko A O et al(CCFR Collaboration).Z.Phys.,1995, C65:1897Mason D(NuTeV Collaboration).hep-ex/04050378Kretzer S et al.Phys.Rev.Lett.,2004,93:0418029DING Y,MA B-Q.Phys.Lett.,2004,B590:216;DING Yong,L¨U Zhun,MA Bo-Qiang.HEP&NP,2004,28(9): 947(in Chinese)( , , . ,2004,28(9):947) 10Alwall J,Ingelman G.Phys.Rev.,2004,D70:111505.11DING Y,XU R-G,MA B-Q.Phys.Lett.,2005,B607:101 12Wakamatsu M.hep-ph/041120313Zeller G P et al.Phys.Rev.Lett.,2002,88:09180214Zeller G P et al.Phys.Rev.,2002,D65:11110315Rabinowitz S A et al.Phys.Rev.Lett.,1993,70:13416Goncharov M et al.Phys.Rev.,2001,D64:11200617Godbole R M,Roy D P.Z.Phys.,1984,C22:39;Z.Phys., 1989,C42:21918Astier P et al(NOMAD Collaboration).Phys.Lett.,2000, B486:3519Eidelman S et al(Particle Data Group).Phys.Lett.,2004, B592:120Andersson B et al.Nucl.Phys.,1981,B178:24221Lafferty G D.Phys.Lett.,1995,B353:54122Abe K et al(SLD Collaboration).Phys.Rev.Lett.,1997, 78:334123Smith J,Valenzuela G.Phys.Rev.,1983,D28:107124Aitala E M et al(Fermilab E791Collaboration).Phys.Lett.,1996,B371:15725Dias de Deus J,Dur˜a es F.Eur.Phys.J.,2000,C13:647 26Burkhardt H et al.Z.Phys.,1986,C31:3927Sandler P H et al.Z.Phys.,1993,C57:1,and References Therein.28Jonker M et al.Phys.Lett.,1981,B107:24129de Lellis G et al.Phys.Rep.,2004,399:22730Kayis-Topaksu A et al(CHORUS Collaboration).Phys.Lett.,2002,B549:4831¨Oneng¨u t G et al(CHORUS Collaboration).Phys.Lett., 2004,B604:145Nucleon Strange Asymmetry and the Light QuarkFragmentation Effect*GAO Pu-Ze MA Bo-Qiang(School of Physics,Peking University,Beijing100871,China)Abstract Nucleon strange asymmetry is an important non-perturbative effect in the study of nucleon structure,but it has not been checked by experiments yet.For effectively measuring the nucleon strange asymmetry,we investigate the light quark fragmentation effect that may affect the measurement of the strange asymmetry.We suggest an inclusive measurement of charged and neutral charmed hadrons by using an emulsion target in the neutrino and antineutrino in-duced charged current deep inelastic scattering,in which the strange asymmetry effect and the light quark fragmentation effect can be separated.Key words strange asymmetry,light quark fragmentation,charged current deep inelastic scattering。

第2章 夸克与轻子 (2)

第2章 夸克与轻子 (2)

第二章夸克与轻子Quarks and leptons2.1 粒子园The particle zoo学习目标Learning objectives:我们怎样发现新粒子?能否预言新粒子?什么是奇异粒子?大纲参考:3.1.1 ̄太空入侵者宇宙射线是由包括太阳在内的恒星发射而在宇宙空间传播的高能粒子。

如果宇宙射线粒子进入地球大气层,就会产生寿命短暂的新粒子和反粒子以及光子。

所以,就有“太空入侵者”这种戏称。

发现宇宙射线之初,大多数物理学家都认为这种射线不是来自太空,而是来自地球本身的放射性物质。

当时物理学家兼业余气球旅行者维克托·赫斯(Victor Hess)就发现,在5000m高空处宇宙射线的离子效应要比地面显著得多,从而证明这种理论无法成立。

经过进一步研究,表明大多数宇宙射线都是高速运动的质子或较小原子核。

这类粒子与大气中气体原子发生碰撞,产生粒子和反粒子簇射,数量之大在地面都能探测到。

通过云室和其他探测仪,人类发现了寿命短暂的新粒子与其反粒子。

μ介子(muon)或“重电子”(符号μ)。

这是一种带负电的粒子,静止质量是电子的200多倍。

π介子(pion)。

这可以是一种带正电的粒子(π+)、带负电的粒子(π-)或中性不带电粒子(π0),静止质量大于μ介子但小于质子。

K介子(kaon)。

这可以是一种带正电的粒子(K+)、带负电的粒子(K-)或中性不带电粒子(K0),静止质量大于π介子但小于质子。

科学探索How Science Works不同寻常的预言An unusual prediction在发现上述三种粒子之前,日本物理学家汤川秀树(Hideki Yukawa)就预言,核子间的强核力存在交换粒子。

他认为交换粒子的作用范围不超过10-15m,并推断其质量在电子与质子之间。

由于这种离子的质量介于电子与质子之间,所以汤川就将这种粒子称为“介子”(mesons)。

一年后,卡尔·安德森拍摄的云室照片显示一条异常轨迹可能就是这类粒子所产生。

大气环境数值模式

大气环境数值模式
G G " G G @4 < PB ) 3 1 C 4 < P' ( + * 6 ) * B QR) 1 * 4 </ * 2 ) * A A A A G G Q4 <B ( ) N + ) 1 * FS D 4 TQ . * A
/ + / %4 % + 7 ( * + / ( * / 0 ( & " % * # 28 ( ) $ 9 + * + % *: " & # 2 & + $ 9. / 0 ( & " % * # 2! " % 0 # & / * ; $ & / # / ) / % ( / 0 ( & " % * # 2: " & # 2 & G3 56 5( -. 1 56 5 5 1 5 -. 1 5 ! " # $ % & %. 2 + 9 % 0 2 # % $ 2 % & 8 % # # $ G $ $ $ " > 5( -3 < =
收稿日期 " $ $ % $ ! G # " $ $ % $ ! G &收修定稿 资助项目中国科学院重要方向性项目 H B ' I " J K@ J " $ ? 作者简介王自发男 G > & "年出生研究员研究方向大气输送及模式发展L J 6 1 ) 2 M ) 3 1 N 1 * 1 ) 2 = ) 1 = 1 8 = 8 * 6 A 7
"> * + 9 ) + / %? $ # @ % * & # / " # $ % & %. 2 + 9 % 0 2 # % $ 2 % & 8 % # # $ G $ $ $ # > 5( -! 5( -3 < =

物质世界最基本单元之一中微子

物质世界最基本单元之一中微子
• 中微子绝对质量与磁矩
– 绝对质量: Katrin – 磁矩: Texono, NUMU
• 双b 衰变 ==》中微子与反中微子是否同一个粒子?
– CUORE, NEMO,…
– EXO, Genius, Majorana, Moon, …
2020/5/15
10
中国为什么要选择反应堆中微子实验测量13 ?
• 中微子与宇宙学的关系:
– 构成宇宙中的暗物质
– 中微子振荡与宇宙中物质与反物质不对称有关
中–微中子微是子粒与子大物尺理度,宇天宙体结物构理的与形宇成宙有学关研究中的热点与交叉
2020/5/15
4
中微子振荡
• ,因信仰共产主义而逃到前 苏联的Bruno Pontecorvo 提出如 果中微子质量不严格为零,且中微 子的质量本征态与弱作用本征态不 同,根据量子力学,不同的中微子 之间可以相互转换
2020/5/15
1
物质世界的最基本单元之一:中微子
中微子是构成物质世界的最基本单元之一:
e e
u d
c s
t b
弱作用的宇称不守恒源于只有左旋中微子 中微子与反中微子是否同一个粒子? 中微子质量极轻,不带电荷,与物质的相互 作用十分微弱。因此极难探测,需要用体积 庞大的探测器。 粒子物理标准模型认为中微子质量为零。
• 加速器中微子实验造价昂贵
加速器:至少数亿美元
每个探测器:至少数亿美元 MINOS, NOvA, SuperK,…
• 双β实验需要雄厚的工业基础,造价昂贵,风险巨大 • 中微子绝对质量测量:技术基础与造价 • 反应堆中微子实验测量13 是一个难得的机遇
– 物理意义重大 – 地理环境优越 – 可以很快 – 便宜(~ 2亿人民币) – 没有重大技术困难

中微子探测进展

计算机工程应用技术本栏目责任编辑:梁书中微子探测进展张广文1,袁海娣1,黄坤2,程小燕1(1.安徽三联学院基础实验教学中心,安徽合肥230601;2.合肥市虹桥小学,安徽合肥230000)摘要:中微子由于其极难与普通物质发生相互作用的特性,以及异常苛刻的探测要求,使得关于它的研究受到了学者持久的关注。

本文整理了关于中微子探测的近期的相关研究动态,并在这些进展的基础上进行应用上的探讨。

关键词:中微子;探测;应用中图分类号:O572.21文献标识码:A文章编号:1009-3044(2021)12-0233-03开放科学(资源服务)标识码(OSID ):The News of Neutrino DetectionZHANG Guang-wen 1,YUAN Hai-di 1,HUANG Kun 2,CHENG Xiao-yan 1(1.Anhui Sanlian University,Hefei 230000,China;2.Hefei Hongqiao School,Hefei 230000,China)Abstract:Cause the hardly interact with normal matter and the very difficult way to detect,neutrino continued focused by the re⁃searcher.This paper collected the research news of neutrino detection,and discuss its application.Key words:Neutrino ;Detection ;Application由于中微子极难与物质发生相互作用的特性,使它能够很轻易地将原始反应点的相关信息不受任何阻拦地携带出来,因而可以作为信息的绝佳载体,从而满足人们的研究需要,具有十分重要的应用。

Physics with Beta-Beam

a r X i v :0712.4072v 1 [h e p -p h ] 25 D e c 2007Physics with Beta-BeamSanjib Kumar Agarwalla,Sandhya Choubey 1and Amitava RaychaudhuriHarish-Chandra Research Institute,Chhatnag Road,Jhusi,Allahabad -211019,IndiaAbstract.A Beta-beam would be a high intensity source of pure νe and/or ¯νe flux with known spectrum,ideal for precision measurements.Myriad of possible set-ups with suitable choices of baselines,detectors and the beta-beam neutrino source with desired energies have been put forth in the literature.In this talk we present a comparitive discussion of the physics reach of a few such experimental set-ups.Keywords:Magic Baseline,Beta Beam,CERN-INO,Golden Channel,Matter Effect PACS:14.60.Pq,13.15.+g,14.60.LmINTRODUCTIONNeutrino physics is now poised to move into the preci-sion regime.A number of high-precision neutrino oscil-lation experiments have been contrived to shed light onthe third mixing angle θ13,the sign 2of ∆m 231≡m 23−m 21(sgn (∆m 231))and the CP phase (δCP ),key missing ingre-dients of the neutrino mass matrix.The νe →νµtransi-tion probability (P e µ)depends on all these three param-eters and is termed the “golden channel”[1,2]for long baseline accelerator based experiments 3.In order to ex-ploit this channel,we need a pure and intense νe (or ¯νe )beam at the source.The beta-beam serves this purpose.In this talk,we will focus on a few proposed experimen-tal scenarios dealing with beta-beam and discuss the con-sensus direction for the future.BETA-BEAMZucchelli [4]put forward the novel idea of beta-beam [3,4,5,6,7,8,9,10,11,12],which is based on the con-cept of creating a pure,well-known,intense,collimatedbeam of νe or ¯νe through the beta decay of completely ionized radioactive ions.It will be achieved by produc-ing,collecting,and accelerating these ions and then stor-ing them in a ring [13].Feasibility of this proposal and its physics potential is being studied in depth [14],and will take full advantage of the existing accelerator complex and CERN and FNAL.It has been proposed to produce(1−ˆA)2+αsin2θ13ξsin δCP sin (∆)sin (ˆA∆)(1−ˆA)+αsin2θ13ξcos δCP cos (∆)sin (ˆA∆)(1−ˆA)+α2cos 2θ23sin 22θ12sin 2(ˆA∆)2G F n e E )/∆m 231.G F and n e are the Fermi couplingconstant and the electron density in matter,respectively.The sign of ˆAis positive (negative)for neutrinos (anti-neutrinos)with NH and it is opposite for IH.While the simultaneous dependence of this oscillation channel on θ13,sgn (∆m 231)and δCP allows for the simulataneous measurement of all these three quantities,it also brings in the problem of “parameter degeneracies”–the θ13-δCP intrinsic degeneracy [17],the sgn (∆m 231)degeneracy [18]and the octant of θ23degeneracy [19]–leading toan overall eight-fold degeneracy in the parameter values [20].The degeneracies,unless tackled,always reduce the sensitivity of the experiment.THE CERN-INO MAGICAL SET-UP Interestingly,when sin(ˆA∆)=0,the last three terms in Eq.(1)drop out and theδCP dependence disappears from the P eµchannel.The problem of clone solutions due to thefirst two types of degeneracies are therefore evaded.SinceˆA∆=±(2√2π/G F Y e,where Y e is the electron fraction inside earth. This givesρ[km]≃32725,which for the PREM[21] density profile of the earth is satisfied for the“magic baseline”[20,22,23],L magic≃7690km.At this baseline the sensitivity to the mass hierarchy andθ13is quite significant[22],while the sensitivity toδCP is absent. The large baseline also entails traversal of neutri-nos through denser regions of the earth,capturing near-maximal matter contribution to the oscillation probabil-ity.In fact,for this baseline,the average earth matter density calculated using the PREM profile isρav=4.25 gm/cc,for which the resonance energyE res≡|∆m231|cos2θ132G F N e(2)=7GeV,(3) for|∆m231|=2.4×10−3eV2and sin22θ13=0.1.Of course neutrino oscillation probability for long base-line experiments depend on the product of the mixing term and the mass squared difference driven oscillatory term inside rgestflavor conversions are possi-ble when both these terms are large[3,24].The exact neutrino transition probability P eµusing the PREM den-sity profile is given in Fig.1which has been taken from [9].For neutrinos(antineutrinos),matter effects for the longer baselines bring a significant enhancement of P eµfor NH(IH),while for IH(NH),the probability is al-most unaffected.This feature can be used to determine the neutrino mass hierarchy(see left panel of Fig.1).For L=7500km,which is close to the magic baseline,the effect of the CP phase is seen to be almost negligible. This allows a clean measurement of sgn(∆m231)andθ13 (see right panel of Fig.1),while for all other cases the impact ofδCP on P eµis appreciable.A large magnetized iron calorimeter(ICAL)is all set to come up at the India-based Neutrino Observatory (INO)[25].ICAL@INO will be a50kton detector,ca-pable of detecting muons along with their charge,with good energy and angular resolution.It might be upgraded to100kton.If a beta-beam facility is built at CERN, ICAL@INO could serve as an excellent far detector for observing the oscillatedνµ.The USP of this experimen-tal set-up would be the CERN-INO distance,which cor-responds to7152km,tantalizingly close to the magic baseline.This would enable an almost degeneracy-free measurement of sgn(∆m231)andθ13as discussed above. In addition,one could exploit the near-maximal matter effects by tuning the beam energy to be close to6-7GeV (see Fig.1).We consider8B(8Li)[15]ion as a possible source for aνe(¯νe)beta-beam and show the expectedflux for our experimental set-up in the left panel of Fig.2. For the Lorentz boost factorγ=250−650the8B and 8Li sources have peak energy around∼4−9GeV.Weassume2.9×1018useful decays per year for8Li and 1.1×1018for8B,for all values ofγ.The expected number of events are shown in the right panel of Fig.2. We take a detector energy threshold of1.5GeV,detection efficiency of80%and charge identification efficiency of 95%.For discussion on our backgrounds and details of our statistical analysis we refer the readers to[9,12]. We define the sin22θ13sensitivity reach of the CERN-INO beta-beam experiment as the upper limit on sin22θ13that can be put at the3σC.L.,in case no signal forθ13driven oscillations is observed and the data is con-sistent with the null hypothesis.At3σ,the CERN-INO β-beam set-up can constrain sin22θ13<1.14×10−3 withfive years of running of the beta-beam in both polarities with the sameγ=650and full spectral infor-mation.The sin22θ13(true)discovery reach is defined as the minimum value of sin22θ13(true)for which we can distinguish the signal at the3σ C.L.We present our results in the left panel of Fig.3,as a function ofγ. The plot presented show the most conservative numbers which have been obtained by considering all values of δCP(true)and both hierarchies.We refer the reader to [12]for details.The hierarchy sensitivity is defined as the minimum value of sin22θ13(true),for which one can rule out the wrong hierarchy at3σC.L.The results are depicted as a function ofγin the right panel of Fig.3.For NH true,the sgn(∆m231)reach corresponds to sin22θ13(true)>5.51×10−4,with5years energy binned data of both polarities andγ=650.Here we had assumedδCP(true)=0.However,as discussed before, the effect ofδCP is minimal close to the magic base-line and hence we expect this sensitivity to be almost independent ofδCP(true)(see[12]for details).THE CERN-MEMPHYS PROJECTThe CERN-MEMPHYS proposal comprises of sending a low gamma beta-beam from CERN to the envisaged MEMPHYS,which would be a440ktonfiducial mass water detector located in Fréjus,at a distance of130kmEnergy (GeV)00.250.5P e µ0.000.250.50P e µEnergy (GeV)Energy (GeV)0.250.5P e µ0.000.250.50P e µEnergy (GeV)FIGURE 1.Both the panels show the energy dependence of P e µfor four baselines where the band reflects the effect of the unknown δCP .Left panel clearly depicts the effect of δCP in making distinction between normal (NH)&inverted (IH)hierarchy with sin 22θ13=0.1.Right panel reflects the difference in P e µfor two different values of sin 22θ13with NH.F l u x y r −1105−2m M e V −1()νe8B250350500650CERN − INO 7152 Km0 0.5 11.5 22.5 3246810 12 14 16 18 20Energy (GeV)sin2θ1328B Neutrino Beam350 & NH 350 & IH 250 & NH 250 & IH650 & NH 650 & IH 500 & NH 500 & IH CERN − INO (7152 Km)0 50 100 150 200 250 300 350 400 450 5000.0010.01 0.1E v e n t s i n 5 y e a r s0.2FIGURE 2.Left panel shows the boosted unoscillated spectrum of neutrinos from 8B ion which will hit the INO detector,for four different benchmark values of γ.The expected number of µ−events in 5years running time with 80%detection efficiency as a function of sin 22θ13are presented in right panel.The value of γand the hierarchy chosen corresponding to each curve is shown in the figure legend.from CERN.The major advantage of this set-up is that one needs very reasonable values of the Lorentz Boost γ=100and 18Ne and 6He ions for producing the beta-beam.The current accelerator capabilities at CERN are expected to be enough for producing a beta-beam with γ=100without requiring any upgrades and affecting the running of LHC.The band between the red solid lines in Fig.4show the 3σ“discovery reach”for sin 22θ13(true)using the combined 5years run in νe and ¯νe polarities.The band corresponds to changing the systematic errors from 2%to 5%.The 3σsin 22θ13(true)discovery reach is defined as the minimum value of sin 22θ13(true)which could produce a 3σunambiguous signal at the detector.The strongest point of this experiment is its tremendous sensitivity to CP violation.Maximal CP violation can be observed at the 3σC.L.if sin 22θ13(true)>2×10−4.Another major advantage of this set-up is that if the SPLis built at CERN,then it could serve as a superbeam experiment as well.In that case,one could run could combine simultaneous 5years of running of νe beta-beam with 5years of running of the SPL superbeam,without having to run the experiment in the ¯νe PARING DIFFERENT SET-UPSThe authors of [5]studied the physics potential of beta-beams,using 18Ne and 6He as the source ions and al-lowing for different values of γand L .Table 1describesthe details of the three illustrative set-ups analyzed in de-tails in [5].Fig.5shows the sin 22θ13sensitivity reach of these three set-ups and compares them with the cor-responding potential of that expected from two standard neutrino factory set-ups.We note that the sensitivity ofs i n θ2132(t r u e )γ 10101010s i n θ2132(t r u e )γ10101010FIGURE 3.Left panel shows the 3σdiscovery reach for sin 22θ13(true).Right panel shows the minimum value of sin 22θ13(true)for which the wrong inverted hierarchy can be ruled out at the 3σC.L.,as a function of the Lorentz boost γ.The red solid lines in both the panels are obtained when the γis assumed to be the same for both the neutrino and the antineutrino beams.The blue dashed lines show the corresponding limits when the γfor the 8Li is scaled down by a factor of 1.67with respect to the γof the neutrino beam,which is plotted in the x -axis.FIGURE 4.3σdiscovery reach for sin 22θ13(true)for β-beam,Super Beam and T2HK (phase II of the T2K experiment)as a function of δCP (true).The running time is (5ν+5¯ν)year for β-beam with twice the standard luminosity and (2ν+8¯ν)years for the Super Beams (4MW).the CERN-INO beta-beam experiment is better than that quoted for the set-up 2of Table 1.The set-up 3is bet-ter,but it needs γ=1000.While none of these three set-ups are competitive with the neutrino factory at magic baseline or the CERN-INO beta-beam set-up as far as the hierarchy sensitivity is concerned,the CP sensitivity of the three set-ups is extremely good.For CP studies the performance of beta-beam is comparable with neutrino factory at L =3000−4000km.In Table 2we present a quantitative comparison ofTABLE 1.The number of sig-nal/background events for different combinations of the chosen detector type and values of γ.WC stands for Water Cherenkov,while TASD means a TotallyActive Scintillator Detector.Detector typeWCTASDTASDνsignal198328077416νbackground 10531954The detector type (MI)stands for magnetized iron.10101010101010sin 22Θ13sensitivity limitFIGURE 5.The sin 22θ13sensitivity limits for the different setups and other representatives.Here n =0(decays per year fixed)and the 3σconfidence level are chosen.The final sen-sitivity limits are obtained as the right edges of the bars after successively switching on systematics,correlations,and degen-eracies.TABLE parison between the different ex-perimental set-ups.See the text for details .γL(km)Detector T ν/T ¯νsin 22θ13sgn (∆m 231)Max CPV NF@3000300050(MI)4/41.5×10−31.0×10−27×10−5NF@7500750050(MI)4/42×10−42×10−4No sens CERN-350715250(MI)5/51.2×10−31.3×10−3No sens INO 650715250(MI)5/55.1×10−45.6×10−4No sens CERN-100/100130440(WC)10/105×10−32.5×10−32×10−4MEMPHYS +SPL+ATM hep-ph/200/200520500(WC)8/81.5×10−32×10−22×10−40506237500/50065050(TASD)8/83.2×10−44.5×10−21×10−41000/1000130050(TASD)8/81.2×10−47×10−37×10−5hep-ph/100/60130400(WC)10(S)Not No Sens [1×10−3]0312068580/350732400(WC)10(S)Given[2×10−2][2×10−4]2500/1500300040(MI)10(S)[4×10−3][4×10−4]hep-ph/120/120130440(WC)10(S)[5×10−3]Not [1×10−30503021150/150300440(WC)10(S)[6×10−4]Given[2×10−4]350/350730440(WC)10(S)[4×10−4][1×10−4]columns show the (approximate)3σθ13discovery (orsensitivity reach),the hierarchy sensitivity and CP sen-sitivity respectively.The entries in square brackets cor-respond to 99%C.L.sensitivity.The results correspond to assumed true normal hierarchy.Since the θ13and hi-erarchy reach of the experiment in general depends on δCP (true),we give the most conservative value.Note that for the CERN-MEMPHYS project the hierarchy sensi-tivity comes mainly from adding the atmospheric neu-trino data in the megaton MEMPHYS detector.CONCLUSIONSIn this talk,we discussed the expected physics reach of selected experimental set-ups using a beat-beam.Beta-beams are seen to have extremely good physics reach which are comparable to those expected in neutrino fac-tories.REFERENCES1. A.Cervera et al.,Nucl.Phys.B 579,17(2000)[Erratum-ibid.B 593,731(2001)].2.M.Freund,P.Huber and M.Lindner,Nucl.Phys.B 615,331(2001).3.S.K.Agarwalla,S.Choubey,S.Goswami and A.Raychaudhuri,Phys.Rev.D 75,097302(2007).4.P.Zucchelli,Phys.Lett.B 532,166(2002);C.V olpe,J.Phys.G 34,R1(2007).5.P.Huber et al.,Phys.Rev.D 73,053002(2006).6.J.Burguet-Castell et al.,Nucl.Phys.B 725,306(2005);J.Burguet-Castell et al.,ibid.695,217(2004);A.Donini et al.,Phys.Lett.B 641,432(2006).7.J.E.Campagne et al.,JHEP 0704,003(2007).8.S.K.Agarwalla,A.Raychaudhuri and A.Samanta,Phys.Lett.B 629,33(2005).9.S.K.Agarwalla,S.Choubey and A.Raychaudhuri,Nucl.Phys.B 771,1(2007).10.R.Adhikari,S.K.Agarwalla and A.Raychaudhuri,Phys.Lett.B 642,111(2006).11.S.K.Agarwalla,S.Rakshit and A.Raychaudhuri,Phys.Lett.B 647,380(2007).12.S.K.Agarwalla,S.Choubey and A.Raychaudhuri,arXiv:0711.1459[hep-ph].13.J.Bouchez,M.Lindroos and M.Mezzetto,AIP Conf.Proc.721,37(2004).14.The ISS Physics Working Group,arXiv:0710.4947[hep-ph].15. C.Rubbia,A.Ferrari,Y .Kadi and V .Vlachoudis,Nucl.Instrum.Meth.A 568,475(2006);C.Rubbia,arXiv:hep-ph/0609235.16. A.Donini and E.Fernandez-Martinez,Phys.Lett.B 641,432(2006).17.J.Burguet-Castell et al.,Nucl.Phys.B 608,301(2001).18.H.Minakata and H.Nunokawa,JHEP 0110,001(2001).19.G.L.Fogli and E.Lisi,Phys.Rev.D 54,3667(1996).20.V .Barger,D.Marfatia and K.Whisnant,Phys.Rev.D 65,073023(2002).21. A.M.Dziewonski and D.L.Anderson,Phys.Earth Planet.Interiors 25,297(1981).22.P.Huber and W.Winter,Phys.Rev.D 68,037301(2003).23. A.Y .Smirnov,arXiv:hep-ph/0610198.24.R.Gandhi,P.Ghoshal,S.Goswami,P.Mehta and S.Uma Sankar,Phys.Rev.Lett.94,051801(2005).25.See http://www.imsc.res.in/∼ino.。

“捕获”中微子

中微子热席卷全球。

即便你不知道它是什么,可能也听说过沸沸扬扬的“中微子超光速”事件。

中微子真的跑得比光快?爱因斯坦错了吗?“极客”们借此创造了很多关于中微子的笑话,比如,中微子说:“我回头看见上帝说:‘要有光。

’”中微子在中国也火了一把。

3月15日,中国科学院高能物理研究所研究员邢志忠打算做一场名为“大亚湾实验结果的唯象学后果”的理论报告。

结果让他惊讶,慕名而至的科研人员和科学爱好者将教室挤得水泄不通,报告主持人、大亚湾中微子实验项目副经理曹俊研究员不得不将地点换到最大的一间阶梯会议室。

这在曹俊刚从美国费米实验室回国的2003年是难以想象的。

“高能物理研究基本以10年作为一个周期,从实验设想到建造设备到实验出结果。

2002年诺贝尔物理学奖颁给发现宇宙中微子的科学家之后,越来越多的人意识到这个领域很有意思。

10年过去了,该出结果了。

”“过去粒子物理研究主要集中在加速器上,如今加速器研究除了大型强子对撞机(lhc)之外已经告一段落,而中微子探测的技术进步了,成为一个热门领域。

”中科院理论物理研究所研究员李淼说。

不过,物理学家眼中的重大成就,对普通人而言不啻为天书。

邢志忠说一个精彩的报告,应该让1/3的内容能被公众听懂,1/3专家能听懂,1/3谁也听不懂。

“高能物理就是这样,有太多谁也不懂的东西。

一旦你能理解,就会觉得非常有意思。

”他在报告会上打出一张自己绘制的“粒子物理学28个基本参数参考图”,这图就像是一个靶标,参数有的靠内环,有的靠外环,而他们发现的θ13处于靠近靶心的内环。

“这就是大亚湾结果的重要性,我们在高能物理的历史上留下了足迹。

”至于介绍θ13数值究竟是多少时,他打趣道:“大亚湾实验测得的θ13的中心值和误差,恰好是8.8度加减0.8度,就是‘三八’啊!在‘三八节’公布这个消息,刚好祝广大女性节日快乐!”寻找“幽灵粒子”要想理解这项轰动国内外物理学界的事情,还要从中微子是什么说起。

20世纪30年代早期,英国物理学家艾里斯(c.d.ellis)仔细测量了放射性核衰变放射出的电子的速度。

微中子物理简介

本文介绍了微中子(中微子)物理的相关内容。首先,概述了中微子的发现历程,包括近年来由于实验技术的进步而使得中微子研究取得的重要突破。中微子,作为物理学中的一个重要概念,其性质和研究对于理解物质的基本结构和运动规律具有重要意义。文中详细描述了中微子的基本性质,如电荷、质量等,并解释了这些性质如何影响中微子在物质中的行为。此外,还探讨了中微子在物理学研究中的应用,特别是在粒子物理学和核物理学领域。通过对中微子的深入研究,科学家们能够揭示出更多关于宇宙和物质的奥秘。然而,尽管中微子研究已经取得了显著的成果,但仍然存在许多未解之谜,需要未来的研究者们继续探索。值得注意的是,本文主要聚焦于中微子,对于中粒子的讨论并不直接涉及。
這些疑問雖然都不易解答但是偵測高能微中子可以得到進一步資訊尤其是產生高能量孙宙線的同時高能量微中子也會伴隨產生微中子行進路線高能量孙宙slglashownucl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:h ep-ph/943287v115Mar1994UCI-TR 94-10Neutrino Fluxes and Resonance Physics with Neutrino TelescopesMyron Bander ∗Department of Physics,University of California,Irvine,California 92717,USAH.R.Rubinstein ∗∗Department of Theoretical Physics,University of Uppsala,Uppsala,Sweden and Department of Theoretical Physics,Hebrew University,Jerusalem,Israel (March 1994)Abstract Expected atmospheric ¯νe fluxes will result in a significant number of reso-nantly produced low mass hadronic vector states,as the ρ,in large volume neutrino telescopes.The existence of sources of higher energy neutrinos will result in the production of higher mass states,as the D ∗s and the (¯t b )J =1.We calculate the rates of production of these states and discuss their signals.Independent of theoretical flux determinations,the detection of these stateswill be a tool for experimentally determining these fluxes.PACS numbers:,14.60.G,98.70.VcTypeset using REVT E XLarge volume high energy neutrino telescopes are coming into operation with effective areas of the order of109cm2and volumes greater than2×1013cm3[1–3].Planned is the NESTOR[4]detector with a potential volume of1014cm3.In this note we point out a method of determining or setting bounds on¯νefluxes at various energies corresponding to the production of the standard vector quark-antiquark resonances,namelyρ,D∗s and possibly(¯t b);rates for the production of other states is significantly lower because of Cabibbo or helicity suppression.This complements the Glashow[5]mechanism for resonant W−production.A guaranteed source,with energies below104GeV,are atmospheric neutrinos[6].Neu-trinos in this energy range will be capable of producing theρmeson and the D∗s.The extrapolated,to higher energies,atmospheric neutrinofluxes give totally negligible rates for the production of higher mass resonances.However,interesting sources of neutrinos with energies higher than104GeV have been postulated;Active Galactic Nuclei(AGN)[7]are the most promising source in that TeV gamma rays have been detected from Markarian421 [8]and there is consensus thatfluxes of all neutrinoflavors of comparable intensity exist[9]; as a large number of AGNs is known to exist one can estimate the expected diffuse neutrino flux[10].Unexpected sources might be early universe relic neutrinos[11].Some time back Glashow[5]pointed out that the W boson can be produced in a resonant way in neutrino-electron scattering.We study the resonance production of hadronic states:ρ’s,D∗s’s with a mass of2.1GeV and of the J=1state of the(¯t b)system.For completeness we also present results for the helicity suppressedπproduction and the Cabibbo suppressed K∗production.For a vector meson R the rate in a volume V isRate=48π3Γ(R→eν)2m e N e V,(1)where N e is the elctron density(in water N e=3.4×1023/cm3)andΦ(E)is theflux,averaged over azimuthal angles,at¯νe energy E.In the above we assume that theflux does not change rapidly over the width of the resonance.The partial widthΓ[(Q¯q)J=1→eν],for a vector resonance made out of Q and¯q quarks,is obtained from the related electromagnetic of the Q¯Q system.For the latter we use the empirical relation[12]Γ (Q¯Q)J=1→e−e+ =12e2Q keV,(2) where e Q is the charge of the Q quark.In terms of the nonrelativistic quark model this implies that the wave function at the origin is proportional to the reduced ing these facts wefindΓ[(Q¯q)J=1→eν]=192M2Q M2q G F4πα 2keV.(4) Combining Eq.(1)and Eq.(3)wefind for a volume of2×1013cm3(the smallest of the proposed neutrino telescope volumes)Rate=8×1011M2Q M2q2m e /year,(5)whereΦis in units of(cm2s sr GeV)−1and all masses are in GeV.For theρmeson the corresponding result isRate=1.7×1010Φ(580GeV)/year.(6) The results,with calculated atmospheric neutrinofluxes(ATM)[6]and theoretically esti-mated active galactic neutrinofluxes(AGN)[10,13]are given in Table I.For convenience we present theflux needed to obtain10events/year.(For the calculations we use a t quark mass of175GeV.)We also present,in Table II,results for the production of two low mass states that are either helicity suppressedπor Cabibbo suppressed K∗.We note that at E=6.4×106GeV, the W−production rate is32/year.The atmospheric neutrinoflux calculations[6]are conservative and we certainly expect that the neutrino telescopes will see severalρevents per year.Theνµfluxes are calculatedto be an order magnitude larger.Should there be any significant neutrino mixing[14] enhancing theνeflux,the rates due to atmospheric neutrinos would go up significantly. As mentioned earlier the rates presented in this work are for the smallest volume telescope planned.Although the rate for production of(¯t b)J=1due to the calculated AGN neutrino flux is well below the feasibility of any telescope,there might be totally unexpected sources. The detection of hadronic resonances will provide an experimental determination or limit on¯νefluxes.We have presented rates for events totally contained in the neutrino telescope volume.These events will be characterized by having no visible particle entering the volume and600GeV or more of hadronic energy deposited locally in the detector in thin hadronic and/or electromagnetic shower of length6m to10m.[15].M.B.was supported in part by the National Science Foundation under Grants PHY-9208386and INT-9224138.H.R.was supported by the Swedish Research Council and an EEC Science grant.We wish to thank Dr.S.Barwick,Dr.S.Carius and Mr.Mats Thunman for valuable discussions.REFERENCES[1]S.Barwick et al in Proceedings of the Workshop on High Energy Neutrino Astrophysics,Honolulu,1992,edited by V.J.Stenger et.al.(World Scientific,Singapore,1992), p.291.[2]J.G.Learned in Proceedings of the2nd International Workshop on Neutrino Telescopes,Venice,1990,edited by M.Baldo-Ceolin.[3]G.D.Domogatsky in Proceedings of the3nd International Workshop on Neutrino Tele-scopes,Venice,1991,edited by M.Baldo-Ceolin.[4]L.K.Resvanis in Ref.[1],p.325.[5]S.L.Glashow,Phys.Rev.118,316(1960).[6]P.Lipari,Astroparticle Physics1,195(1993)and references therein.[7]A.P.Szabo and R.J.Protheroe in Ref.[1],p.24and references therein.[8]C.W.Akerlof et al in Proceedings of the XXVI International Conference on High EnergyPhysics,Dallas,1992,edited by J.R.Sanford,(American Institute of Physics,New York,1993),vol.II,p.1214.[9]R.J.Protheroe in Proceedings of the TAUP93,Conference,Gran Sasso,Italy,Septem-ber93,to appear in Nuclear Physics B(Proceedings).[10]F.W.Stecker,C.Done,M.H.Salamon and P.Sommers,Phys.Rev.Lett.66,2697(1991);theflux in this reference has to be scaled down by a factor of30,T.Stanev in Ref.[1],p.354.[11]V.Berezinsky,Neutrinos from Early Universe Relics,Gran Sasso preprint to appear inAstroparticle Physics(unpublished).[12]B.L.Ioffe,V.A.Khoze and L.N.Lipatov,Hard Processes,Volume1,PhenomenologyQuark–Parton Model,(Nort Holland,Amsterdam,1984),p.160.[13]E.Zas,F.Halzen and R.A.Vazquez,Astropareticle Physics1,297(1993).[14]D.Casper et al.,Phys.Rev.Lett.66,2561(1991);R.Becker-Szendy et al.,Phys.Rev.D46,3720(1992);Phys.Rev.Lett.69,1010(1992);T.Kajita in Ref.[8],p.1187. [15]S.Barwick,private communication.TABLESTABLE I.Event Rate for Unsuppressed Vector Meson Production in2×1013cm3.State Energy(GeV)ATM Flux AGN Flux Events/year Flux for10/yr.π19.410−50.033×10−3K∗7.8×1026×10−110.068×10−9。

相关文档
最新文档