2013年中考数学试题按章节考点分类:第4章二元一次方程组

合集下载

2013年全国中考数学试题分类解析汇编专题9一元二次方程修改

2013年全国中考数学试题分类解析汇编专题9一元二次方程修改

2013年全国中考数学试题分类解析汇编 专题:一元二次方程一、选择题1. (2012天津市3分)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1≠x 2,有下列结论:①x 1=2,x 2=3; ②1m 4>-;③二次函数y=(x -x 1)(x -x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【 】 (A )0 (B )1 (C )2(D )32. (2012广东佛山3分)用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是【 】 A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=75. (2012湖北武汉3分)若x 1、x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是【 】 A .-2 B .2 C .3 D .16. (2012湖北荆门3分)用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是【 】 A .(x ﹣1)2=4 B .(x+1)2=4 C .(x ﹣1)2=16 D .(x+1)2=167. (2012湖北天门、仙桃、潜江、江汉油田3分)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为【 】 A .3 B .﹣3 C .13 D .﹣139. (2012湖北襄阳3分)如果关于x 的一元二次方程2kx 10+=有两个不相等的实数根,那么k 的取值范围是【 】 A .k <12 B .k <12且k≠0 C .﹣12≤k<12 D .﹣12≤k<12且k≠010. (2012湖南常德3分)若一元二次方程2x 2x m 0++=有实数解,则m 的取值范围是【 】 A. m 1≤- B. m 1≤ C. m 4≤ D.m 12≤11. (2012湖南株洲3分)已知关于x 的一元二次方程x 2﹣bx+c=0的两根分别为x 1=1,x 2=﹣2,则b 与c 的值分别为【 】 A .b=﹣1,c=2 B .b=1,c=﹣2 C .b=1,c=2 D .b=﹣1,c=﹣212. (2012四川攀枝花3分)已知一元二次方程:x 2﹣3x ﹣1=0的两个根分别是x 1、x 2,则x 12x 2+x 1x 22的值为【 】 A . ﹣3B . 3C . ﹣6D . 613. (2012四川广安3分)已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l=0有两个不相等的实数根,则a 的取值范围是【 】 A .a >2 B .a <2 C .a <2且a≠l D.a <﹣214. (2012四川泸州2分)若关于x 的一元二次方程x 2-4x + 2k = 0有两个实数根,则k 的取值范围是【 】A 、k≥2B 、k≤2C 、k >-2D 、k <-215. (2012四川南充3分)方程x (x-2)+x-2=0的解是【 】 (A )2 (B )-2,1 (C )-1 (D )2,-1 16. (2012贵州安顺3分)已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是【 】 A . 1B . ﹣1C . 0D . 无法确定17. (2012山东东营3分)方程()21k 1x =04-有两个实数根,则k 的取值范围是【 】.A . k≥1B . k≤1 C. k>1D . k<118. (2012山东莱芜3分)已知m 、n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为【 】 A .9 B .±3 C.3 D .520. (2012山东日照4分)已知关于x 的一元二次方程(k -2)2x 2+(2k +1)x +1=0有两个不相等的实数根,则k 的取值范围是【 】 (A) k>34且k≠2 (B)k≥34且k ≠2 (C) k >43且k≠2 (D)k≥43且k≠2 21. (2012山东烟台3分)下列一元二次方程两实数根和为﹣4的是【 】 A .x 2+2x ﹣4=0 B .x 2﹣4x+4=0 C .x 2+4x+10=0 D .x 2+4x ﹣5=0 23. (2012广西河池3分)一元二次方程2x 2x 20++=的根的情况是【 】A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根29. (2012内蒙古呼和浩特3分)已知:x 1,x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是【 】 A .a=﹣3,b=1 B .a=3,b=1 C .3a=2-,b=﹣1D .3a=2-,b=130. (2012内蒙古包头3分)关于x 的一元二次方程()2x mx+5m 5=0--的两个正实数根分别为x 1,x 2,且2x 1+x 2=7,则m 的值是【 】 A.2 B. 6 C. 2或6 D . 7 二、填空题1. (2012北京市4分)若关于x 的方程2x 2x m=0--有两个相等的实数根,则m 的值是 .2. (2012上海市4分)如果关于x 的一元二次方程x 2﹣6x+c=0(c 是常数)没有实根,那么c 的取值范围是 . 5. (2012江苏常州2分)已知关于x 的方程22x mx 6=0--的一个根是2,则m= ,另一根为 。

2013届北师大版初中数学全程复习方略配套课件第七讲 二元一次方程组

2013届北师大版初中数学全程复习方略配套课件第七讲 二元一次方程组

所以2m-n=6-2=4,4的算术平方根是2,故选C.
【对点训练】 1.(2011·凉山州中考)下列方程组中是二元一次方程组的是
xy 1, (A) x y 2
2x z 0, (C) 1 3x y 5 5x 2y 3, (B) 1 y3 x x 5, (D) x y 7 2 3
则|m-n|的值是( (A)5 (B)3
) (C)2 (D)1
, y 1
, x 1 3x y m, 【解析】选D.∵方程组 的解是
x my n 3 1 m, m 2, ∴ 解得 1 m n, n 3.
所以|m-n|=|2-3|=1,故选D.
【即时应用】
1.请判断下列各方程中,哪些是二元一次方程,哪些不是. 是 (1)2x+5y=10(___)
不是 (2)2x+y+z=1(_____) 不是 (3)x2+y=20(_____)
是 (4)2a+3b=5(___)
2.判断下面4组数值中,哪些是二元一次方程2x+3y=12的解, 哪些不是.
第七讲 二元一次方程组
1.了解:二元一次方程和二元一次方程组的概念,二元一次方 程(组)的解的概念. 2.理解:加减消元法和代入消元法. 3.掌握:用加减消元法和代入消元法解二元一次方程组.
一、二元一次方程(组)的有关概念
两 个未知数,并且所含未知数的项的次 1.二元一次方程:含有___
1 的方程. 数都是__ 两 个未知数的两个___ 一 次方程所组成 2.二元一次方程组:含有___ 的一组方程. 未知数 的 3.二元一次方程的解:适合一个二元一次方程的一组________ 值. 4.二元一次方程组的解:二元一次方程组中,各个方程的公共 ____解.

(备战2014)2013版中考数学复习方案 第二单元 方程组与不等式组课件 北师大版

(备战2014)2013版中考数学复习方案 第二单元 方程组与不等式组课件 北师大版

二元一次方程组的解应写成
防错提醒
xy==ba,的形式
第6讲┃ 考点聚焦
考点5 二元一次方程组的解法
定义 在二元一次方程组中选取一个适当的方程,将
一个未知数用含另一个未知数的式子表示出
代 入 法
来,再代入另一个方程,消去一个未知数得到 一元一次方程,求出这个未知数的值,进而求 得这个二元一次方程组的解,这种方法叫做代
第6讲┃ 归类示例
归类示例
► 类型之一 等式的概念及性质
命题角度: 1. 等式及方程的概念; 2. 等式的性质.
第6讲┃ 归类示例
如图①,在第一个天平上,砝码A的质量等于砝 码B加上砝码C的质量;如图②,在第二个天平上,砝码A 加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝 码A与____2____个砝码C的质量相等.
图6-1 [解析] 依题意有A=B+C,A+B=3C,两个等式相加2A+B =B+4C,A=2C.
第6讲┃ 归类示例
► 类型之二 一元一次方程的解法
命题角度: 1.一元一次方程及其解的概念; 2.解一元一次方程的一般步骤.
第6讲┃ 归类示例
[2011·滨州]
依据下列解方程 0.3x+0.5= 2x-1的过程,
在使用根的判别式解决问题时,如果二次项系 数中含有字母,要加上二次项系数不为零这个
限制条件
第7讲┃ 考点聚焦
考点4 一元二次方程的应用
应用类 型
增长率 问题
利率 问题 销售利 润问题
等量关系
(1) 增长率=增量÷基础量 (2)设a为原来的量,m为增长率,b为连续 两次增长后的量,则a(1+m)2=b,当m为 平均下降率时,则a(1-m)2=b (1)本息和=本金+利息 (2)利息=本金×利率×期数 (1) 毛利润=售出价-进货价 (2) 纯利润=售出价-进货价-其他费用 (3)利润率=利润÷进货价

2013年中考数学模拟试卷(第四组)

2013年中考数学模拟试卷(第四组)

2013年中考数学模拟试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1.计算:)1(0-+的结果是A .1-B .1C .0D .1± 2.六边形的外角和为A . 7200 B. 1800 C.3600 D.5400 3.计算32)2(x -的结果是A.52x -B. 68x -C.62x -D.58x - 4.下面四个几何体中,主视图是四边形的几何体共有A . 4个B . 2个C . 3个D . 1个5.我国卫星探测器在外太空探测到某星球的体积约为88354263km ,这个数用科学计数法(保留三个有效数字)表示为n 1084.8⨯,则n = A. 4 B. 5 C. 6 D. 76.如图,数轴上表示的是下列哪个不等式组的解集 A .B .C .D .7.已知关于x 的方程2x+a 一9=0的解是x=2,则a 的值为A.2B.3C.4D.58.某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为A .13,14B .14,13.5C .14,13D .14,13.6第6题图9.下列说法不正确的....是 A .两直线平行,同位角相等 B .两点之间直线最短 C .对顶角相等D .半圆所对的圆周角是直角10.一次函数 y = -5x+6 的函数图像不经过第( )象限 A 、第一象限 B 、第二象限 C 、第三象限 D 第四象限11.函数()()1240y x x y x x ==>≥0,①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >;③当1x =时,S ∆ABC =23;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的 增大而减小.其中正确结论的序号是A .①②③④B .①③④C .②④D .②③④12.如图,O 是正方形ABCD 的对角线BD 上一点,O ⊙与边AB BC ,都相切,点E F ,分别在边AD DC ,上.现将DEF △沿着EF 对折,折痕EF 与O ⊙相切,此时点D 恰好落在圆心O 处.若2DE =,则五边形ABCFE 面积为 A .5 B .4 C .2 D .244+第Ⅱ卷(非选择题,共84分)二、填空题:(本大题6小题,每小题3分,共18分) 13. 函数y=12-x 的自变量x 的取值范围是 . 14. 如图,A B ∥CD ,∠AOE=118°,则∠C=____________°.CABFDEO第12题图第11题图DCBA15.有4张分别写有数字-1,-2,1,2的卡片,它们的背面都相同,现将它们背面朝上,第一次从中抽取一张将上一面的数记为x ,第二次从剩下的卡片中抽取一张将上一面的数记为y 则点(x y ,)落第二象限的概率为 . 16. 若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是 .17. 在△ABC 中,AB=CB,∠ABC=90º,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.若 ∠CAE=30º,∠ACF= .18.把边长为1的正方形纸片OABC 放在直线m 上,OA 边与直线m 重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C1处,点B 运动到了点B1处;又将正方形纸片AO 1C 1B 1绕顶点B 1按顺时针方向旋转90°,……,按上述方法经过2013次旋转后,顶点O 经过的路程是 .AB CEF第17题图mB 1OB(O 1)A三、解答题(本大题共66分)19.(本题6分)计算:130cos 612)2013(0--+--.20. (本题6分)先化简22144(1)11x x x x -+-÷--,再从0,-2,-1,1中选择一个合适的数代入并求值.21. (本小题满分8分)在为“雅安地震”爱心捐款的活动中,八(1)班的学生纷纷拿出自己的零花钱.班长根据同学们的捐款制作如下表格:图 1(1) 图 1“0≤x<10”所在扇形的圆心角为度.(2)求八(1)班的学生的全班人数n.(3)这个班的平均每个同学捐了多少元?22、(本小题满分8分)如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC平移,使C点与O重合,得△A1B1O. 画出△A1B1O.(2)将△A1B1O绕着A1顺时针旋转90o, 得△A1B2O1, 画出△A1B2O1(3)求点B1旋转到点B2所经过的路线长以及线段A1B1旋转到A1B2所形成的图形的面积.(结果保留π)23. (本小题满分8分)如图,一只运载火箭从地面C 处发射,平均速度是0.38千米/秒,当卫星到达A 点时,从地面D 处的雷达站测得AD 的距离是6千米,仰角 43.t 秒后,火箭到达B 点,此时测得BD 的距离是7千米,仰角为 18.51,求火箭从A 到B 所需的时间t (结果保留一位小数).(参考值:779.018.51sin ≈ ,682.043sin ≈)24.(本题满分10分)为了贯彻落实自治区政府”美丽广西•清洁乡村”的活动,某污水处理厂需要改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:经预算,该厂最多支出65万元购买污水处理设备,且要求设备月处理污水量不低于1515吨.(1)该厂有哪几种购买方案? (2)哪种购买方案更省钱?25.(本题10分)如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,过点C 的直线与AB 的延长线交于点D,且BD AD CD ⋅=2. (1)求证:BCD A ∠=∠; (2)求证:CD 是⊙O 的切线;(3)若⊙O 直径为6,且点B 为OD 的中点,此时有动点M 以3cm/s 的速度从点A 出发沿AB 方向运动,同时点N 以1.5cm/s 的速度从B 点出发沿BC 方向运动.设运动的时间为t(0≤t ≤2),连结MN ,当t 为何值时△BMN 为直角三角形,并求此时该三角形的面积.26.(本题满分10分)如图,已知二次函数322++=x ax y 的图象与x 轴交于点A 、点B (点B 在x 轴的正半轴上),与y 轴交于点C ,其顶点为D ,直线DC 的解析式为3+=kx y ,并且tan ∠OBC=1,(1) 求a 、k 的值;(2) 点P(横坐标为m)是该二次函数的图像上的点,经过点P 且平行于y 轴的直线交直线CD 于G 点,① 如果m 满足0< m < 1,那么当线段PG 最长时,求m 的值;② 是否存在这样的点P ,使得△PGC 为等腰三角线形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.2013年中考数学模拟试卷数学试题参考答案及评分建议参考答案:1.A2.C3.B4.B5.C6.B7.D8.D9.B 10.C 11.B 12.D13.x ≥21 14. 62° 15.31 16. k >2 17.60 18. 225032013ππ+;(23)n-1 三、解答题19. 解:原式=1236321-⨯+- …………………………4分 =33320+- …………………………5分 =3 …………………………6分20. 解:原式22(1)(1)1(2)x x x x x -+-=⋅-- …………………………2分 12x x +=- ………………………… 4分 当x=0时,原式011022+==-.…………………………6分21.(1))“0≤x <10”所在扇形的圆心角为 36 度.(2分) (2))n=18÷45%=40(人)答:全班有学生40人. (4分) (3)(4分)m=40×10%=4 (5分)402351625181545⨯+⨯+⨯+⨯=19(元)答:这个班的平均每个同学捐了19元. (8分)22.(本小题满分8分)(1)画△A 1B 1O (1分) (2)画出△A 1B 2O 1 (3分) A 1B 1=51222=+ (4分)弧长B 1B 2⌒:180590⨯⨯π = π25(6分)扇形AB 1B 2⌒的面积:3605902⨯⨯π=45π (8分)23. 解: 在Rt △ACD 中AC=AD 43sin 092.4682.06≈⨯=(2分)在Rt △BCD 中BC=BD 18.51sin ≈7×0.779=5.454 (4分)∴AB=BC-AC=1.362 (6分) ∴t=1.362÷0.38≈3.6答:火箭所需时间为3.6秒. (8分)24. 解:(1)设购买A 型设备x 台,则购买B 型设备(8﹣x )台,……1分由题意得, ………3分(列出一个不等式给1分)解得:112422x ≤≤ ……5分(解出一个不等式给1分) ∵x 是正整数,∴x=3,4. ……6分答:有两种购买方案,买A 型设备3台,B 型设备5台;或买A 型设备4台,B 型设备4 台. ……7分 (2)当x=3时,3×9+5×7=62(万元); ……8分 当x=4时,4×9+4×7=64(万元). ………9分 答:买A 型设备3台,B 型设备5台更省钱. ……10分 25.解:参考答案:(1)解:∵BD AD CD ∙=2 即CDBD ADCD =又∵D ∠=∠D∴△ACD ∽△CBD …………………………1分∴BCD A ∠=∠ …………………………2分(2)连接OC ,∵OA =OC∴OCA A ∠=∠由(1)可知,BCD A ∠=∠∴OCA BCD ∠=∠ …………………………3分 ∵AB 是⊙O 的直径∴︒=∠+∠=∠90O A OCA CB CB …………………………4分∴︒=∠+∠=∠90B OCB OCD CD即CD 是⊙O 的切线. …………………………5分(3)∵点B 为OD 的中点易得︒=∠30D ,∴︒=∠60BOC在△OBC 中,︒=∠60BOC∴OBC ∆为等边三角形∴︒=∠60C OB …………………………6分△BMN 中,①当∠BNM =90°时,cos ∠MBC =BM BN 即cos60°=t 3-6t 5.1∴t =1 …………………………7分此时BM =3 BN =23 MN =225.1-3=233 ∴S △BMN =21BN ·MN =893 (cm 2)…………………………8分②当∠NMB =90°时,cos ∠MBC =BNBM即cos60°=t 5.1t 3-6 ∴ t =1.6 …………………9分此时BM =56 BN =512 MN =22BM -BN =563 ∴S △BMN =21BM·MN =21×56×536=25183(cm 2) ………………………10分26.(本小题满分10分)(1)由直线与y 轴相交于点C ,得C (0,3),∵ tan ∠OBC=1, ∴∠OBC=45°∵∠BOC=90°, ∴∠OBC=∠OCB=45°∴ OB=OC=3,∴ 点B (3,0),‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1分点B (3,0)在二次函数y=ax 2+2x+3的图像上, ∴ 9a+6+3=0,∴ a=-1, ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2分∴ y=-x 2+2x+3=-(x -1)2 +4, ∴ 顶点D (1,4).又 D(1,4)在直线y=kx+3上, ∴ 4=k+3, ∴ k=1,即a=-1, k=1 .‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3分(2)设P(m ,m 2+2m+3),则G(m ,m+3),‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4分得PG=-m 2+m =-(m -21)2 +41,‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5分所以PG 最长为41,此时m=21,‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6分(3)存在符合条件的点P ,点P 的横坐标分别为m 1=21-‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7分m 2=2‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8分m 3=3‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9分m 4=21+.‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10分26.解:(1)由直线与y 轴相交于点C ,得C (0,3),∵ tan ∠OBC=1, ∴∠OBC=45°∵∠BOC=90°, ∴∠OBC=∠OCB=45°∴ OB=OC=3,∴ 点B (3,0),‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1分 点B (3,0)在二次函数y=ax 2+2x+3的图像上, ∴ 9a+6+3=0,∴ a=-1, ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2分 ∴ y=-x 2+2x+3=-(x -1)2 +4, ∴ 顶点D (1,4).又 D(1,4)在直线y=kx+3上, ∴ 4=k+3, ∴ k=1,即a=-1, k=1 .‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3分(2)设P(m ,m 2+2m+3),则G(m ,m+3),‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4分得PG=-m 2+m =-(m -21)2 +41,‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5分 所以PG 最长为41,此时m=21,‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6分 (3)存在符合条件的点P ,点P 的横坐标分别为m 1=21-‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7分m 2=2‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8分m 3=3‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9分m 4=21+.‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10分。

江苏省2013年中考数学试卷及答案

江苏省2013年中考数学试卷及答案

江苏省2013年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格(第3题)圆柱 圆锥 球 正方体 (第5题) 图②图①商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转A CB DF E (第7题)盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,A D EB CF (第16题) (第17题) (第18题) 各类学生人数比例统计图(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin 760.97°≈, cos 760.24°≈,tan 76 4.01°≈)AD C B26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动A C D 图① A C D 图②F EE D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤ 1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录(万升)点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.。

2013年杭州市中考数学试题及答案(解析版)

2013年杭州市中考数学试题及答案(解析版)

2013年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2013杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2013杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2013杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2013杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP 逐年增长.解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;C.2010年杭州市的GDP超过到5500亿元,故此选项错误;D.2008~2012年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2013杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2013杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于() A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2013杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④ B.错误的命题是②③④C.正确的命题是①② D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2013杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2013杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2013杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2013杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2011年和2012年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低考点:算术平均数.分析:先算出2011年的平均最低录取分数线和2012年的平均最低录取分数线,再进行相减即可.解答:解:2011年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2012年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=3cm,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2013杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2013杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x ﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2013杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2013杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2013杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.(2013杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,22.已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2013杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。

中考数学常考考点专题之二元一次方程组测试题

中考数学常考考点专题之二元一次方程组测试题一.选择题(共10小题)1.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A .5种B .6种C .7种D .8种2.《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为( )A .{5x +6y =165x +y =6y +xB .{5x +6y =164x +y =5y +xC .{6x +5y =166x +y =5y +xD .{6x +5y =165x +y =4y +x 3.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .{7x −7=y 9(x +1)=yB .{7x +7=y 9(x +1)=yC .{7x −7=y 9(x −1)=yD .{7x +7=y 9(x −1)=y 4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A .{3x +2y =955x +7y =230B .{2x +3y =955x +7y =230C .{3x +2y =957x +5y =230D .{2x +3y =957x +5y =2305.有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音h ú,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设大桶可以盛酒x 斛,小桶可以盛酒y 斛,则可列方程组为( )A .{5x +y =3,x +5y =2B .{5x +y =3,x +y =2C .{x +5y =3,5x +y =2D .{5x +5y =3,x +5y =26.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A .{x =3(y +2)x =2y −18B .{x =3(y −2)x =2y −18C .{x =3(y +2)x =2y +9D .{x =3(y −2)x =2y +9 7.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛的价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x 元,一头牛价钱为y 元,则符合题意的方程组是( )A .{2x +y −10000=x 2x +2y −10000=y 2B .{2x +y −10000=x 210000−(x +2y)=y 2C .{2x +y +10000=x 2x +2y −10000=y 2D .{2x +y +10000=x 210000−(x +2y)=y 2 8.已知{x =1y =2是二元一次方程3x ﹣ay =1的一个解,则a 的值为( ) A .﹣1 B .1 C .﹣2 D .29.若关于x ,y 的方程组{2x −y =5k +64x +7y =k的解满足x +y =2023,则k 的值为( ) A .2020 B .2021 C .2022 D .202310.方程组{x =4y x +2y =−12的解是( ) A .{x =−4,y =−1 B .{x =−8,y =−2 C .{x =4,y =−8 D .{x =−4,y =1二.填空题(共10小题)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格,将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等.如图所示是一个未完成的幻方,则x ﹣y = .x ﹣2y﹣2y 6 012.我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x 只,小鸡有y 只,可列方程组为 .13.关于x ,y 的二元一次方程组{mx +y =n x −ny =2m 的解是{x =0y =2,则m +n 的值为 . 14.(2023•吉安县校级模拟)有这样一道数学名题,其题意:一群老者去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,请问几个老者几个梨?设有老者x 人,梨y 个,则可列二元一次方程组: .15.《九章算术》方程章节中有这样一个题目:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”意思是不知道甲乙二人各有多少钱,如果把乙的钱的一半给甲,则甲50钱;如果把甲钱的23给乙,则乙也有50钱.则原来甲有的钱数是 .16.在正方形网格中,格线与格线的交点称为“格点”,各顶点都在格点上的多边形称为“格点多边形”.设小正方形的边长均为1,则“格点多边形”的面积S 可用公式S =a +12b −1计算,其中a 是多边形内部的“格点”数,b 是多边形边界上的“格点”数,这个公式称为“皮克定理”.如图所示的6×6的正方形网格:∵a =16,b =12,∴图中格点多边形的面积是21.已知一个格点多边形的面积为14,且边界上的点数b 是内部点数a 的3倍,则a +b = .17.关于x ,y 的方程组{2x +y =4x +2y =m的解满足x +y =1,则m 的值为 . 18.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 .19.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 .20.甲、乙两种车辆运土,已知5辆甲车和4辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组 .三.解答题(共5小题)21.某公司要生产960件新产品,准备让A 、B 两厂生产,已知先由A 厂生产30天,剩下的B 厂生产20天可完成,共需支付工程款81000元;若先由B 厂生产30天,剩下的A 厂可用15天完成,共需支付工程款81000元.(1)求A 、B 两厂单独完成各需多少天;(2)若公司可以由一个厂完成,也可由两厂合作完成,但为保证质量,加工期间公司需派一名技术员到现场指导(若两厂同时生产也只需派一名),每天需支付这名技术员工资及午餐费120元,从经费考试应怎样安排生产,公司花费最少的金额是多少?22.为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈30 20 230(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);①根据上表,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为(80﹣4m)包,(4m+8)包,A,B两种包装的销售总额为17280元.求m的值.23.制作一张方桌要用1个桌面和4条桌腿,若1m3木材可制作20个桌面或400条桌腿,现有12m3木材,要使生产出来的桌面和桌腿恰好都配成方桌,求应安排多少木材用来制作桌面.24.一方有难,八方支援.郑州暴雨牵动数万人的心,众多企业也伸出援助之手.某公司购买了一批救灾物资并安排两种货车运往郑州.调查得知,2辆小货车与3辆大货车一次可以满载运输1800件;3辆小货车与4辆大货车一次可以满载运输2500件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)现有3100件物资需要再次运往郑州,准备同时租用这两种货车,每辆均全部装满货物,有几种租车方案?请写出所有租车方案.25.列方程(组)解应用题如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.(1)求一块长方形墙砖的长和宽;(2)求电视背景墙的面积.。

2024年中考数学复习专题讲义:二元一次方程组(含答案)

2024年中考数学复习专题讲义:二元一次方程组一、选择题1.下列方程是二元一次方程的是( )A .x +2yB .x −3y =2C .1x +y =0D .x 2+2y =12.游泳池中有一群小朋友,男孩戴蓝色泳帽,女孩戴红色泳帽.每位男孩看到蓝色泳帽比红色泳帽多7顶,而每位女孩看到的蓝色泳帽比红色泳帽多一倍.若设男孩有x 人,女孩有y 人,则可列方程组( ) A .{x =y +7x =2y B .{x −1=y +7x =2yC .{x −1=y +7x =2(y −1)D .{x +1=y +7x =2(y +1) 3.{x =5y =3是下面哪个二元一次方程的解( ) A .2x −y =7 B .y =−x +2 C .x =−y −2 D .2x −3y =−14.已知{x =1y =−1是方程x −my =3的解,那么m 的值( ) A .2 B .-2 C .4 D .-45.关于x 、y 的方程组{5x −2y =3m x +2my =n的解是{x =1y =1,则|m-n|的值是( ) A .4 B .3 C .2 D .16.某课外小组分组开展活动,若每组7人,则余下下3人;若每组8人,则少5人.若设课外小组的人数为x ,分成的组数为y ,则可列方程组为( )A .{7y =x +38y +5=xB .{y =x +38x =y +5C .{7y =x −38y =x +5D .{7y =x +38y =x +57.已知x ,y 满足方程组{x +m =4y −5=m则无论m 取何值,x ,y 恒有的关系式是( ) A .x+y=1 B .x+y=-1 C .x+y=9 D .x-y=-98.若关于x 、y 的方程组{x +2y =52x +ay =4的解都是正整数,则整数a 的值有( ) A .1个B .2个C .3个D .4个 二、填空题9.已知方程2x 2n−1−7y =10是关于x 、y 的二元一次方程,则n= .10.已知a 、b 满足方程组{2a −b =3a +2b =4,则3a+b 的值为 . 11.若关于x ,y 的方程ax +by =2的两个解为{x =1y =3和{x =−1y =−7,则a +b 的值是 . 12.关于x ,y 的二元一次方程(m −2)x +(m +1)y =2m −7,无论m 取何值,所得到的方程都有一个相同解,则这个相同解是 .13.陕西全民阅读工作深入推进,书香社会建设进展明显,读书学习蔚然成风.某校为加强爱读书、读好书、善读书的阅读氛围,准备用720元购买图书展示架,可供选择的有A 种展示架120元/个,B 种展示架180元/个,在资金用尽且可以只买其中一种展示架的情况下,一共有 种购买方案.三、解答题14.解下列方程组:(1)4311213x y x y -=⎧⎨+=⎩ ,(2)2313424()3(2)17x yx y x y⎧-=⎪⎨⎪--+=⎩15.甲、乙两人共同解方程组515,42,ax yx by+=⎧⎨-=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩,;乙看错了方程②中的b,得到方程组的解为54.xy=⎧⎨=⎩,试计算a2022+1-10b⎛⎫⎪⎝⎭2023的值.16.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过2625元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?17.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该公司打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案1.B 2.C 3.A 4.A 5.C 6.C 7.C 8.B 9.1 10.7 11.412.{x=3y=−1 13.314.(1)解:4311213x yx y-=⎧⎨+=⎩①②,②⨯ 2-①得:515y=,∴3y=,把3y=代入②得:∴5x=,∴方程组的解为53xy=⎧⎨=⎩;(2)解:原方程可化为896 27170x yx y-=⎧⎨++=⎩,∴896 82868x yx y-=⎧⎨+=-⎩,两方程相减,可得3774y=-,∴2y=-,把 2y =- 代入 896x y -= 得, 32x =- , 因此,原方程组的解为 322x y ⎧=-⎪⎨⎪=-⎩ .15.解:把31x y =-⎧⎨=-⎩,代入②,得-12+b=-2.解得b=10. 把54x y =⎧⎨=⎩,代入①,得5a+20=15.解得a=-1. 则a 2022+1-10b ⎛⎫ ⎪⎝⎭2023=(-1)2022+1-1010⎛⎫ ⎪⎝⎭⨯2023=1+(-1)=0. 16.(1)设该网店甲种羽毛球每筒的售价为 x 元,乙种羽毛球每筒的售价为 y 元,依题意,得: {x −y =152x +3y =255解得: {x =60y =45答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球 m 筒,则购进乙种羽毛球 (50−m) 筒,依题意,得 60m +45(50−m)≤2625解得: m ≤25答:最多可以购进25筒甲种羽毛球.17.解:(1)设需甲种车型x 辆,乙种车型y 辆.根据题意,得581204005008200.x y x y +=⎧⎨+=⎩,解得810.x y =⎧⎨=⎩, 答:需甲种车型8辆,乙种车型10辆.(2)设用甲种车型a 辆,乙种车型b 辆,则丙种车型(14-a-b )辆.根据题意,得5a+8b+10(14-a-b )=120.整理,得5a+2b=20,即a=4-25b . 因为a ,b ,14-a-b 均为正整数,所以b 只能等于5,从而a=2,14-a-b=7.所以用甲种车型2辆,乙种车型5辆,丙种车型7辆.此时的运费是400×2+500×5+600×7=7500(元).答:用甲种车型2辆,乙种车型5辆,丙种车型7辆,此时的运费是7500元.。

新苏教版七年级数学下册《二元一次方程组》近几年中考题及答案解析(精品试卷).docx

苏科新版七年级(下)近3年中考题单元试卷:第10章二元一次方程组一、选择题(共15小题)1.(2013•广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A. B.C. D.3.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是()A.B.C.D.4.(2013•崇左)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.5.(2013•朝阳)一批同学和部分家长结伴参加夏令营,同学和家长一共18人,同学数是家长数的2倍少3人.设家长有x人,同学有y人,根据题意,下面列出的方程组正确的是()A.B.C.D.6.(2013•南昌)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.7.(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A.B.C. D.8.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A.x+y+3 B.x+y+1 C.x+y﹣1 D.x+y﹣39.(2013•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.B.C.D.10.(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.11.(2013•内江)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.12.(2014•新疆)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C. D.13.(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B.C. D.14.(2013•潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.15.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.二、填空题(共4小题)16.(2015•哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有幅.17.(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.18.(2014•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组.19.(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.三、解答题(共11小题)20.(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF 的面积.21.(2015•株洲)P表示n边形对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与n的关系式是P=(n2﹣an+b)(其中a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P= (填数字);五边形时,P= (填数字)(2)请根据四边形和五边形对角线的交点个数,结合关系式,求a和b的值.(注:本题中的多边形均指凸多边形)22.(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.(2015•黄冈)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?24.(2015•娄底)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付车费多少元?25.(2015•徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B 商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?26.(2015•吉林)根据图中的信息,求梅花鹿和长颈鹿现在的高度.27.(2015•巴彦淖尔)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?28.(2015•张家界)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?29.(2015•福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克)3 4零售价(元/千克)47当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?30.(2015•佛山)某景点的门票价格如表:购票人数/人 1~50 51~100100以上每人门票价/元12 10 8某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?苏科新版七年级(下)近3年中考题单元试卷:第10章二元一次方程组参考答案与试题解析一、选择题(共15小题)1.(2013•广州)已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】计算题.【分析】根据等量关系为:两数x,y之和是10;x比y的3倍大2,列出方程组即可.【解答】解:根据题意列方程组,得:.故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性词语“x比y的3倍大2”,找出等量关系,列出方程组是解题关键.2.(2013•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】设买了甲种药材x斤,乙种药材y斤,根据甲种药材比乙种药材多买了2斤,两种药材共花费280元,可列出方程.【解答】解:设买了甲种药材x斤,乙种药材y斤,由题意得:.故选A.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.3.(2013•抚顺)小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组.【解答】解:设他骑自行车和步行的时间分别为x、y分钟,由题意得:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.4.(2013•崇左)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组;余角和补角.【分析】此题中的等量关系有:①三角板中最大的角是90°,从图中可看出∠1+∠2+90°=180°;②∠1比∠2的度数大50°,则∠1=∠2+50°.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为,故选:C.【点评】此题考查了学生对二元一次方程组的灵活运用,学生应该重视培养对应用题的理解能力,准确地列出二元一次方程组.5.(2013•朝阳)一批同学和部分家长结伴参加夏令营,同学和家长一共18人,同学数是家长数的2倍少3人.设家长有x人,同学有y人,根据题意,下面列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“同学和家长一共18人”可得方程x+y=18,“同学数是家长数的2倍少3人“可得2x﹣3=y,联立两个方程即可.【解答】解:设家长有x人,同学有y人,根据题意得:.故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住题目中的关键语句,找出等量关系,列出方程组.6.(2013•南昌)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人.下面所列的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设到井冈山的人数为x人,到瑞金的人数为y人,根据共34人进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,即可得出方程组.【解答】解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:.故选B.【点评】本题考查了有实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.8.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A.x+y+3 B.x+y+1 C.x+y﹣1 D.x+y﹣3【考点】二元一次方程组的应用.【分析】设乙的长度为a公尺,则甲的长度为:(a﹣x)公尺;丙的长度为:(a﹣y)公尺,甲与乙重叠的部分长度为:(a﹣x﹣1)公尺;乙与丙重叠的部分长度为:(a﹣y﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,列出方程(a﹣x﹣1)+(a﹣y﹣2)=a,即可解答.【解答】解:设乙的长度为a公尺,∵乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,∴甲的长度为:(a﹣x)公尺;丙的长度为:(a﹣y)公尺,∴甲与乙重叠的部分长度为:(a﹣x﹣1)公尺;乙与丙重叠的部分长度为:(a﹣y﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a﹣x﹣1)+(a﹣y﹣2)=a,a﹣x﹣1+a﹣y﹣2=a,a+a﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A.【点评】本题考查了考查了二元一次方程的应用,解决本题的关键是根据图形找到等量关系,列方程.9.(2013•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案.【解答】解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000.列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程.10.(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y元,根据题意列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.【解答】解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.【点评】此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.(2013•内江)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据等量关系:相遇时两车走的路程之和为170千米,相遇时,小汽车比客车多行驶20千米,可得出方程组.【解答】解:设小汽车和客车的平均速度为x千米/小时和y千米/小时,由题意得,.故选:D.【点评】本题考查了由实际问题抽象二元一次方程组的知识,解答本题的关键是仔细审题得到等量关系,根据等量关系建立方程.12.(2014•新疆)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设购买A型童装x套,B型童装y套,根据超市用3360元购进A,B两种童装共120套,列方程组求解.【解答】解:设购买A型童装x套,B型童装y套,由题意得,.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.13.(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.14.(2013•潍坊)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】根据“吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人,以及在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,”分别得出等式方程组成方程组,即可得出答案.【解答】解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,根据吸烟与不吸烟中患肺癌的比例得出正确的等量关系是解题关键.15.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】年龄问题.【分析】由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.【点评】此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.二、填空题(共4小题)16.(2015•哈尔滨)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有69 幅.【考点】二元一次方程组的应用.【分析】设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.【解答】解:设展出的油画作品的数量是x幅,展出的国画作品是y 幅,依题意得,解得,故答案是:69.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.17.(2013•江西)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.【考点】由实际问题抽象出二元一次方程组.【分析】根据关键语句“单位组织34人分别到井冈山和瑞金进行革命传统教育”可得方程x+y=34,“到井冈山的人数是到瑞金的人数的2倍多1人”可得x=2y+1,联立两个方程即可.【解答】解:设到井冈山的人数为x人,到瑞金的人数为y人,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.18.(2014•丹东)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组.【考点】由实际问题抽象出二元一次方程组.【专题】销售问题.【分析】设每支笔x元,每个圆规y元,根据买3支笔和2个圆规共花19元;买5支笔和4个圆规共花35元,列方程组.【解答】解:设每支笔x元,每个圆规y元,由题意得,.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.19.(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【专题】应用题.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.【点评】此题考查从实际问题中抽出二元一次方程组,注意找出题目蕴含的数量关系.三、解答题(共11小题)20.(2015•义乌市)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮.(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛.如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF 的面积.【考点】二元一次方程组的应用;勾股定理的应用.【分析】(1)利用AM:AN=8:9,设通道的宽为xm,AM=8ym,则AN=9y,进而利用AD为18m,宽AB为13m得出等式求出即可;(2)根据题意得出纵向通道的宽为2m,横向通道的宽为1m,进而得出PQ,RE的长,即可得出PE、EF的长,进而求出花坛RECF的面积.【解答】解:(1)设通道的宽为xm,AM=8ym,∵AM:AN=8:9,∴AN=9y,∴,解得:.。

初三数学二元一次方程组试题

初三数学二元一次方程组试题1.某地准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天,设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.【答案】20.【解析】由题意列方程组,两式相加得,12x+12y=240,∴x+y=20.【考点】1.二元一次方程组的应用;2.整体思想的应用.2.已知关于x,y的方程组的解为,求m的值.【答案】.【解析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求m n的值.试题解析:将代入得,解得∴=.【考点】二元一次方程组的解.3.已知是二元一次方程组的解,则的算术平方根为A.±2B.C.D.4【答案】C.【解析】由题意得:,解得;∴故选C.【考点】1.二元一次方程组的解;2.算术平方根.4. 2013年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨标准,共支付餐厨和建筑垃圾处理费5200元,从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元,(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理量减少到240吨,且建筑垃圾处理费不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?【答案】(1)2013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨;(2)2014年该企业最少需要支付这两种垃圾处理费共11400元.【解析】(1)设2013年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,根据题意列出方程组,解此方程组即可得到答案.(2)设2014年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,需支付的这两种垃圾处理费是z元,再由x+y=240可得z=100x+30y=100x+30(240-x)="70x+7200" ,x≥60.再根据z的值随x的增大而增大,所以当x=60时,z最小,代入求值即可.试题解析:(1)设2013年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,根据题意得,解得,即2013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨.(2)设2014年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,需支付的这两种垃圾处理费是z元,根据题意得x+y=240且y≤3x,解得x≥60.则有z=100x+30y=100x+30(240-x)=70x+7200.由于z的值随x的增大而增大,所以当x=60时,z最小,最小值为70×60+7200=11400元,即2014年该企业最少需要支付这两种垃圾处理费共11400元.【考点】二元一次方程组的应用;一次函数的应用.5.王老师骑自行车在环城公路上匀速行驶,每隔6分钟有一辆环湖大巴从对面向后开过,每隔30分钟又有一辆环湖大巴从后面向前开过,若环湖大巴也是匀速行驶,且不计乘客上、下车的时间,那么起点站每隔分钟开出一辆环湖大巴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(最新最全)2013年全国各地中考数学解析汇编(按章节考点整理) 第四章 二元一次方程组 4.1 解二元一次方程组

1.(2013山东德州中考,5,3,)已知24,328.abab则ab等于( )

(A)3 (B)83 (C)2 (D)1 【解析】对于此方程组,可将上下两式相加,得4a+4b=12,即a+b=3,故选A. 【答案】A. 【点评】对于解方程组的问题,不要急着去把未知数解出来,要善于观察要求的量和方程组之间的关系,化繁为简.

2. (2013山东省临沂市,10,3分)关于x的方程组nmyxmxy-3的解是11yx,则|m-n|的值是( ) A.5 B. 3 C. 2 D. 1

【解析】将11yx代入方程组nmyxmxy-3可得,m=2,n=3.∴|m-n|=|2-3|=1. 【答案】选D. 【点评】本题主要考查二元一次方程组的解的意义与解一元一次方程知识,将x、y的值代入原方程,即可求出待定系数的值.

3.(2013山东省荷泽市,4,3)已知21xy是二元一次方程组81mxnynxmy的解,则2m-n的算术平方根为( ) A.2 B.2 C.2 D.4

【解析】把21xy代入81mxnynxmy方程得2821mnnm,解之得32mn.所以2m-n=6-2=4,4的算术平方根是2,故选C. 【答案】C 【点评】利用方程组解的概念,把解代入方程求出未知字母的值,然后按照代数式的计算要求,求出代数式的值,注意一个正数正的平方根是它的算术平方根.

4.(2013连云港,10,3分)方程组326xyxy的解为 。 【解析】观察方程,可用加减消元法,让两个方程相加消去y,得到关于x的一元一次方程,解出x后再代入求y. 【答案】解:本题y的系数的绝对值相等,符号相反,可直接让第一个方程与第二个方程相加,得3x=9,x=3.

把x=3代入第一个方程得,y=0.方程组的解为:30xy 【点评】当相同未知数的系数的绝对值相等,符号相反时,可直接用加法消元求解. 5. (2013广州市,17, 9分)解方程组8312xyxy 【解析】用加减消元法解方程组。 【答案】8312xyxy①② ①+②得4x=20,x=5,代入①得y=-3.∴5-3xy 【点评】本题主要查二元一次方程组的解法。主要由两种方法,代入消元法和加减消元法。关键是消元。减少未知数的个数。

6.(2013浙江省湖州市,18,6分)解方程组1-8y2xyx 【解析】解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y,得到一个关于x的一元一次方程,解出x的值,再把x的值代入方程组中的任意一个式子,都可以求出y的值

【答案】①+②得: 3x=9x=3,把x=3代入①得:6+y=8, y=2,∴方程组的解为:23xy. 【点评】此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.

7. (2013广东汕头,16,7分)解方程组:. 【解析】先用加减消元法求出x的值,再用代入法求出y的值即可. 【答案】解:①+②得,4x=20,解得x=5, 把x=5代入①得,5﹣y=4,解得y=1,

故此不等式组的解为:. 【点评】本题考查的是解二元一次方程组,熟知解二元一次不等式组的加减消元法和代入消元法是解答此题的关键.

8. (2013南京市,17,6)解方程组82313yxyx 【解析】运用加减法解方程组,先消去未知数x,化二元为一元. 【答案】将①×3-②,得11y=-11,解得y=-1,把y=-1代入②,得3x-1=8,解得x=3.于是,

得方程组的解为-1y3x. 【点评】本题考查了二元一次方程组的解法.解方程组常用的解法是代入法和加减法.解题时应根据方程组的特点来选择方法.

4.2 二元一次方程组的应用 1. ( 2013年浙江省宁波市,24,10)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信: 自来水销售价格 污水处理价格 每户每月用水量 单价:元/吨 单价:元/吨 17吨及以下 a 0.80 超过17吨不超过30吨的部分 b 0.80 超过30吨的部分 6.00 0.80 [说明:①每户产生的污水量等于该户的用水量;②水费=自来水费+污水处理费] 已知小王家2013年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元 (1) 求a,b的值 (2) 随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?

【解析】(1)由题意,得

17(a+0.8)+3(b+0.8)=66

17(a+0.8)+8(b+0.8)=91

用加减法解此方程组,得a=2.2,b=4.2 (2)当用水量为30吨时,水费为:17×3+13×5=116元,9200×2%=184元,∵116﹤184,∴小王家六月份的用水量超过30吨,设小王家6月份用水量为x吨,由题题,得17×3+13×5+6.8(x-30)≦184,解得x≦40.∴小王家六月份最多用水40吨。 【答案】(1)a=2.2,b=4.2.(2)40吨 【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.同时考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题干找出合适的等量关系. 2.(2013山东省滨州,1,3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是( )

A.14250802900xyxy B.15802502900xyxy

C.14802502900xyxy D.15250802900xyxy 【解析】他骑车和步行的时间分别为x分钟,y分钟,骑车和步行的时间和为15分钟,他家离学校的距离是2900米,可列出方程组15250802900xyxy 【答案】选D. 【点评】本题考查由实际问题抽象出二元一次方程组的能力。由骑车和步行的时间和以及他家离学校的距离,可列出方程组.列方程组解应用题在中考中常常考到. 3.(2013湖南衡阳市,11,3)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得( )

A. B. C. D. 【解析】分别根据等量关系:购1副羽毛球拍和1副乒乓球拍共需50元,用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,可得出方程,联立可得出方程组. 【答案】解:由题意得,. 故选B. 【点评】此题考查了由实际问题抽象二元一次方程组的知识,属于基础题,关键是仔细审题得出两个等量关系,建立方程组. 4. (2013呼和浩特,23,8分)(8分)如图,某化工厂与A,B两地有公路和铁路相连。这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米)。这两次运输共支出公路运费15000元,铁路运费97200元。请计算这批产品的销售款比原料费和运输费的和多多少元? (1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:

甲:1.5(2010)1.2(110120)xyxy

乙:1.5(2010)800010001.2(11012080001000xyxy 根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组。 甲:x表示_____________________,y表示________________________ 乙:x表示_____________________,y表示________________________ (2)甲同学根据他所列方程组解得x=300。请你帮他解出y的值,并解决该实际问题。 【解析】二元一次方程组应用题 【答案】解:(1)甲:x表示产品的重量,y表示原料的重量 乙:x表示产品销售额,y表示原料费 甲方程组右边方框内的数分别为15000,97200,乙同甲 (2)将x=300代入原方程组解得y=400 ∴产品销售额为300×8000=2400000元 原料费为400×1000=400000元 又∵运输费为15000+97200=112200元[∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元 【点评】本题考查了列二元一次方程组求解的问题。通过设不同的未知数,列出不同的方程组。并利用方程组的解来计算其它问题。

5.(2013贵州黔西南州,16,3分)已知-2xm-1y3与12xnym+n是同类项,那么(n-m)2013=_______. 【解析】由于―2xm―1y3与12xnym+n,所以有m―1=n3=m+n,由m―1=n得―1=n―m,所以(n―m)2013=(―1)2013=1.

【答案】1. 【点评】本题利用同类项的概念建立二元一次方程组解决问题,比较简单,最后幂的计算防止符号出错.

相关文档
最新文档