衡水中学2020届高考数学(理)二轮专题训练:专题2 充分条件与必要条件专项训练(解析版)

合集下载

高考数学二轮复习(理科)《优化探究》教师用书word版

高考数学二轮复习(理科)《优化探究》教师用书word版

第一讲集合、常用逻辑用语授课提示:对应学生用书第3页[考情分析]1.本部分作为高考必考内容,仍会以选择题的形式在前几题的位置考查,难度较低;2.命题的热点依然会考查集合的运算,集合的基本关系的相关命题要注意;3.常用逻辑用语考查的频率不多,且命题点分散,其中充要条件的判断及含有量词的命题的否定常交汇综合命题.年份卷别考查角度及命题位置2017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T12015Ⅰ卷特称命题的否定·T3Ⅱ卷集合的交集运算、一元二次不等式的解法·T11.(2017·高考全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1}.故选A.答案:A2.(2017·高考全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A .3B .2C .1D .0解析:A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B3.(2016·高考全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3解析:∵x 2-4x +3<0,∴1<x <3, ∴A ={x |1<x <3}.∵2x -3>0,∴x >32,∴B =⎩⎨⎧x ⎪⎪⎭⎬⎫x >32. ∴A ∩B ={x |1<x <3}∩⎩⎨⎧x ⎪⎪⎭⎬⎫x >32=⎝⎛⎭⎫32,3. 答案:D4.(2015·高考全国卷 Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n 解析:因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”,故选C.答案:C授课提示:对应学生用书第3页集合[方法结论]1.子集个数:含有n 个元素的集合,其子集的个数为2n ;真子集的个数为(2n -1)(除集合本身).2.给出集合之间的关系,求解参数,要善于运用集合的性质进行灵活转化:如A ∪B =A ⇔B ⊆A 和A ∩B =A ⇔A ⊆B .3.高考中通常结合简单的绝对值不等式、一元一次不等式和分式不等式等考查,常用数形结合——数轴法.其步骤是:(1)化简集合;(2)将集合在数轴上表示出来; (3)进行集合运算求范围.[题组突破]1.(2017·洛阳模拟)设集合P ={x |x <1},Q ={x |x 2<1},则( ) A .P ⊆Q B .Q ⊆P C .P ⊆∁R QD .Q ⊆∁R P解析:依题意得Q ={x |-1<x <1},因此Q ⊆P ,选B.答案:B2.(2017·长沙模拟)已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A }.若A ∩B ≠∅,则a 的值为( )A .1B .2C .3D .1或2解析:当a =1时,B 中元素均为无理数,A ∩B =∅;当a =2时,B ={1,2},A ∩B ={1,2}≠∅;当a =3时,B =∅,则A ∩B =∅.故a 的值为2.选B.答案:B3.(2017·武汉模拟)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5}解析:A ={0,1,2,3,4,5},B ={x |2<x <5},∴A -B ={0,1,2,5}.选D. 答案:D4.已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 017+b 2 017=________.答案:-1 [误区警示]求解集合问题时易忽视的三个问题1.集合中元素的形式,元素是数还是有序数对,是函数的定义域还是函数的值域等; 2.进行集合的基本运算时要注意对应不等式端点值的处理,尤其是求解集合补集的运算,一定要搞清端点值的取舍,不能遗漏;3.求解集合的补集运算时,要先求出条件中的集合,然后求其补集,不要直接转化条件而导致出错.命题及复合命题真假的判断[方法结论]判断含有逻辑联结词命题的真假的方法方法一(直接法):①确定这个命题的结构及组成这个命题的每个简单命题;②判断每个简单命题的真假;③根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.[题组突破]1.命题“若a ,b 都是偶数,则a +b 是偶数”的否命题是( ) A .若a ,b 都是偶数,则a +b 不是偶数 B .若a ,b 不都是偶数,则a +b 不是偶数 C .若a ,b 都不是偶数,则a +b 不是偶数 D .若a ,b 不都是偶数,则a +b 是偶数解析:因为“都是”的否定是“不都是”,所以“若a ,b 都是偶数,则a +b 是偶数”的否命题是“若a ,b 不都是偶数,则a +b 不是偶数”.故选B.答案:B2.(2017·湖北百所重点学校联考)已知命题p :∀x ∈(0,+∞),log 4x <log 8x ,命题q :∃x ∈R ,使得tan x =1-3x ,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧(綈q )C .p ∧(綈q )D .(綈p )∧q解析:对于命题p :当x =1时,log 4x =log 8x =0,所以命题p 是假命题;对于命题q :当x =0时,tan x =1-3x =0,所以命题q 是真命题.由于綈p 是真命题,所以(綈p )∧q 是真命题,故选D.答案:D3.原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假答案:A [误区警示]已知p ∨q 为真,p ∧q 为假,判断p ,q 真假时要注意分类思想应用,它有两种可能:p 真q 假,p 假q 真.全称命题与特称命题[方法结论]1.全称命题和特称命题的否定归纳∀x ∈M ,p (x )⇔互否∃x 0∈M ,綈p (x 0).简记:改量词,否结论. 2.“或”“且”联结词的否定形式“p 或q ”的否定形式是“非p 且非q ”,“p 且q ”的否定形式是“非p 或非q ”.[题组突破]1.(2017·沈阳模拟)命题p :“∀x ∈N *,(12)x ≤12”的否定为( )A .∀x ∈N *,(12)x >12B .∀x ∉N *,(12)x >12C .∃x ∉N *,(12)x >12D .∃x ∈N *,(12)x >12解析:命题p 的否定是把“∀”改成“∃”,再把“(12)x ≤12”改为“(12)x >12”即可,故选D.答案:D2.若命题“∃x ∈R ,使得sin x cos x >m ”是真命题,则m 的值可以是( ) A .-13B .1 C.32D.23解析:∵sin x cos x =12sin 2x ∈⎣⎡⎦⎤-12,12,∴m <12.故选A. 答案:A [误区警示]全称命题与特称命题的否定时易犯的错误是一些词语否定不当,注意以下常见的一些词语及否定形式:词语是都是都不是等于大于小于等于否定不是不都是至少一个是不等于小于等于大于充要条件的判断充要条件的判断多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角、向量、数列、解析几何等,有一定的综合性.[典例](1)(2017·惠州模拟)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C(2)(2017·贵阳模拟)设向量a=(1,x-1),b=(x+1,3),则“x=2”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:依题意,注意到a∥b的充要条件是1×3=(x-1)(x+1),即x=±2.因此,由x=2可得a∥b,“x=2”是“a∥b”的充分条件;由a∥b不能得到x=2,“x=2”不是“a∥b”的必要条件,故“x=2”是“a∥b”的充分不必要条件,选A.答案:A(3)(2017·洛阳模拟)已知x1,x2∈R,则“x1>1且x2>1”是“x1+x2>2且x1x2>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件解析:由x 1>1且x 2>1可得x 1+x 2>2且x 1x 2>1,即“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的充分条件;反过来,由x 1+x 2>2且x 1x 2>1不能推出x 1>1且x 2>1,如取x 1=4,x 2=12,此时x 1+x 2>2且x 1x 2>1,但x 2=12<1,因此“x 1>1且x 2>1”不是“x 1+x 2>2且x 1x 2>1”的必要条件.故“x 1>1且x 2>1”是“x 1+x 2>2且x 1x 2>1”的充分不必要条件,选A.答案:A(4)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案:B [类题通法]1.充分必要条件的判断常用到等价转化思想,常见的有:(1)綈q 是綈p 的充分不必要条件⇔p 是q 的充分不必要条件;(2)綈q 是綈p 的必要不充分条件⇔p 是q 的必要不充分条件;(3)綈q 是綈p 的充分必要条件⇔p 是q 的充分必要条件;(4)綈q 是綈p 的既不充分条件也不必要条件⇔p 是q 的既不充分也不必要条件.2.对于与函数性质、平面向量的加减法运算等交汇考查充分必要条件的判断问题,多用到数形结合思想.3.在判断充分必要条件时,由p ⇒q 或q ⇒p 也可取特殊值(特殊点,特殊函数)等,快速作出判断.4.判断充分必要条件题常利用“以小推大”,即小范围推得大范围,便可轻松获解.[演练冲关]1.(2016·高考北京卷)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:结合平面向量的几何意义进行判断.若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.答案:D2.(2016·高考浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:∵f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min=-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.答案:A3.(2017·永州模拟)“m =0”是“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:若m =0,则圆(x -1)2+(y -1)2=2的圆心(1,1)到直线x +y =0的距离为2,等于半径,此时直线与圆相切,即“m =0”⇒“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”;若直线x +y -m =0与圆(x -1)2+(y -1)2=2相切,则圆心到直线的距离为|1+1-m |2=2,解得m =0或m =4,即“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”⇒/ “m =0”.所以“m =0”是“直线x +y -m =0与圆(x -1)2+(y -1)2=2相切”的充分不必要条件.故选B.答案:B4.(2017·衡水中学调研)在△ABC 中,“角A ,B ,C 成等差数列”是“sin C =(3cos A +sin A )cos B ”的________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”中的一个).解析:由角A ,B ,C 成等差数列,得B =π3.由sin C =(3cos A +sin A )cos B ,得sin(A +B )=(3cos A +sin A )cos B ,化简得cos A sin(B -π3)=0,所以A =π2或B =π3,所以在△ABC 中,“角A ,B ,C 成等差数列”⇒“sin C =(3cos A +sin A )cos B ”,但“sin C =(3cos A +sin A )cos B ”⇒/ “角A ,B ,C 成等差数列”,所以“角A ,B ,C 成等差数列”是“sin C =(3cos A +sin A )cos B ”的充分不必要条件.答案:充分不必要 5.下列命题:①x =2是x 2-4x +4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件; ③sin α=sin β是α=β的充分必要条件; ④ab ≠0是a ≠0的充分不必要条件. 其中为真命题的是________(填序号). 答案:②④[限时规范训练] 单独成册对应学生用书第115页A 组——高考热点强化练一、选择题1.已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( ) A .{1,3,5,6} B .{2,3,7} C .{2,4,7}D .{2,5,7}解析:由补集的定义,得∁U A ={2,4,7}.故选C. 答案:C2.(2017·湖北八校模拟)已知a ∈R ,则“a >2”是“a 2>2a ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:因为a >2,则a 2>2a 成立,反之不成立,所以“a >2”是“a 2>2a ”成立的充分不必要条件.答案:A3.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =BD .A ∪B =B解析:由题知A ={y |y ≥-1},因此A ∩B ={x |x ≥2}=B ,故选C. 答案:C4.已知命题p :对任意x >0,总有e x ≥1,则綈p 为( ) A .存在x 0≤0,使得e x 0<1 B .存在x 0>0,使得e x 0<1 C .对任意x >0,总有e x <1 D .对任意x ≤0,总有e x <1解析:因为全称命题的否定是特称命题,所以,命题p :对任意x >0,总有e x ≥1的否定綈p 为:存在x 0>0,使得e x 0<1.故选B.答案:B5.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =( ) A .[0,1] B .(0,1] C .[0,1)D .(-∞,1]解析:M ={x |x 2=x }={0,1},N ={x |lg x ≤0}={x |0<x ≤1},M ∪N =[0,1],故选A. 答案:A6.已知命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( ) A .命题“p ∧q ”是真命题 B .命题“p ∧(綈q )”是假命题 C .命题“(綈p )∨q ”是真命题 D .命题“(綈p )∧(綈q )”是假命题解析:取x 0=π4,有tan π4=1,故命题p 是真命题;当x =0时,x 2=0,故命题q 是假命题.再根据复合命题的真值表,知选项D 是正确的.答案:D7.(2017·山东聊城模拟)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:因为A ={0,2,a },B ={1,a 2}, A ∪B ={0,1,2,4,16},所以⎩⎪⎨⎪⎧a 2=16,a =4,则a =4.答案:D8.已知x ∈R ,则“x 2-3x >0”是“x -4>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:判断x 2-3x >0⇒x -4>0还是x -4>0⇒x 2-3x >0.注意到x 2-3x >0⇔x <0或x >3,x -4>0⇔x >4.由x 2-3x >0不能得出x -4>0;反过来,由x -4>0可得出x 2-3x >0,因此“x 2-3x >0”是“x -4>0”的必要不充分条件.答案:B9.(2017·河南郑州市高三质检)设全集U ={x ∈N *|x ≤4},集合A ={1,4},B ={2,4},则∁U (A ∩B )=( )A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}解析:法一:本题主要考查集合的基本运算.因为U ={1,2,3,4},A ∩B ={4},所以∁U (A ∩B )={1,2,3},故选A. 法二:∵A ∩B ={4},∴4∉∁U (A ∩B ),排除B 、C 、D ,只能选A. 答案:A10.(2017·武汉调研)已知命题p :x ≥1,命题q :1x <1,则綈p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:由题意,得綈p 为x <1,由1x <1,得x >1或x <0,故q 为x >1或x <0,所以綈p 是q 的既不充分也不必要条件,故选D.答案:D11.(2017·高考天津卷)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C =()A.{2}B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}解析:A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},则(A∪B)∩C={1,2,4},故选B.答案:B12.若集合A={x|x2-x-2<0},B={x|-2<x<a},则“A∩B≠∅”的充要条件是() A.a>-2 B.a≤-2C.a>-1 D.a≥-1解析:A={x|-1<x<2},B={x|-2<x<a},如图所示:∵A∩B≠∅,∴a>-1.答案:C二、填空题13.集合{-1,0,1}共有________个子集.解析:集合{-1,0,1}的子集有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.答案:814.若命题“∃x0∈R,x20-2x0+m≤0”是假命题,则m的取值范围是________.解析:由题意,命题“∀x∈R,x2-2x+m>0”是真命题,故Δ=(-2)2-4m<0,即m >1.答案:(1,+∞)15.已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值范围是________.解析:因为A={x|x2-3x+2<0}={x|1<x<2}⊆B,所以a≥2.答案:a≥216.若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)B 组——12+4高考提速练一、选择题1.已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A BD .B A解析:∵A ={1,2,3},B ={2,3},∴A ≠B ,A ∩B ={2,3}≠∅; 又1∈A 且1∉B ,∴A 不是B 的子集,故选D. 答案:D2.(2017·皖江名校联考)命题p :存在x 0∈⎣⎡⎦⎤0,π2,使sin x 0+cos x 0>2;命题q :命题“∃x 0∈R,2x 20+3x 0-5=0”的否定是“∀x ∈R,2x 2+3x -5≠0”,则四个命题(綈p )∨(綈q ),p ∧q ,(綈p )∧q ,p ∨(綈q )中,真命题的个数为( )A .1B .2C .3D .4解析:因为sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(綈p )∨(綈q )真,p ∧q 假,(綈p )∧q 真,p ∨(綈q )假.答案:B3.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( ) A .5 B .4 C .3D .2解析:集合{z |z =x +y ,x ∈A ,y ∈B }={-1,1,3},故选C. 答案:C4.“x ∈⎣⎡⎦⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎫x +π4为单调递增函数”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若函数y =sin ⎝⎛⎭⎫x +π4为单调递增函数, 则-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,即-3π4+2k π≤x ≤π4+2k π,k ∈Z .从而函数y =sin ⎝⎛⎭⎫x +π4的单调递增区间是⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ). 因此若x ∈⎣⎡⎦⎤-3π4,π4,则函数y =sin ⎝⎛⎭⎫x +π4为单调递增函数; 若函数y =sin ⎝⎛⎭⎫x +π4为单调递增函数⇒/ x ∈⎣⎡⎦⎤-3π4,π4. 所以“x ∈⎣⎡⎦⎤-3π4,π4”是“函数y =sin ⎝⎛⎭⎫x +π4为单调递增函数”的充分不必要条件.故选A.答案:A5.若全集U =R ,则正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的V enn 图是( )解析:由题意知,N ={x |x 2+x =0}={-1,0},而M ={-1,0,1},所以N M ,故选B. 答案:B6.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb ”的逆否命题;④若p 且q 为假命题,则p ,q 均为假命题. 其中真命题是( ) A .①②③ B .①②④ C .①③④D .②③④解析:①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b ,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确. 答案:A7.若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( ) A .{-1} B .{1} C .{1,-1}D .∅解析:A ={i ,-1,-i,1},B ={1,-1},所以A ∩B ={1,-1},故选C. 答案:C8.(2017·广州高考模拟)下列说法中正确的是( ) A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1<0C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”解析:f (0)=0,函数f (x )不一定是奇函数,如f (x )=x 2,所以A 错误;若p :∃x 0∈R ,x 20-x 0-1>0,则綈p :∀x ∈R ,x 2-x -1≤0,所以B 错误;p ,q 只要有一个是假命题,则p ∧q 为假命题,所以C 错误;否命题是将原命题的条件和结论都否定,D 正确.答案:D9.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3)D .(1,4)解析:A ={x ||x -1|<2}={x |-1<x <3},B ={y |y =2x ,x ∈[0,2]}={y |1≤y ≤4},∴A ∩B ={x |-1<x <3}∩{y |1≤y ≤4}={x |1≤x <3}.答案:C10.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且 綈q 为真命题,所以实数a 的取值范围是1<a ≤2.故选C.答案:C11.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩∁I M =∅,则M ∪N =( ) A .M B .N C .ID .∅解析:∵N ∩∁I M =∅,∴N ⊆M .又M ≠N ,∴N M ,∴M ∪N =M .故选A. 答案:A12.(2016·高考浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:∵f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.答案:A 二、填空题13.已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B =________.解析:由x 2-x -2≤0得-1≤x ≤2,故集合A 中的整数为-1,0,1,2.所以A ∩B ={-1,0,1,2}.答案:{-1,0,1,2}14.(2017·高考江苏卷)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________.解析:∵A ∩B ={1},A ={1,2},∴1∈B 且2∉B . 若a =1,则a 2+3=4,符合题意.又a 2+3≥3≠1,故a =1. 答案:115.已知p :∃x 0∈R ,mx 20+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是________.解析:因为p ∨q 是假命题, 所以p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假命题知, 綈p :∀x ∈R ,mx 2+2>0为真命题, 所以m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假命题知, 綈q :∃x 0∈R ,x 20-2mx 0+1≤0为真命题,所以Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.②由①和②得m ≥1. 答案:[1,+∞)16.下列四个命题中,真命题有________(写出所有真命题的序号).①若a ,b ,c ∈R ,则“ac 2>bc 2”是“a >b ”成立的充分不必要条件;②命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”;③命题“若|x |≥2,则x ≥2或x ≤-2”的否命题是“若|x |<2,则-2<x <2”;④函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点.解析:①若c =0,则不论a ,b 的大小关系如何,都有ac 2=bc 2,而若ac 2>bc 2,则有a >b ,故“ac 2>bc 2”是“a >b ”成立的充分不必要条件,故①为真命题;②特称命题的否定是全称命题,故命题“∃x 0∈R ,x 20+x 0+1<0”的否定是“∀x ∈R ,x 2+x +1≥0”,故②为真命题;③命题“若p ,则q ”形式的命题的否命题是“若綈p ,则綈q ”,故命题“若|x |≥2,则x ≥2或x ≤-2”“若|x |<2,则-2<x <2”,故③为真命题;④由于f (1)f (2)=⎝⎛⎭⎫ln 1+1-32⎝⎛⎭⎫ln 2+2-32=⎝⎛⎭⎫-12×⎝⎛⎭⎫ln 2+12<0,则函数f (x )=ln x +x -32在区间(1,2)上存在零点,又函数f (x )=ln x +x -32在区间(1,2)上为增函数,所以函数f (x )=ln x +x -32在区间(1,2)上有且仅有一个零点,故④为真命题.答案:①②③④第二讲 函数的图象与性质授课提示:对应学生用书第7页[考情分析]1.函数的性质是本部分考查的热点,其中函数的奇偶性、单调性和值域(最值)问题依然是命题重点,多以选择、填空题形式出现;2.函数图象的识别是考查的热点,多与性质隐含结合命题,注意方法的选择与识别的技巧.年份 卷别 考查角度及命题位置2017Ⅰ卷 函数单调性、奇偶性与不等式解法·T 5Ⅲ卷 分段函数与不等式解法·T 152016Ⅰ卷函数的图象判断·T 7 Ⅱ卷 函数的对称性·T 12 2015Ⅰ卷函数的奇偶性·T 13 Ⅱ卷分段函数的求值·T 5 函数图象的判断·T 101.(2017·高考全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:∵函数f (x )在(-∞,+∞)单调递减,且f (1)=-1,∴f (-1)=-f (1)=1,由-1≤f (x -2)≤1,得-1≤x -2≤1,∴1≤x ≤3,故选D.答案:D2.(2016·高考全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( ) A .0 B .m C .2mD .4m解析:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x 2=0,f (-x )+f (x )2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x ,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑m i =1x i =0,∑m i =1y i=2×m2=m ,所以∑m i =1 (x i +y i )=m . 答案:B3.(2015·高考全国卷Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析:当x ∈⎣⎡⎦⎤0,π4时,f (x )=tan x +4+tan 2 x ,图象不会是直线段,从而排除A 、C.当x ∈⎣⎡⎦⎤π4,3π4时,f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4=1+5,f ⎝⎛⎭⎫π2= 2 2.∵22<1+5,∴f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4=f ⎝⎛⎭⎫3π4,从而排除D ,故选B. 答案:B4.(2015·高考全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:∵-2<1,∴f (-2)=1+log 2(2+2)=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C. 答案:C5.(2015·高考全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立, ∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴ln a =0,即a =1. 答案:16.(2014·高考全国卷Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.解析:由题可知,当-2<x <2时,f (x )>0,f (x -1)的图象是由f (x )的图象向右平移1个单位长度得到的,若f (x -1)>0,则-1<x <3.答案:(-1,3)授课提示:对应学生用书第7页函数及其表示[方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[题组突破]1.(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >03x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是( ) A.109 B.19 C .-19D .-109解析:由题意可得:函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >03x+1,x ≤0,∴f ⎝⎛⎭⎫14=log 214=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109.故选A. 答案:A2.函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为( )A .[1,10]B .[1,2)∩(2,10]C .(1,10]D .(1,2)∪(2,10]解析:要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0x -1>0x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为(1,2)∪(2,10],故选D.答案:D3.(2017·石家庄模拟)已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.答案:B [误区警示]分段函数易被误认为是多个函数,其实质是一个函数,其定义域为各段的并集,其最值是各段函数最值中的最大者与最小者,求值时要注意判断自变量的取值,否则要分类讨论.函数图象及应用[典例] (1)函数y =e cos x (-π≤x ≤π)的大致图象为( )解析:当x =0时,则y =e cos 0=e ;当x =π时,则y =e cos π=1e .可排除A ,B ,D ,选C.答案:C(2)函数f (x )=ln(x -1x)的图象是( )解析:因为f (x )=ln(x -1x ),所以x -1x =(x +1)(x -1)x >0,解得-1<x <0或x >1,所以函数的定义域为(-1,0)∪(1,+∞),可排除A ,D.因为函数u =x -1x 在(-1,0)和(1,+∞)上单调递增,函数y =ln u 在(0,+∞)上单调递增,根据复合函数的单调性可知,函数f (x )在(-1,0)和(1,+∞)上单调递增,选B.答案:B(3)已知三次函数f (x )=2ax 3+6ax 2+bx 的导函数为f ′(x ),则函数f (x )与f ′(x )的图象可能是( )解析:因为f ′(x )=6ax 2+12ax +b ,则函数f ′(x )的图象的对称轴为x =-1,故可排除A,D;由选项C的图形可知,当x>0时,f′(x)>0,故函数f(x)=2ax3+6ax2+bx在(0,+∞)上单调递增,但图象中函数f(x)在(0,+∞)上不具有单调性,故排除C.选B.答案:B(4)已知函数f(x-1)是定义在R上的奇函数,且在[0,+∞)上是增函数,则函数f(x)的图象可能是()解析:函数f(x-1)的图象向左平移1个单位,即可得到函数f(x)的图象;因为函数f(x-1)是定义在R上的奇函数,所以函数f(x-1)的图象关于原点对称,所以函数f(x)的图象关于点(-1,0)对称,排除A,C,D,选B.答案:B[类题通法]函数图象的识别与判断技巧方法1特殊点法用特殊点法破解函数图象问题需寻找特殊的点,即根据已知函数的图象或已知函数的解析式,取特殊点,判断各选项的图象是否经过该特殊点,从而得正确的选项.在求函数值的过程中运算一定要认真,从而准确进行判断.如本例中(1).方法2性质检验法已知函数解析式,判断其图象的关键:由函数解析式明确函数的定义域、值域、单调性、奇偶性、周期性等性质,根据这些性质对函数图象进行具体的分析和判断,即可得出正确选项.若能熟记基本初等函数的性质,则此类题就不攻自破.如本例中(2).方法3导数法判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数的定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值.如本例中(3).方法4 图象变换法有关函数y =f (x )与函数y =af (bx +c )+h 的图象问题的判断,熟练掌握图象的平移变换(左加右减,上加下减)、对称变换、伸缩变换等,便可顺利破解此类问题.如本例中(4).[演练冲关]1.(2017·长沙模拟)函数y =ln|x |-x 2的图象大致为( )解析:令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln |x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B ,D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈(0,22)时,y ′=1x-2x >0,y =ln x -x 2单调递增,排除C.选A. 答案:A2.(2017·惠州模拟)函数f (x )=(x -1x)cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析:函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=(π-1π)cos π=1π-π<0,排除选项C ,故选D.答案:D函数的性质及应用[方法结论]1.判断函数单调性的一般规律对于选择、填空题,若能画出图象一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 3.记住几个周期性结论(1)若函数f (x )满足f (x +a )=-f (x )(a >0),则f (x )为周期函数,且2a 是它的一个周期. (2)若函数f (x )满足f (x +a )=1f (x )(a >0),则f (x )为周期函数,且2a 是它的一个周期. [典例] (1)(2016·湖南六校联考)已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( )A.⎝⎛⎭⎫1100,1 B.⎝⎛⎭⎫0,1100∪(1,+∞) C.⎝⎛⎭⎫1100,100 D .(0,1)∪(100,+∞)解析:通解:不等式可化为⎩⎪⎨⎪⎧lg x ≥0lg x <2或⎩⎨⎧lg x <0-lg x <2,解得1≤x <100或1100<x <1,所以x的取值范围是⎝⎛⎭⎫1100,100.优解:由偶函数的定义可知,f (x )=f (-x )=f (|x |),故不等式f (lg x )>f (2)可化为|lg x |<2,即-2<lg x <2,解得1100<x <100,故选C.答案:C(2)(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z ),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.故选B.答案:B [类题通法]1.转化数学思想在函数性质的应用,主要是已知偶函数时注意f (x )=f (-x )=f (|x |). 2.求解函数性质的综合问题时常常利用数形结合思想化抽象为直观. 3.注意特殊值、特殊点法在性质中的应用.[演练冲关]1.(2017·甘肃会宁一中月考)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A .[-1,12)B .(-1,12)C .(-∞,-1]D .(0,12)解析:通解:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >01-2a +3a ≥0,解得-1≤a <12,故选A.优解:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.答案:A2.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b=( )A .1B .-1C .-12 D.14解析:由题意得f (0)=0,∴a =2.∵g (1)=g (-1),∴ln(e +1)-b =ln(1e +1)+b ,∴b =12,∴log 2 12=-1.故选B.答案:B3.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f (52)<f (72)B .f (72)<f (1)<f (52)C .f (72)<f (52)<f (1)D .f (52)<f (1)<f (72)解析:因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f (72)<f (3)<f (52),即f (72)<f (1)<f (52),故选B.答案:B新定义下的函数问题新定义函数问题主要包括两类:(1)概念型,即基于函数概念背景的新定义问题,此类问题常以函数的三要素(定义域、对应法则、值域)作为重点,考查考生对函数概念的深入理解;(2)性质型,即基于函数性质背景的新定义问题,主要涉及函数的单调性、奇偶性、周期性、有界性、对称性等性质及有关性质的延伸,旨在考查考生灵活应用函数性质的能力.[题组突破]1.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数: (ⅰ)对任意的x ∈[0,1],恒有f (x )≥0;(ⅱ)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立. 则下列3个函数中不是M 函数的个数是( )。

精品解析:【全国百强校首发】河北省衡水中学2023届高三下学期第二次调研考试理数试题解析(原卷版)

精品解析:【全国百强校首发】河北省衡水中学2023届高三下学期第二次调研考试理数试题解析(原卷版)

河北省衡水中学2016届高三下学期二调考试数学(理科)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合,集合,则地子集个数为( )A .2B .4C .8D .162.如图,复平面上地点到原点地距离都相等,若复数所对应地点为,则复数(是虚数单位)地共轭复数所对应地点为( )A .B .C .D .3.下列四个函数中,在处取得极值地函数是( )①;②;③;④A .①② B .①③ C .③④ D .②③4.已知变量满足:,则地最大值为( )AB ..2 D .45.执行如下图所示地程序框图,输出地结果是( )A .5B .6C .7D .86.两个等差数列地前项和之比为,则它们地第7项之比为( ){}1,3,4,5A ={}2|450B x Z x x =∈--<A B 1234,,,Z Z Z Z z 1Z z i ⋅i 1Z 2Z 3Z 4Z 0x =3y x =21y x =+y x =2xy =,x y 202300x y x y x -≤⎧⎪-+≥⎨⎪≥⎩2x yz +=n 51021n n +-A .2B .3C .D .7.在某次联考数学测试中,学生成绩服从正态分布,若在(80,120)内地概率为0.8,则落在(0,80)内地概率为( )A .0.05B .0.1C .0.15D .0.28.函数地部分图象如下图所示,地值为( )A .0B .. D .9.若,则地值是( )A .-2 B.-3 C .125 D .-13110.已知圆,圆,椭圆(,焦距为),若圆都在椭圆内,则椭圆离心率地范围是( )A .B .C .D .11.定义在上地函数对任意都有,且函数地图象关于(1,0)成中心对称,若满足不等式,则当时,地取值范围是( )A . B . C . D .12.正三角形地边长为2,将它沿高翻折,使点与点间地距离为,此时四面体外接球表面积为( )A .7B .19 CD第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将解析填在答题纸上)45137027ξ()()21000,σσ>ξ()()sin 0,0f x A x A ωω=>>()()()()1232015f f f f +++⋅⋅⋅+()()7280128112x x a a x a x a x +-=+++⋅⋅⋅+127a a a ++⋅⋅⋅+221:20C x cx y ++=222:20C x cx y -+=2222:1x y C a b+=0a b >>2c 12,C C 1,12⎡⎫⎪⎢⎣⎭102,⎛⎤ ⎥⎝⎦⎫⎪⎪⎭0⎛ ⎝R ()f x ()1212,x x x x ≠()()12120f x f x x x -<-()1y f x =-,s t ()()2222f s s f t t -≤--14s ≤≤2t ss t-+13,2⎡⎫--⎪⎢⎣⎭13,2⎡⎤--⎢⎥⎣⎦15,2⎡⎫--⎪⎢⎣⎭15,2⎡⎤--⎢⎥⎣⎦ABC AD B C ABCD ππ13.一个几何体地三视图如下图所示,该几何体体积为 .14.已知向量与地夹角为60°,且,若,且,则实数地值为 .15.已知双曲线地半焦距为,过右焦点且斜率为1地直线与双曲线地右支交于两点,若抛物线地准线被双曲线截得地弦长是(为双曲线地离心率),则地值为 .16.用表示自然数地所有因数中最大地那个奇数,例如:9地因数有1,3,9,地因数有1,2,5,10,,那么.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在锐角中,角所对地边分别为,已知.(1)求角地大小;(2)求地面积.18.(本小题满分12分)某厂商调查甲、乙两种不同型号电视机在10个卖场地销售量(单位:台),并根据这10个卖场地销售情况,得到如下图所示地茎叶图.为了鼓励卖场,在同型号电视机地销售中,该厂商将销售量高于数据平均数地卖场命名为该型号电视机地"星级卖场".(1)当时,记甲型号电视机地"星级卖场"数量为,乙型号电视机地"星级卖场"数量为,比较,地大小关系;AB AC ||||2AB AC ==AP AB AC λ=+ AP BC ⊥ λ()222210,0x y a b a b-=>>c 24y cx =2e e ()g n n ()99,10g =()105g =()()()()201512321g g g g +++⋅⋅⋅+-=ABC ∆,,A B C ,,a b c sin a b B A ==+=A ABC ∆3a b ==m n m n(2)在这10个卖场中,随机选取2个卖场,记为其中甲型号电视机地"星级卖场"地个数,求地分布列和数学期望;(3)若,记乙型号电视机销售量地方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论)19.(本小题满分12分)如图1,在边长为4地菱形中,,于点,将沿折起到地位置,使,如图2.(1)求证:平面;(2)求二面角地余弦值;(3)判断在线段上是否存在一点,使平面平面?若存在,求出地值;若不存在,说明理由.20.(本小题满分12分)如图,已知椭圆:,点是它地两个顶点,过原点且斜率为地直线与线段相交于点,且与椭圆相交于两点.(1)若,求地值;(2)求四边形面积地最大值.21.(本小题满分12分)设函数.(1)求函数地单调区间;(2)若函数有两个零点,求满足条件地最小正整数地值;(3)若方程有两个不相等地实数根,比较与0地大小.请从下面所给地22 , 23 ,24三题中任选一题做答,如果多做,则按所做地第一题计分.X X 1a =2s b 2s ABCD 60BAD ∠=DE AB ⊥E ADE ∆DE 1A DE ∆1A D DC ⊥1A E ⊥BCDE 1E A B C --EB P 1A DP ⊥1A BC EPPB2214x y +=,A B k lAB D ,E F 6ED DF =k AEBF ()()22ln f x x a x a x =---()f x ()f x a ()()f x c c R =∈12,x x 12'2x x f +⎛⎫⎪⎝⎭22. (本小题满分10分)选修4-1:几何证明选讲如图,直线与⊙相切于点是⊙地弦,地平分线交⊙于点,连接,并延长与直线相交于点.(1)求证:;(2)若,求弦地长.23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线地参数方程为(为参数),在以原点为极点,轴正半轴为极轴地极坐标中,圆地方程为.(1)写出直线地普通方程和圆地直角坐标方程;(2)若点坐标,圆与直线交于两点,求地值.24.(本小题满分10分)选修4-5:不等式选讲(1)已知函数,求地取值范围,使为常函数;(2)若,求地最大值.PQ O ,A AB O PAB ∠AC O C CB PQ Q 22QC BC QC QA ⋅=-6,5AQ AC ==AB xoyl 3x y ⎧=-⎪⎪⎨⎪=+⎪⎩t O x C ρθ=l C P (C l ,A B |||PB |PA +()13f x x x =-++x ()f x 222,,z R,x 1x y y z ∈++=m y =++。

2015届高考理科数学二轮复习:提能专训9 三角函数的图象与性质Word版含解析

2015届高考理科数学二轮复习:提能专训9 三角函数的图象与性质Word版含解析

提能专训(九) 三角恒等变换与解三角形一、选择题1.(2014·皖南八校联考)sin 2α=2425,0<α<π2,则2cos ⎝ ⎛⎭⎪⎫π4-α的值为( )A.15 B .-15 C.75 D .±15 [答案] C[解析] 因为sin 2α=cos ⎝⎛⎭⎪⎫π2-2α=2cos 2⎝⎛⎭⎪⎫π4-α-1,所以2cos ⎝ ⎛⎭⎪⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝ ⎛⎭⎪⎫π4-α=±75, 因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝ ⎛⎭⎪⎫π4-α=75,故选C.2.(2014·温州十校联考)若sin α+cos α=713(0<α<π),则tan α=( )A .-13 B.125 C .-125 D.13 [答案] C[解析] 由sin α+cos α=713(0<α<π)两边平方,得1+sin 2α=49169,sin 2α=-120169,又sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1,∴2tan αtan 2α+1=-120169,60tan 2α+169tan α+60=0,∴tan α=-125或tan α=-512, 又sin α+cos α>0,∴|sin α|>|cos α|, 即|tan α|>1,故tan α=-125,故选C.3.(2014·大连双基测试)在斜三角形ABC 中,“A >B ”是“|tan A |>|tan B |”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [答案] A[解析] 在斜三角形ABC 中,|tan A |>|tan B |⇔|sin A cos B |>|cos A sin B |⇔(sin A cos B )2-(cos A sin B )2>0⇔(sin A cos B +cos A sin B )·(sin A cos B -cos A sin B )>0⇔sin(A +B )·sin(A -B )>0⇔sin C sin(A -B )>0⇔sin(A -B )>0;又-π<A -B <π,因此sin(A -B )>0⇔0<A -B <π,即A >B .因此,在斜三角形ABC 中,“A >B ”是“|tan A |>|tan B |”的充分必要条件,故选A.4.(2014·辽宁五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则角B 等于( )A .90°B .60°C .45°D .30° [答案] C[解析] 由正弦定理,得sin A cos B +sin B cos A =sin C sin C ,即sin(B +A )=sin C sin C ,因为sin(B +A )=sin C ,所以sin C =1,∠C=90°.根据三角形面积公式和余弦定理,得S =12bc sin A ,b 2+c 2-a 2=2bc cos A ,代入已知得12bc sin A =14·2bc cos A ,所以tan A =1,A =45°,因此B =45°,故选C.5.(2014·昆明调研)已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38 [答案] B[解析] 由正弦定理,得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34,故选B.6.(2014·合肥质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2=b 2+c 2+3bc .若a =3,S 为△ABC 的面积,则S +3cos B cos C 的最大值为( )A .3 B. 2 C .2 D. 3 [答案] A[解析] 由cos A =b 2+c 2-a 22bc =-3bc 2bc =-32⇒A =5π6,又a =3,故S =12bc sin A =12·a sin Bsin A ·a sin C =3sin B sin C ,因此S +3cos B cos C =3sin B sin C +3cos B cos C =3cos(B -C ),于是当B =C 时取得最大值3,故选A.7.若sin θ,cos θ是方程4x 2+2mx +m =0的两个根,则m 的值为( )A .1+ 5B .1- 5C .1±5D .-1- 5 [答案] B[解析] 由题意,得sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5,又∵Δ=4m 2-16m ≥0,解得m ≤0或m ≥4,∴m =1-5,故选B.8.(2014·河北衡水中学五调)已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+2π3等于( )A .-45B .-35 C.45 D .35 [答案] C[解析] ∵sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45.∴cos ⎝⎛⎭⎪⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45,故选C.9.(2014·东北四市二联)△ABC 中角A ,B ,C 的对应边分别为a ,b ,c ,满足b a +c +ca +b≥1,则角A 的范围是( )A.⎝⎛⎦⎥⎤0,π3 B.⎝⎛⎦⎥⎤0,π6 C.⎣⎢⎡⎭⎪⎫π3,π D.⎣⎢⎡⎭⎪⎫π6,π [答案] A [解析] 由b a +c +c a +b≥1,得b (a +b )+c (a +c )≥(a +c )(a +b ),化简得b 2+c 2-a 2≥bc ,即b 2+c 2-a 22bc ≥12,即cos A ≥12(0<A <π),所以0<A ≤π3,故选A.10.如图所示,某电力公司为保护一墙角处的电塔,计划利用墙OA ,OB ,再修建一长度为AB 的围栏,围栏的造价与AB 的长度成正比.现已知墙角∠AOB 的度数为120°,当△AOB 的面积为3时,就可起到保护作用.则当围栏的造价最低时,∠ABO =( )A .30°B .45°C .60°D .90° [答案] A[解析] 只要AB 的长度最小,围栏的造价就最低.设OA =a ,OB =b ,则由余弦定理,得AB 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号),又S △AOB =12ab sin 120°=3,所以ab =4.故AB 2≥12,即AB 的最小值为2 3.由a =b 及3ab =12,得a =b =2.由正弦定理,得sin ∠ABO =a sin 120°AB =223×32=12.故∠ABO =30°,故选A. 11.(2014·德阳二诊)已知△ABC 的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小内角的余弦值为( )A.34B.56C.710D.23 [答案] A[解析] 依题意,不妨设三边长a =m -1,b =m ,c =m +1,其中m ≥2,m ∈N ,则有C =2A ,sin C =sin 2A =2sin A cos A ,c =2a ×b 2+c 2-a 22bc ,bc 2=a (b 2+c 2-a 2),m (m +1)2=(m -1)(m 2+4m ),由此解得m =5,因此cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,故选A.12.(2014·石家庄一模)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1 B. 2 C .3 D. 3 [答案] D[解析] ∵c sin A =3a cos C , ∴sin C sin A =3sin A cos C , ∵sin A ≠0,∴tan C =3, ∵0<C <π,∴C =π3,∴sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =32sin A +32cos A =3sin ⎝⎛⎭⎪⎫A +π6,∵0<A <2π3,∴π6<A +π6<5π6, ∴32<3sin ⎝ ⎛⎭⎪⎫A +π6≤3, ∴sin A +sin B 的最大值为3,故选D. 二、填空题13.(2014·广州综合测试一)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin ⎝⎛⎭⎪⎫α-π12=________. [答案] 210[解析] 由于α为锐角,则0<α<π2, 则π6<α+π6<2π3,因此sin ⎝ ⎛⎭⎪⎫α+π6>0, 所以sin ⎝⎛⎭⎪⎫α+π6=1-cos 2⎝⎛⎭⎪⎫α+π6=1-⎝ ⎛⎭⎪⎫352=45, 所以sin ⎝ ⎛⎭⎪⎫α-π12=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π4 =sin ⎝ ⎛⎭⎪⎫α+π6cos π4-cos ⎝ ⎛⎭⎪⎫α+π6sin π4 =45×22-35×22=210.14.(2014·潍坊一模)若α∈⎝⎛⎭⎪⎫0,π2,则sin 2αsin 2α+4cos 2α的最大值为________.[答案] 12[解析] ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴tan α∈(0,+∞), ∴sin 2αsin 2α+4cos 2α=2sin αcos αsin 2α+4cos 2α=2tan αtan 2α+4 =2tan α+4tan α≤22tan α×4tan α=12, 当且仅当tan α=4tan α,即tan α=2时取等号.15.(2014·贵阳适应性考试)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0,则A =________.[答案] π3[解析] 由题意,得sin A cos C +3sin A sin C =sin B +sin C , ∴sin A cos C +3sin A sin C =sin(A +C )+sin C ,∴sin A cos C +3sin A sin C =sin A cos C +cos A sin C +sin C . ∵sin C ≠0,∴3sin A -cos A =1, 即32sin A -12cos A =12, ∴sin ⎝ ⎛⎭⎪⎫A -π6=12, ∴A -π6=π6,∴A =π3.16.(2014·云南第一次检测)已知a ,b ,c 分别为△ABC 三个内角A 、B 、C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A 的值等于________.[答案] 16 2[解析] 依题,可得sin B =35,又S △ABC =12ac sin B =42,则c =14. 故b =a 2+c 2-2ac cos B =62, 所以b +a sin A =b +bsin B =16 2. 三、解答题17.(2014·江南十校联考)已知函数f (x )=12λsin ωx +32λcos ωx (λ>0,ω>0)的部分图象如图所示,其中点A 为最高点,点B ,C 为图象与x 轴的交点,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b =c =3,且满足(2c -3a )cos B -3b cos A =0.(1)求△ABC 的面积;(2)求函数f (x )的单调递增区间.解:(1)由(2c -3a )cos B -3b cos A =0,得B =π6.在△ABC 中,BC 边上的高h =c sin B =32,BC =2c cos B =3, 故S △ABC =12×BC ×h =334.(2)f (x )=12λsin ωx +32λcos ωx =λsin ⎝⎛⎭⎪⎫ωx +π3,又T =2BC =2πω=6,则ω=π3, 故f (x )=λsin ⎝ ⎛⎭⎪⎫π3x +π3由-π2+2k π≤πx 3+π3≤π2+2k π(k ∈Z ), 可得6k -52≤x ≤6k +12(k ∈Z ). 所以函数f (x )的单调递增区间为 ⎣⎢⎡⎦⎥⎤6k -52,6k +12(k ∈Z ).18.(2014·四川5月高考热身)已知向量m =(3sin x ,-1),n =(cos x ,cos 2x ),函数f (x )=m ·n +12.(1)若x ∈⎣⎢⎡⎦⎥⎤0,π4,f (x )=33,求cos 2x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足2b cos A ≤2c -3a ,求f (B )的取值范围.解:(1)f (x )=m ·n +12=3sin x cos x -cos 2x +12=32sin 2x -12cos 2x -12+12=sin ⎝ ⎛⎭⎪⎫2x -π6.∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴-π6≤2x -π6≤π3.又∵f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6=33>0,∴cos ⎝ ⎛⎭⎪⎫2x -π6=63. ∴cos 2x =cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2x -π6+π6 =cos ⎝ ⎛⎭⎪⎫2x -π6×32-12sin ⎝ ⎛⎭⎪⎫2x -π6 =63×32-12×33=22-36.(2)由2b cos A ≤2c -3a ,得2b ·b 2+c 2-a 22bc ≤2c -3a ,即a 2+c 2-b 2≥3ac .∴cos B =a 2+c 2-b 22ac ≥32,∴0<B ≤π6,从而得-π6<2B -π6≤π6,故f (B )=sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤-12,12. 19.(2014·贵阳适应性考试)已知向量a =(sin x ,-1),b =⎝⎛⎭⎪⎫3cos x ,-12,函数f (x )=(a +b )·a -2. (1)求函数f (x )的最小正周期T ;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,其中A 为锐角,a =23,c =4,且f (A )=1,求△ABC 的面积S .解:(1)f (x )=(a +b )·a -2=|a |2+a ·b -2=sin 2x +1+3sin x cos x +12-2=1-cos 2x 2+32sin 2x -12=32sin 2x -12cos 2x=sin ⎝ ⎛⎭⎪⎫2x -π6. 因为ω=2,所以T =2π2=π.(2)f (A )=sin ⎝ ⎛⎭⎪⎫2A -π6=1. 因为A ∈⎝ ⎛⎭⎪⎫0,π2,2A -π6∈⎝ ⎛⎭⎪⎫-π6,5π6, 所以2A -π6=π2,A =π3.又a 2=b 2+c 2-2bc cos A ,所以12=b 2+16-2×4b ×12, 即b 2-4b +4=0,则b =2.从而S =12bc sin A =12×2×4×sin π3=2 3.20.(2014·衡水一模)在△ABC 中,a ,b ,c 是角A ,B ,C 对应的边,向量m =(a +b ,c ),n =(a +b ,-c ),且m ·n =(3+2)ab .(1)求角C ;(2)函数f (x )=2sin(A +B )cos 2(ωx )-cos(A +B )sin(2ωx )-12(ω>0)的相邻两个极值的横坐标分别为x 0-π2,x 0,求f (x )的单调递减区间.解:(1)因为m =(a +b ,c ),n =(a +b ,-c ),m ·n =(3+2)ab ,所以a 2+b 2-c 2=3ab ,故cos C =32, ∵0<C <π,∴C =π6.(2)f (x )=2sin(A +B )cos 2(ωx )-cos(A +B )sin(2ωx )-12 =2sin C cos 2(ωx )+cos C sin(2ωx )-12 =cos 2(ωx )+32sin(2ωx )-12=sin ⎝ ⎛⎭⎪⎫2ωx +π6. 因为相邻两个极值的横坐标分别为x 0-π2,x 0,所以f (x )的最小正周期为T =π,ω=1,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 由2k π+π2<2x +π6<2k π+3π2,k ∈Z ,得k π+π6<x <k π+2π3,所以f (x )的单调递减区间为k π+π6,k π+2π3,k ∈Z .。

高三复习数学11_集合与命题(有答案)

高三复习数学11_集合与命题(有答案)

1.1 集合与命题一、解答题。

1. 集合与元素(1)集合元素的三个特征:________、________、________.(2)元素与集合的关系是________或________关系,用符号________或________表示.(3)集合的表示法:________、________、________.2. 集合间的关系(1)子集:对任意的x∈A,都有x∈B,则A________B(或________).(2)真子集:若A⊆B,且A≠B,则A________B(或B________A).(3)空集:空集是任意集合的子集,是任何非空集合的真子集.即⌀⊆A,⌀________B (B≠⌀).(4)若A含有n个元素,则A的子集有________个,A的非空子集有________个,非空真子集有________个.(5)集合相等:若A⊆B,且B⊆A,则________.3. 集合的运算4. 命题的概念在数学中把用语言、符号或式子表达的,可以________的陈述句叫做命题.其中________的语句叫真命题,________的语句叫假命题.(常见结构:若p,则q)5. 简单的逻辑联结词(1)命题中的“________”、“________”、“________”叫做逻辑联结词.含逻辑联接词的命题称为复合命题.(2)简单复合命题的真值表:记忆口诀:“p∧q命题”________;“p∨q命题”有真为真;“¬p命题”________.6. 四种命题及相互关系7. 四种命题的真假关系(1)两个命题互为逆否命题,它们有________的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性________关系.8. (2019·河北衡水中学模拟)已知集合A={x|y=√x2−2x},B={y|y=x2+1},则A∩B=()A.[1,+∞)B.[2,+∞)C.(−∞,0]∪[2,+∞)D.[0,+∞)9. 已知集合A={x|−1<x<2},B={y|y=x+a,x∈A},C={z|z=x2,x∈A},若B⊆C求实数a的取值范围.10. 已知p:方程x2+mx+1=0有两个不相等的负实数根;q:不等式4x2+4(m−2)x+1>0的解集为R.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.11. 命题p:函数y=3x−3−x是R上的增函数.命题q:函数y=3x+3−x是R上的减函数.则在命题p∨q,p∧q,(¬p)∧q,p∧(¬q)中,真命题个数是________.12. (2019·济南一中模拟)原命题:“a,b为两个实数,若a+b≥2,则a,b中至少有一个不小于1”,下列说法错误的是()A.逆命题为:a,b为两个实数,若a,b中至少有一个不小于1,则a+b≥2,为假命题B.否命题为:a,b为两个实数,若a+b<2,则a,b都小于1,为假命题C.逆否命题为:a,b为两个实数,若a,b都小于1,则a+b<2,为真命题D.a,b为两个实数,“a+b≥2”是“a,b中至少有一个不小于1”的必要不充分条件13. 设A={x|x2+px+q=0}≠⌀,M={1,3,5,7,9},N={1,4,7,10}.若A∩M=⌀,A∩N=A,求p、q的值.14. 小结与反思___________________________________________________________________________ _____________________________________________________________________________________________ __________________15. 已知集合A={1,2,3,4},B={y|y=3x−2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}16. 设集合A={x∈N|14≤2x≤16},B={x|y=ln(x2−3x)},则A∩B中元素的个数是()A.1B.2C.3D.417. 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数18. 已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A.0或√3B.0或3C.1或√3D.1或319. 已知c>0且c≠1,设P:函数y=c x在R上单调递减;Q:不等式x+|x−2c|>1的解集为R,若“P或Q”是真命题,“P且Q”是假命题,则c的取值范围是()A.(12,+∞) B.(1,+∞) C.(0,12] D.(0,12]∪(1,+∞)20. 已知命题“若函数f (x )=e x −mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A.否命题“若函数f (x )=e x −mx 在(0,+∞)上是减函数,则m >1”是真命题B.逆命题“若m ≤1,则函数f (x )=e x −mx 在(0,+∞)上是增函数”是假命题C.逆否命题“若m >1,则函数f (x )=e x −mx 在(0,+∞)上是减函数”是真命题D.逆否命题“若m >1,则函数f (x )=e x −mx 在(0,+∞)上不是增函数”是真命题21. 下列命题:①“全等三角形的面积相等”的逆命题;②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60∘”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上)22. 已知M ={(x,y)|y−3x−2=a +1},N ={(x,y)|(a 2−1)x +(a −1)y =15},若M ∩N =⌀,则a 的值为________.23. 非空数集A 如果满足:①0∉A ;②若对∀x ∈A ,有1x ∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x|x 2−4x +1<0};③{y|y =ln x x ,x ∈[1e ,1)∪(1,e]};④{y|y ={2x +25,x ∈[0,1)x +1x,x ∈[1,2]}. 其中“互倒集”的个数是________.24. 已知集合A ={x|x 2−2x −3≤0},B ={x|x 2−2mx +m 2−4≤0,x ∈R ,m ∈R } 若A ∩B =[0,3],求实数m 的值;若A ⊆∁R B ,求实数m 的取值范围.25. 已知集合A ={y|y 2−(a 2+a +1)y +a (a 2+1)>0},B ={y|y =12x 2−x +52,0≤x ≤3}.若A ∩B =⌀,求a 的取值范围;当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A)∩B .26. 已知全集U=R,非空集合A={x|x−2x−(3a+1)<0},B={x|x−a2−2x−a<0}.当a=12时,求(∁U B)∩A;命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.参考答案与试题解析1.1 集合与命题一、解答题。

高考数学一轮总复习课件:导数的应用(二) ——极值与最值

高考数学一轮总复习课件:导数的应用(二) ——极值与最值
可导函数求极值的步骤 (1)确定函数的定义域. (2)求方程f′(x)=0的根. (3)用方程f′(x)=0的根和不可导点的x的值顺次将函数的定 义域分成若干个小开区间,并形成表格. (4)由f′(x)=0的根左右的符号以及f′(x)在不可导点左右的 符号来判断f(x)在这个根或不可导点处取极值的情况,此步骤不 可缺少,f′(x)=0是函数有极值的必要条件.
(2)(2020·河北冀州中学摸底)已知函数f(x)的导数f′(x)=a(x +1)(x-a),若f(x)在x=a处取得极大值,则a的取值范围是 __(_-_1_,__0)_.
【解析】 若a=0,则f′(x)=0,函数f(x)不存在极值;若a= -1,则f′(x)=-(x+1)2≤0,函数f(x)不存在极值;若a>0,当 x∈(-1,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,所以函数 f(x)在x=a处取得极小值;若-1<a<0,当x∈(-1,a)时,f′ (x)>0,当x∈(a,+∞)时,f′(x)<0,所以函数f(x)在x=a处取得极 大值;若a<-1,当x∈(-∞,a)时,f′(x)<0,当x∈(a,-1)时,f ′(x)>0,所以函数f(x)在x=a处取得极小值.综上所述,a∈(-1, 0).
第3课时 导数的应用(二) ——极值与最值
[复习要求] 1.了解函数在某点处取得极值的必要条件和 充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数 不超过三次).3.会求闭区间上的最大值、最小值(其中多项式函 数不超过三次).
课前自助餐
函数的极值 (1)设函数 f(x)在点 x0附近有定义,如果对 x0附近的所有的点, 都有 f(x)___<___f(x0),那么 f(x0)是函数 f(x)的一个极大值,记作 y 极大值=f(x0);如果对 x0 附近的所有的点,都有 f(x)__>____f(x0), 那么 f(x0)是函数 f(x)的一个极小值,记作 y 极小值=f(x0).极大值与 极小值统称为极值.

2020版高考数学文(通用)一轮练习:专题2 第7练 Word版含解析

2020版高考数学文(通用)一轮练习:专题2 第7练 Word版含解析

姓名,年级:时间:[基础保分练]1.已知函数f(x)为奇函数,当x>0时,f(x)=x2+错误!,则f(-1)等于( ) A.2 B.1 C.0 D.-22.“a=0”是“f(x)=错误!为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若f(x)=ax2+(b-1)x+1(a≠0)是偶函数,g(x)=x3+(a+1)x2-2x是奇函数,则a+b等于( )A.0 B.1 C.-1 D.24.(2018·山西太原实验中学月考)已知奇函数f(x)的定义域为R。

若f(x +1)为偶函数,且f(1)=2,则f(8)+f(5)的值为()A.2 B.1 C.-1 D.-25.设定义在R上的奇函数f(x)满足对任意x1,x2∈(0,+∞),且x1≠x2都有错误!<0,且f(2)=0,则不等式错误!≤0的解集为( )A.(-∞,-2]∪[2,+∞)B.[-2,0]∪[2,+∞)C.(-∞,-2]∪(0,2] D.[-2,0)∪(0,2]6.(2019·福建福鼎三校联考)已知f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,那么实数t的取值范围是( )A.[错误!,+∞) B.[2,+∞)C.(0,2]D.[0,错误!]7.(2018·吉林省白城市第一中学期末)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)〈1,f(5)=错误!,则实数a的取值范围为( )A.(-1,4)B.(-2,0)C.(-1,0)D.(-1,2)8.(2018·甘肃天水模拟)定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有错误!〈0,则( )A .f (3)〈f (-2)〈f (1)B .f (1)<f (-2)<f (3)C .f (-2)〈f (1)<f (3)D .f (3)〈f (1)〈f (-2)9.已知函数f (x )是周期为2的奇函数,当x ∈(0,1]时,f (x )=lg (x +1),则f 错误!+lg 12=________。

高中数学一轮复习考点专题训练:专题35 基本不等式(解析版)

高考数学一轮考点扫描专题35 基本不等式一、【知识精讲】 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[微点提醒]1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. 3.21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).二、【典例精练】考点一 利用基本不等式求最值 角度1 通过配凑法求最值 【例1-1】设a >b >0,则a 2+1ab +1aa -b 的最小值是( ) A .1 B .2 C .3D .4【答案】D 【解析】 a 2+1ab +1aa -b =(a 2-ab )+1a 2-ab +1ab+ab ≥2a 2-ab ·1a 2-ab+21ab×ab =4,当且仅当a 2-ab =1a 2-ab 且1ab=ab , 即a =2,b =22时取等号,故选D. 角度2 通过常数代换法求最值【例1-2】已知x >0,y >0,且x +2y =xy ,则x +y 的最小值为________. 【答案】3+2 2【解析】由x >0,y >0,x +2y =xy ,得2x +1y=1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫2x +1y=3+2y x +xy ≥3+2 2.当且仅当x =2y 时取等号.【解法小结】 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值. 考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【解析】 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 【解法小结】 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解. 考点三 基本不等式的综合应用【例3】 (1) (2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. (2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】 (1)8 (2)9【解析】(1) ∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+4a b +b a≥4+24a b ·ba=8,当且仅当b a =4ab,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.(2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c=5+c a +4a c≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0,∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 【解法小结】 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是: 1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题. 三、【名校新题】1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R,故必要性不成立.2.(2019·玉溪一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0【答案】D【解析】 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.3.(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( )A.2B.12C.4D.14【答案B【解析】】因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2, ∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 4.(2019·长春质量监测)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16【答案】B【解析】 由4x +y =xy 得4y +1x=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx +1+4≥24+5=9,当且仅当4x y=yx,即x =3,y =6时取“=”,故选B. 5.(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则ac b2的最大值为( ) A .8 B .2 C .18 D .16【答案】 C【解析】 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac4a 2+4ac +c2=14a c +ca+4≤124a c ·c a+4=18,当且仅当c =2a >0时等号成立.故选C. 6.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2 B.2 2C.4D.4 2【答案】B【解析】由题意知∠APB =90°,∴|PA |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号), ∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.7.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)【答案】D【解析】 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥16,当且仅当b a =9ab,即a =4,b =12时取等号. 依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6.8.(2019·山西模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4 C .6 D .8【答案】 B【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9,∴(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2≥9.∴a ≥4.故选B.9. (2019·厦门模拟)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)【答案】B【解析】由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x+23x .又3x +23x ≥22(当且仅当3x=23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.10.(2019·上海模拟)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16【答案】 D 【解析】32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.11.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +bc 的最小值为( )A.2B.2+ 2C.4D.2+2 2【答案】D【解析】 因为△ABC 的面积为1,内切圆半径也为1, 所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b +a +b c≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立, 所以4a +b +a +bc的最小值为2+2 2. 12.(2019·绵阳诊断)若θ∈⎝ ⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( ) A .[6,+∞) B .[10,+∞) C .[12,+∞) D .[16,+∞)【答案】 D【解析】 ∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D.13. (2019·合肥调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________. 【答案】8【解析】 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3.于是有2ab +3=35,ab =16.所以a +b ≥2ab =8,当且仅当a =b =4时等号成立, 所以(a +b )min =8.14. (2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.【答案】92【解析】 y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92. 15.(2019·潍坊调研)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n为正数,则1m +1n的最小值为________.【答案】4【解析】∵曲线y =a 1-x恒过定点A ,x =1时,y =1,∴A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0), 可得m +n =1,∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·mn=4, 当且仅当n m =m n 且m +n =1(m >0,n >0),即m =n =12时,取得等号.16.(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________. 【答案】3【解析】∵a 3=7,a 9=19, ∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1, ∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3, 当且仅当n =2时取等号.故S n +10a n +1的最小值为3. 17.(2019·孝感模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎪⎨⎪⎧175x 2-130x +4 900,x ∈[50,80,12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少? 【解析】(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675],所以当x =65时,y 取得最小值,最小值为175×675=9.当x ∈[80,120]时,函数y =12-x 60单调递减,故当x =120时,y 取得最小值,最小值为12-12060=10.因为9<10,所以当x =65,即该型号汽车的速度为65 km/h 时,可使得每小时耗油量最少. (2)设总耗油量为l L ,由题意可知l =y ·120x,①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4 900x -130≥85⎝⎛⎭⎪⎫2 x ×4 900x-130=16,当且仅当x =4 900x,即x =70时,l 取得最小值,最小值为16;②当x ∈[80,120]时,l =y ·120x =1 440x-2为减函数,所以当x =120时,l 取得最小值,最小值为10.因为10<16,所以当速度为120 km/h 时,总耗油量最少.18. (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案? 【解析】 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元, ∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝ ⎛⎭⎪⎫81n +n ≤30-281n ·n =12(当且仅当81n=n ,即 n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.。

新课标2023版高考数学一轮总复习第1章预备知识第2节充分条件与必要条件课件


03
一题N解·深化综合提“素养”
已知 p:x>1 或 x<-3,q:5x-6>x2,则 p 是 q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
[四字程序]




1.充分条件、必要
判断充分条 条件的概念. 件、必要条件 2.判断充分条件、
解不等式
转化与化归
(1)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.
(√)
(2)当q是p的必要条件时,p是+b2≠0”是“a,b不全为0”的充要条
件.
(√)
(4)若“x∈A”是“x∈B”的充分不必要条件,则B是A的真子
集.
(√)
2.(2021·惠州市二调)“θ=0”是“sin θ=0”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
B 解析:设等比数列{an}的公比为 q, 充分性:当 a1>0,q<0 时,Sn+1-Sn=an+1=a1qn,无法判断其正 负,显然数列{Sn}不一定是递增数列,充分性不成立; 必要性:当数列{Sn}为递增数列时,Sn-Sn-1=an>0,可得 a1>0, 必要性成立.
A 解析:由题意,若 a>6,则 a2>36,故充分性成立;若 a2>36, 则 a>6 或 a<-6,推不出 a>6,故必要性不成立.所以“a>6”是 “a2>36”的充分不必要条件.
2.已知 a,b,c∈R,则“abbc>>00, ”是“b-a c<b+a c”的(
)
A.充分不必要条件

2020年高考数学(文)一轮复习专题6.2 等差数列及其前n项和(练)(解析版)

专题6.2 等差数列及其前n 项和1.(江西师范大学附属中学2019届高三三模)已知数列{}n a 为等差数列,n S 为其前n 项和,5632a a a +=+,则7S =( )A .2B .7C .14D .28【答案】C 【解析】5632a a a +=+ 44422a d a d a d ∴++=++-,解得:42a =()177477142a a S a +∴===,本题选C 。

2.(安徽省1号卷A10联盟2019届模拟)等差数列{}n a 的前n 项和为n S ,若2163S =,则31119a a a ++=( )A .12B .9C .6D .3【答案】B【解析】由等差数列性质可知:21112163S a ==,解得:113a =311191139a a a a ∴++==本题选B 。

3.(贵州省贵阳市2019届高三模拟)已知{a n }为递增的等差数列,a 4+a 7=2,a 5•a 6=-8,则公差d=( ) A .6 B .6-C .2-D .4【答案】A【解析】∵{a n }为递增的等差数列,且a 4+a 7=2,a 5•a 6=-8, ∴a 5+a 6=2,∴a 5,a 6是方程22x 80x --=的两个根,且a 5<a 6, ∴a 5=-2,a 6=4, ∴d=a 6-a 5=6, 故选A 。

4.(河北衡水中学2019届高三调研)已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a =( )A .2B .2或32C .2或-32D .-1【答案】B【解析】设等比数列{}n a 的公比为q (q 0≠),1324,,2a a a 成等差数列, 321224a a a ∴=+,10a ≠, 220q q ∴--=,解得:q=2q=-1或,451a =a q ∴,5a =232或,故选B.5.(浙江省金华十校2019届高三模拟)等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是( )A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=,则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0,故选B 。

精品解析:【全国百强校】河北省衡水中学2023届高三高考押题卷三理数试题(解析版)

2023年普通高等学校招生全国统一考试模拟试卷理科数学(Ⅲ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出地四个选项中,只有一项是符合题目要求地.1. 已知复数,则=()A. B. C. D.【解析】C【解析】由题意可得: ,则= .本题选择C选项.2. 集合,,则=()A. B.C. D.【解析】A【解析】由题意可得: ,则= .本题选择A选项.3. 已知函数地最小正周期为,则函数地图象()A. 可由函数地图象向左平移个单位而得B. 可由函数地图象向右平移个单位而得C. 可由函数地图象向左平移个单位而得D. 可由函数地图象向右平移个单位而得【解析】D【解析】由已知得,则地图象可由函数地图象向右平移个单位而得,故选D.4. 已知实数,满足约束条件则地最大值为()A. 2B. 3C. 4D. 5【解析】B【解析】绘制目标函数表示地可行域,结合目标函数可得,目标函数在点处取得最大值 .本题选择B选项.5. 一直线与平行四边形中地两边,分别交于、,且交其对角线于,若,,,则=()学,科,网...A. B. 1 C. D. -3【解析】A【解析】由几何关系可得: ,则: ,即: ,则= .本题选择A选项.点睛:(1)应用平面向量基本定理表示向量地实质是利用平行四边形法则或三角形法则进行向量地加、减或数乘运算.(2)用向量基本定理解决问题地一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量地形式,再通过向量地运算来解决.6. 在如下图所示地正方向中随机投掷10000个点,则落入阴影部分(曲线为正态分布地密度曲线)地点地个数地估计值为(附:若,则,.()A. 906B. 1359C. 2718D. 3413【解析】B【解析】由正态分布地性质可得,图中阴影部分地面积 ,则落入阴影部分(曲线为正态分布地密度曲线)地点地个数地估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值地概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)地值.②充分利用正态曲线地对称性和曲线与x轴之间面积为1.7. 某几何体地三视图如下图所示,其中俯视图下半部分是半径为2地半圆,则该几何体地表面积是()A. B. C. D.【解析】B【解析】根据三视图可知几何体是棱长为4地正方体挖掉半个圆柱所得地组合体,且圆柱底面圆地半径是2、母线长是4,∴该几何体地表面积 ,本题选择B选项.8. 已知数列中,,.若如下图所示地程序框图是用来计算该数列地第2018项,则判断框内地条件是()A. B. C. D.【解析】B学,科,网...【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当时推出循环,则判断框内地条件是.本题选择B选项.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测地次数为,则=()A. 3B.C.D. 4【解析】B【解析】由题意知,地可能取值为2,3,4,其概率分别为,,,所以,故选B.10. 已知抛物线:地焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得地弦长为,若=2,则=()A. B. 1 C. 2 D. 3【解析】B【解析】由题意:M(x0,2√2)在抛物线上,则8=2px,则px=4,①由抛物线地性质可知,, ,则,∵被直线截得地弦长为√3|MA|,则,由,在Rt△MDE中,丨DE丨2+丨DM丨2=丨ME丨2,即,代入整理得:②,=2,p=2,由①②,解得:x∴ ,故选:B.【点睛】本题考查抛物线地简单几何性质,考查了抛物线地定义,考查勾股定理在抛物线地中地应用,考查数形结合思想,转化思想,属于中档题,将点A到焦点地距离转化为点A到其准线地距离是关键.11. 若定义在上地可导函数满足,且,则当时,不等式地解集为()A. B. C. D.【解析】D【解析】不妨令 ,该函数满足题中地条件,则不等式转化为: ,整理可得: ,结合函数地定义域可得不等式地解集为.本题选择D选项.12. 已知是方程地实根,则关于实数地判断正确地是()A. B. C. D.【解析】C【解析】令 ,则 ,函数在定义域内单调递增,方程即: ,即 ,结合函数地单调性有: .本题选择C选项.点睛:(1)利用导数研究函数地单调性地关键在于准确判定导数地符号.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试卷考生都必须作答.第22题和第23题为选考题,考生根据要求作答.学,科,网...二、填空题:本大题共4小题,每小题5分,共20分.13. 若地展开式中项地系数为20,则地最小值为_________.【解析】2【解析】试卷分析:展开后第项为,其中项为,即第项,系数为,即,,当且仅当时取得最小值.考点:二项式公式,重要不等式.14. 已知中,内角,,地对边分别为,,,若,,则地面积为__________.【解析】【解析】由题意有: ,则地面积为 .【解析】【解析】由题意可得,为正三角形,则,所以双曲线地离心率 .16. 已知下列命题:①命题","地否定是",";②已知,为两个命题,若""为假命题,则"为真命题";③""是""地充分不必要条件;④"若,则且"地逆否命题为真命题其中,所有真命题地序号是__________.【解析】②【解析】逐一考查所给地命题:①命题","地否定是",";②已知,为两个命题,若""为假命题,则"为真命题";③""是""地必要不充分条件;④"若,则且"是假命题,则它地逆否命题为假命题其中,所有真命题地序号是②.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设为数列地前项和,且,,.(1)证明:数列为等比数列;(2)求.【解析】(1)见解析;(2).学,科,网...【解析】试卷分析:(1)利用题意结合等比数列地定义可得数列为首先为2,公比为2地等比数列;(2)利用(1)地结论首先求得数列地通项公式,然后错位相减可得.试卷解析:(1)因为,所以,即,则,所以,又,故数列为等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以.点睛:证明数列{a n }是等比数列常用地方法:一是定义法,证明 =q (n ≥2,q 为常数);二是等比中项法,证明=a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.18. 如下图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角地正弦值.【解析】(1)见解析;(2).【解析】试卷分析:(1)利用题意首先证得平面,结合线面垂直地定义有.(2)结合(1)地结论首先找到二面角地平面角,然后可求得直线与平面所成角地正弦值为.试卷解析:(1)中,应用余弦定理得,解得,所以,所以.因为平面平面,平面平面,,所以平面,又因为平面,学,科,网...所以.(2)由(1)平面,平面,所以.又因为,平面平面,所以是平面与平面所成地二面角地平面角,即.因为,,所以平面.所以是与平面所成地角.因为在中,,所以在中,.19. 某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生地人数;(2)估计该校学生身高在地概率;(3)以样本频率为概率,现从高一年级地男生和女生中分别选出1人,设表示身高在学生地人数,求地分布列及数学期望.【解析】(1)300;(2);(3)见解析.【解析】试卷分析:(1)利用题意得到关于人数地方程,解方程可得该校高一女生地人数为300;(2)用频率近似概率值可得该校学生身高在地概率为.(3) 由题意可得地可能取值为0,1,2.据此写出分布列,计算可得数学期望为 .试卷解析:(1)设高一女学生人数为,由表1和表2可得样本中男、女生人数分别为40,30,则,解得.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在地人数为,样本容量为70.所以样本中该校学生身高在地概率为.因此,可估计该校学生身高在地概率为.(3)由题意可得地可能取值为0,1,2.学,科,网...由表格可知,女生身高在地概率为,男生身高在地概率为.所以,,.所以地分布列为:所以.20. 中,是地中点,,其周长为,若点在线段上,且.(1)建立合适地平面直角坐标系,求点地轨迹地方程;(2)若,是射线上不同地两点,,过点地直线与交于,,直线与交于另一点,证明:是等腰三角形.【解析】(1);(2)见解析.【解析】试卷分析:(1)由题意得,以为坐标原点,以地方向为轴地正方向,建立平面直角坐标系,得地轨迹方程为,再将相应地点代入即可得到点地轨迹地方程;(2)由(1)中地轨迹方程得到轴,从而得到,即可证明是等腰三角形.试卷解析:解法一:(1)以为坐标原点,以地方向为轴地正方向,建立平面直角坐标系.依题意得.由,得,因为故,所以点地轨迹是以为焦点,长轴长为6地椭圆(除去长轴端点),所以地轨迹方程为.设,依题意,所以,即,代入地轨迹方程得,,所以点地轨迹地方程为.(2)设.由题意得直线不与坐标轴平行,因为,所以直线为,与联立得,,由韦达定理,同理,所以或,当时,轴,当时,由,得,学,科,网...同理,轴.因此,故是等腰三角形.解法二:(1)以为坐标原点,以地方向为轴地正方向,建立平面直角坐标系.依题意得.在轴上取,因为点在线段上,且,所以,则,故地轨迹是以为焦点,长轴长为2地椭圆(除去长轴端点),所以点地轨迹地方程为.(2)设,,由题意得,直线斜率不为0,且,故设直线地方程为:,其中,与椭圆方程联立得,,由韦达定理可知,,其中,因为满足椭圆方程,故有,所以.设直线地方程为:,其中,同理,故,所以,即轴,因此,故是等腰三角形.21. 已知函数,,曲线地图象在点处地切线方程为.(1)求函数地解析式;(2)当时,求证:;(3)若对任意地恒成立,求实数地取值范围.【解析】(1);(2)见解析;(3).学,科,网...【解析】试卷分析:(1)利用导函数研究函数切线地方法可得函数地解析式为.(2)构造新函数.结合函数地最值和单调性可得.(3)分离系数,构造新函数,,结合新函数地性质可得实数地取值范围为.试卷解析:(1)根据题意,得,则.由切线方程可得切点坐标为,将其代入,得,故.(2)令.由,得,当,,单调递减;当,,单调递增.所以,所以.(3)对任意地恒成立等价于对任意地恒成立.令,,得.由(2)可知,当时,恒成立,令,得;令,得.所以地单调增区间为,单调减区间为,故,所以.所以实数地取值范围为.请考生在第22、23题中任选一题作答,如果多做,则按所做地第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线:,曲线:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线地参数方程为(为参数).(1)求,地直角坐标方程;(2)与,交于不同四点,这四点在上地排列顺次为,,,,求地值.【解析】(1);(2).【解析】(1)因为,由,得,所以曲线地直角坐标方程为;由,得,所以曲线地极坐标方程为.(2) 不妨设四点在上地排列顺次至上而下为,它们对应地参数分别为,如图,连接,则为正三角形 ,所以,,把代入,得:,即,故,所以.【点睛】本题为极坐标与参数方程,是选修内容,把极坐标方程化为直角坐标方程,需要利用公式,第二步利用直线地参数方程地几何意义,联立方程组求出,利用直线地参数方程地几何意义,进而求值.学,科,网...23. 选修4-5:不等式选讲.已知,为任意实数.(1)求证:;(2)求函数地最小值.【解析】(1)见解析;(2).【解析】试卷分析:(1)利用不等式地性质两边做差即可证得结论;(2)利用题意结合不等式地性质可得.试卷解析:(1),因为,所以.(2).即.点睛:本题难以想到利用绝对值三角不等式进行放缩是失分地主要原因;对于需求最值地情况,可利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当地添、拆项来放缩求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题2 充分条件与必要条件专项训练1.已知2:31,:60p x q x x -<+->,则p 是q 的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件 【答案】C【解析】考虑利用集合求解.分别解不等式得到对应集合。

31131x x -<⇒-<-<,解得.24x <<,即{}|24P x x =<<;2603x x x +->⇒<-或2x >,即{}|32Q x x x =<->或。

所以PQ ,进而p 是q 的充分不必要条件2.已知,a b R ∈,那么1122log log a b >是33a b<的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件 【答案】C【解析】本题若觉得不方便从条件中直接找到联系,可先从一个条件入手推出其等价条件,再进行判断,比如“33a b<”等价于a b <,所以只需判断1122log log a b >与a b <的关系即可。

根据12log y x =的单调性可得.如果1122log log a b >,则a b <,但是若a b <,在,a b 大于零的前提下,才有1122log log a b >,而题目中仅说明,a b R ∈。

所以不能推出。

综上可判断1122log log a b >是33a b <的充分不必要条件 3.已知3:,:11p x k q x ≥<+,如果p 是q 的充分不必要条件,则k 的取值范围是_____ 【答案】2k >【解析】设{}{}3|,|1|121P x x k Q x x x x x ⎧⎫=≥=<=<->⎨⎬+⎩⎭或,因为p 是q 的充分不必要条件,所以PQ ,利用数轴可而判断出2k >4.下面四个条件中,使a b >成立的充分而不必要的条件是( )A. 1a b >+B. 1a b >-C. 22a b > D. 33a b > 【答案】A【解析】求a b >的充分不必要条件,则这个条件能够推出a b >,且不能被a b >推出。

可以考虑验证四个选项。

A 选项1a b >+可以推出a b >,而a b >不一定能够得到1a b >+(比如1, 1.5a b ==),所以A 符合条件。

对于B ,C 两个选项均不能推出A ,所以直接否定。

而D 选项虽然可以得到a b >,但是a b >也能推出33a b >,所以D 是A 的充要条件,不符题意 5.设集合{}1|0,|11x A x B x x a x -⎧⎫=<=-<⎨⎬+⎩⎭,则“1a =”是“A B ≠∅I ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件【答案】A【解析】先解出两个解集.()1,1A =-,B 的解集与a 的取值有关.若0a ≤,则B =∅;若0a >,则()1,1B a a =-+,观察条件,若1a =,则()0,2B =,所以A B ≠∅I 成立;若A B ≠∅I ,则通过数轴观察区间可得a 的取值为多个(比如12a =),所以“1a =”是“A B ≠∅I ”的充分不必要条件 6.对于函数(),y f x x R =∈,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】如果()y f x =是奇函数,图像关于原点对称,则()y f x =中()y f x =位于x 轴下方的部分沿x 轴对称翻上来,恰好图像关于y 轴对称,但()y f x =的图象关于y 轴对称未必能得到()y f x =是奇函数(如()2f x x =),所以“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的必要不充分条件7.已知,a b R ∈,则“221a b +≤”是“1a b +≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】本题可以运用集合的思想,将,a b 视为一个点的坐标(),a b ,则条件所对应的集合为(){}(){}22,|1,,|1P a b a b Q a b a b =+≤=+≤,作出两个集合在坐标系中的区域,观察两个区域可得P Q ⊇,所以“221a b +≤”是“1a b +≤”的必要不充分条件8. 设条件p .实数x 满足22430(0)x ax a a -+<<;条件q .实数x 满足2280x x +->且p ⌝是q⌝的必要不充分条件,则实数a 的取值范围是_________ 【答案】4a ≤-【解析】设{}22|430,0P x x ax a a =-+<<,可解得.()3,P a a =, 设{}2|280Q x x x =+->可解得.()(),42,Q =-∞-+∞U , p ⌝Q 是q ⌝的必要不充分条件 q ∴是p 的必要不充分条件Q P ∴⊇ 0a <Q 4a ∴≤-9.数列{}n a 满足()111,,0n n a a r a r n N r *+==⋅+∈≠,则“1r =”是“数列{}n a 成等差数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件【答案】 A【解析】当1r =时,可得11n n a a +=+,即{}n a 成等差数列。

所以“1r =”是“数列{}n a 成等差数列”的充分条件。

另一方面,如果{}n a 成等差数列,则123,,a a a 成等差数列,所以有()()()213121122121a a a r a r ra r r a r r ra r r =+⇒⋅+=++⇒⋅+=+++,代入11a =可得.224212310r r r r r =++⇒-+=,解得1r =或12r =,经检验,12r =时,2111122a a =+=,32111,22a a =+=L 利用数学归纳法可证得1n a =,则{}n a 也为等差数列(公差为0),所以12r =符合题意。

从而由“数列{}n a 成等差数列”无法推出“1r =”,所以“1r =”是“数列{}n a 成等差数列”的不必要条件 10.设02x π<<,则2sin 1x x <是sin 1x x <的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件【答案】B【解析】因为02x π<<,所以0sin <sin 1x x <可得sin sin sin 1x x x x ⋅<<2sin 1x x <,对于2sin 1x x <可考虑寻找各自等价条件.221sin 1sin sin x x x x x <⇔<⇔<1sin 1sin x x x x <⇔<,通过数形结合可以得到符合1sin x x <的x 的集合是sin x <x 集合的子集。

所以2sin 1x x <是sin 1x x <的必要不充分条件11.若,a b R ∈,则“a b a b -=+”是“0ab <”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B解析.从集合的角度来看,满足a b a b -=+条件的(),a b 取值范围是0ab <或0ab =,所以可知“a b a b -=+”是“0ab <”的必要不充分条件12.设,a b r r 为向量,则“||=||||a b a b ⋅r r r r”是“//a b r r ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C解析.==,a b a b a b a b a b ⋅⇔⋅±⇔r r r r r r r r r r的夹角为0,π,从而等价于//a b r rA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C解析.由不等式性质可知.0a b >≥,则22a b >即22a b >,反之若22a b >,>a b >14.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】D解析.若{}n a 的项均为负项,则“1q >”,“{}n a 为递增数列”之间无法相互推出,所以两条件既不充分也不必要 15.集合{}20,()()01x A xB x x a x b x ⎧-⎫=<=--<⎨⎬+⎩⎭,若“2a =-”是“A B ≠∅I ”的充分条件,则b的取值范围是( )A. 1b <-B. 1b >-C. 1b ≥-D. 12b -<< 【答案】B解析.():1,2A -,()():20B x x b +-<,因为A B ≠∅I ,由数轴可得.1b >-即可 16.“对任意的0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】B解析.左侧条件中恒成立不等式可化为sin 202k x x -<,设()sin22kf x x x =-,可知()00f =,所以若()f x 为减函数,则一定有()()00f x f <=成立。

考虑()'cos21f x k x =-,由0,2x π⎛⎫∈ ⎪⎝⎭可得.()20,x π∈,故1k ≤时,()'0f x ≤成立,所以()f x 为减函数, ()()00f x f <=成立。

所以使不等式恒成立的k 的范围包含(],1-∞,而()(],1,1-∞⊆-∞,故“对任意的0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的必要不充分条件17.在ABC △中,π4A =,BC =“AC =是“π3B =”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】B解析.由正弦定理可得.sin sin sin 2BC AC B A B =⇒=,所以3B π=或23π,均满足题意,由两条件对应集合关系可知“AC =是“π3B =”的必要不充分条件 18.已知条件3:4p k =,条件q .直线()21y k x =++与圆224x y +=相切,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】C解析.从q 入手,若()21y k x =++与圆相切,则2d ==解得34k =,所以p q ⇔ 19.命题:p x R ∈且满足sin 21x =.命题:q x R ∈且满足tan 1x =.则p 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】C解析.分别解出满足两个条件x 的解,()():2224p x k k Z x k k Z ππππ=+∈⇒=+∈;():tan 14q x x k k Z ππ=⇒=+∈,可知两个集合相等,故p q ⇔20.设,αβ是两个不同的平面,m 是直线且m α⊂.则“m β∥”是“αβ∥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】B解析.依面面平行的判定和性质可知.“m β∥”无法得到“αβ∥”,但“αβ∥”可推出“m β∥” 21.条件“对任意0,,sin cos 2x k x x x π⎛⎫∈< ⎪⎝⎭”是“1k <”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B解析.将不等式变形为sin 2sin 2202k xx k x x <⇒-<,设()sin22f x k x x =-,且()00f =,则()'2cos22f x k x =-。

相关文档
最新文档