化学物质结构
高中化学知识点总结( 物质与结构)

《物质结构基础》第一部分原子的结构和性质第一节原子的结构1、能层(1)原子核外的电子是分层排布的。
根据电子的能级差异,可将核外电子分成不同的能层。
(2)每一能层最多能容纳的电子数不同:最多容纳的电子数为2n2个。
(3)离核越近的能层具有的能量越低。
(4)能层的表示方法:能层一二三四五六七……符号K L M N O P Q ……最多电子数 2 8 18 32 50 ……离核远近由近————————————→远能量高低由低————————————→高2、能级在多电子的原子中,同一能层的电子,能量也可以不同。
不同能量的电子分成不同的能级。
【提示】①每个能层所包含的能级数等于该能层的序数n,且能级总是从s能级开始,如:第一能层只有1个能级1s,第二能层有2个能级2s和2p,第三能层有3个能级3s、3p、3d,第四能层有4个能级4s、4p、4d和4f,依此类推。
②不同能层上的符号相同的能级中最多所能容纳的电子数相同,即每个能级中最多所能容纳的电子数只与能级有关,而与能层无关。
如s能级上最多容纳2个电子,无论是1s还是2s;p能级上最多容纳6个电子,无论是2p还是3p、4p能级。
③在每一个能层(n)中,能级符号的排列顺序依次是ns、np、nd、nf……④按s、p、d、f……顺序排列的各能级最多可容纳的电子数分别是1、3、5、7……的两倍,即分别是2、6、10、14……3、基态原子与激发态原子(1)基态原子为能量最低的原子。
基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。
(2)基态原子与激发态原子相互转化与能量转化关系:4、构造原理与基态原子的核外排布随着原子核电荷数的递增,绝大多数元素的原子核外电子的排布将遵循如图的排布顺序,我们将这个顺序成为构造原理。
(1)它表示随着原子叙述的递增,基态原子的核外电子按照箭头的方向在各能级上依此排布:1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s……这是从实验得到的一般规律,适用于大多数基态原子的核外电子排布。
化学物质的结构与性质的关系

化学物质的结构与性质的关系化学物质是由不同种类的原子通过化学键连接而成的,它们的结构对其性质起着至关重要的影响。
本文将探讨化学物质的结构与性质之间的关系,并着重讨论分子结构、晶体结构以及聚合物结构对化学物质性质的影响。
一、分子结构与性质的关系分子结构是由原子组成的,分子中原子的排列和连接方式决定了分子的化学性质。
例如,碳原子的配位数和键的类型影响有机化合物的稳定性和反应性质。
以烷烃为例,分子中碳原子的键为单键,而烯烃和炔烃中的碳碳键为双键和三键,使得烯烃和炔烃具有较高的反应活性。
此外,分子中的官能团也会对物质的性质产生重要影响。
以醇类为例,醇分子中的羟基(-OH)官能团赋予了它们溶解性、可氧化性以及与酸碱反应的特性。
而醚分子则在分子结构中缺少官能团,因此它们的性质与醇类不同。
二、晶体结构与性质的关系晶体是由具有规律排列的原子、离子或分子组成的固态物质。
晶体的结构对其性质具有显著影响。
晶体中的原子、离子或分子排列方式决定了晶体的外形、硬度、熔点等性质。
例如,钠氯化合物的晶体结构为离子晶体,离子由正负电荷吸引,形成紧密排列的晶胞。
这种结构使得钠氯化合物具有高熔点、脆性和良好的导电性。
另一方面,碳的晶体结构形成多种多样的物质,如金刚石和石墨。
金刚石的晶体结构由碳原子通过共价键形成三维网状结构,使其具有高硬度和高熔点。
而石墨的晶体结构由碳原子形成多层平面排列,使它具有良好的导电性和润滑性。
三、聚合物结构与性质的关系聚合物是由大量重复单元组成的高分子化合物。
聚合物的结构对其性质具有关键影响。
聚合物的分子量、分子结构和排列方式决定了其物理性质、化学性质和应用性能。
例如,线性聚合物和支化聚合物的结构差异导致了不同的性质。
线性聚合物由直链组成,分子链间相互平行排列,使得其具有较高的熔点和拉伸强度。
而支化聚合物由支链组成,使其具有较低的熔点和更好的可加工性。
此外,聚合物的共聚结构也会影响其性质。
比如丙烯腈与丙烯酸酯的共聚物,其聚合物链上的功能团可以调整其力学性质和溶解性。
高中化学: 物质结构与性质(5)配位键配合物

向NaCl溶液中滴 加AgNO3溶液和 氨水
向NaCl溶液中滴加AgNO3溶液,产生 Ag++Cl-===AgCl↓
__白__色__沉淀,再滴入氨水,沉淀消失, AgCl+2NH3===
得到澄清的_无__色___溶液
[Ag(NH3)2]Cl
1.配位键实质上是一种特殊的共价键( √ ) 2.提供孤电子对的微粒既可以是分子,也可以是离子(√ ) 3.有配位键的化合物就是配位化合物( × ) 4.配位化合物都很稳定( × ) × 5.在配合物[Co(NH3)5Cl]Cl2中的Cl-均可与AgNO3反应生成AgCl沉淀( ) 6.Ni(CO)4是配合物,它是由中心原子与配体构成的(√ )
合
配配合合物物
离子(称为配体或配位体)以_配__位__键___结合形成的化合物,简称配合物。
物
(2)配合物的组成
配位原子
大π键
配体:含有孤电子对的分子或离子,如NH3、H2O、Cl-、SCN-等。 中心离子:一般是金属离子,特别是配过位体渡金配属位离数子,如Cu2+、Fe3+等。 配位数:直接同中心原子(或离子)配位的含有孤电子对的分子(或离子)
K3[Fe(CN)6]在水中可以电离出配离子[Fe(CN)6]3-,该配离子的中心离子、配体 是什么?配位数是多少?[Fe(CN)6]3-和Fe3+的性质一样吗?
考点突破
考点突破1:配合物理论的应用
B 例1.下列组合中,中心原子的电荷数和配位数均相同的是
A.K[Ag(CN)2]、[Cu(NH3)4]SO4 B.[Ni(NH3)4]Cl2、[Cu(NH3)4]SO4 C.[Ag(NH3)2]Cl、K3[Fe(SCN)6] D.[Ni(NH3)4]Cl2、[Ag(NH3)2]Cl
化学物质的结构与性质的关联性

化学物质的结构与性质的关联性化学物质的结构与性质之间存在着紧密的关联性,物质的不同结构决定了其不同的性质。
通过研究化学物质的结构,人们可以深入了解其性质特点,为科学研究和工业应用提供重要的理论依据。
本文将通过一些典型例子,探讨化学物质的结构与性质之间的关联性。
一、有机化合物的结构与性质有机化合物是碳元素为主要骨架的化合物,其结构对其性质具有重要影响。
以烷烃为例,当碳原子间仅有单键相连时,产生的烷烃是饱和的,具有稳定性强、活泼性差的性质。
当分子中存在双键、三键时,分子就会不饱和,例如乙烯、丙烯等含有双键的烃具有较强的活泼性。
进一步,如果双键的位置不同,分子结构也会有所不同,例如顺式和反式异构体即是来源于烯烃分子结构的差异。
此外,有机化合物中的官能团也对分子的性质产生显著影响。
以醇和醚为例,它们的分子结构相似,都含有氧原子,但醇分子中的氧原子连接到一个碳和一个氢原子上,而醚分子中则连接到两个碳原子上。
这种结构的差异使得醇具有较强的亲水性和氢键作用,而醚则亲水性较弱,物理性质和化学性质均不同。
二、无机化合物的结构与性质无机化合物是指不含有碳元素或仅含有少量碳元素的化合物,其结构和性质的关联性也十分密切。
例如,金属的物理性质取决于其结晶结构和金属键的特性。
金属中的电子云可以自由移动,而金属的结晶结构决定了电子云的排布方式。
例如,钢铁中的铁原子形成紧密排列的晶格结构,使得钢铁具有良好的导电性和强度。
而铝原子则形成面心立方结构,造成铝的导电性较好但强度较低。
此外,钙钛矿结构的无机材料也是具有重要性质的代表。
钙钛矿结构材料是一种特殊的晶体结构,其所具备的铁电性、铁磁性和超导性等性质使得其在光电、磁性材料和能源领域具有广泛的应用前景。
这些性质的来源正是由于钙钛矿结构中金属离子的排列和价电子的分布所决定的。
三、聚合物的结构与性质聚合物是由重复单元组成的高分子化合物,其结构和性质的关联性对于材料科学至关重要。
例如,以聚乙烯为例,当其分子链较短时,分子间的互相作用力较小,聚乙烯呈现为低密度聚乙烯(LDPE),具有较好的柔韧性和绝缘性。
化学物质的分子结构解析

化学物质的分子结构解析化学物质的分子结构解析是化学领域中的一个重要研究方向。
通过对化学物质的分子结构进行解析,可以深入了解其化学性质、反应机理和生物活性,对于药物研发、催化剂设计和材料科学等领域具有重要应用价值。
一、分子结构解析方法1. X射线衍射X射线衍射是分析晶体结构的重要方法。
通过将X射线照射在晶体上,根据衍射图案可以推测晶体的原子排列和晶胞参数。
这种方法已经广泛应用于晶体学和材料科学领域。
2. 核磁共振(NMR)核磁共振是一种可以分析分子结构的非常有效的手段。
当化学物质置于强磁场中时,核磁共振仪可以探测到分子中不同原子核的振动频率。
通过对不同原子核的NMR信号进行解析,可以得到化学物质的分子结构信息。
3. 质谱(MS)质谱技术可以通过分析化学物质中不同目标离子的质量-荷电比,推测出其分子结构。
通过质谱仪对化学物质进行离子化,然后通过质量分选仪,最后通过探测器测量目标离子的信号,得到物质的质谱图谱,从而解析其分子结构。
4. 红外光谱(IR)红外光谱是通过测量分子在不同波长的红外光吸收特性来解析其分子结构的方法。
化学物质的各种化学键在不同振动模式下吸收红外光的频率也会不同,通过测量其吸收峰的位置和强度可以推测出化学物质的分子结构。
二、分子结构解析的应用1. 药物研发分子结构解析可以帮助科学家们设计和优化药物分子。
通过了解药物分子的结构,可以预测其与生物体内激活靶标的亲和力、药效和毒性。
这对于药物的设计和改良具有重要意义。
2. 催化剂设计分子结构解析有助于催化剂的设计和优化。
催化剂是化学反应中起催化作用的物质,通过对催化剂分子结构的解析,可以了解其表面活性位点和反应活性,从而设计更高效和选择性的催化剂。
3. 材料科学分子结构解析在材料科学中也发挥着重要作用。
通过了解材料的分子结构,可以预测其物理性质、热稳定性和化学反应活性。
这对于材料的设计和制备具有重要意义,例如有机发光材料和电子材料的研究。
高三化学知识点:物质的结构和性质

高三化学知识点:物质的结构和性质物质的结构和性质是化学学科中的重要知识点,对于高三学生来说,理解和掌握这一部分内容对于提高化学成绩和深入理解化学学科有着至关重要的作用。
一、物质的结构1.1 原子结构原子是物质的基本单位,由原子核和核外电子组成。
原子核由质子和中子组成,质子带正电,中子不带电。
核外电子带负电,围绕原子核运动。
1.2 分子结构分子是由两个或多个原子通过共价键连接在一起形成的。
分子中原子之间的连接方式有单键、双键和三键等。
分子结构对分子的性质有着重要影响。
1.3 离子结构离子是由于原子或分子失去或获得电子而带电的粒子。
离子结构对离子的性质有着重要影响。
1.4 晶体结构晶体是由周期性排列的原子、分子或离子组成的有序结构。
晶体有四种基本的晶格结构:立方晶系、六方晶系、四方晶系和单斜晶系。
二、物质的性质2.1 物理性质物理性质是指物质在不发生化学变化的情况下所表现出的性质。
常见的物理性质包括颜色、状态、密度、熔点、沸点等。
2.2 化学性质化学性质是指物质在发生化学变化时所表现出的性质。
常见的化学性质包括氧化性、还原性、酸碱性、稳定性等。
2.3 物质的性质与结构的关系物质的性质与其结构有着密切的关系。
例如,原子的最外层电子数决定了元素的化学性质;分子的结构决定了分子的化学性质和物理性质;离子的结构决定了离子的化学性质等。
三、物质的结构和性质的关系物质的结构和性质之间存在着密切的关系。
结构决定性质,性质反映结构。
了解和掌握物质的结构和性质的关系对于理解化学反应的原理和预测物质的性质有着重要意义。
四、学习方法4.1 理论联系实际学习物质的结构和性质时,要将理论知识与实际例子相结合,通过实际例子来理解和掌握理论知识。
4.2 多做题物质的结构和性质是化学学科中的重要知识点,需要通过多做题来加深理解和掌握。
可以做课后习题、模拟试题等,通过做题来检验自己的学习效果。
4.3 总结归纳学习物质的结构和性质时,可以通过总结归纳的方式来加深理解和记忆。
物质结构知识点总结
物质结构知识点总结物质结构是物理学和化学领域的重要概念,它研究了物质中原子、分子或离子的排列方式以及它们之间的相互作用。
在化学中,物质结构的研究对理解物质的性质、化学反应过程以及物质在不同环境中的行为具有重要意义。
本文将对物质结构的相关知识进行总结,包括晶体结构、分子结构、原子排列和物质的性质等方面。
一、晶体结构1. 晶体的定义和特点晶体是一种具有有序结构的固体,它的原子、离子或分子按照一定的规则排列,并且具有长程周期性。
晶体结构的研究是固体物理和材料科学的重要分支,它对理解晶体的物理性质、热力学行为以及材料的性能具有重要意义。
2. 晶体的分类根据晶体的对称性和原子排列方式,晶体可以分为离子晶体、共价晶体、金属晶体和分子晶体等不同类型。
每种类型的晶体都具有特定的结构特点和性质表现。
3. 晶体的结构描述晶体的结构可以使用晶体学中的各种方法进行描述,包括晶胞、晶面、晶轴等概念。
利用这些概念可以方便地描述各种晶体的排列方式和对称性。
4. 晶体的性质晶体的性质受其结构和组成成分的影响,不同类型的晶体具有不同的物理性质和化学性质。
例如,金属晶体具有良好的导电性和热导性,而分子晶体具有较弱的结合力和较低的熔点。
二、分子结构1. 分子和分子结构的定义分子是由原子通过化学键相互连接而成的一个特定的化学实体。
分子结构指的是分子内原子的排列方式和化学键的类型和长度等特征。
2. 分子结构的分析方法利用X射线衍射、核磁共振、红外光谱和质谱等现代科学技术可以对分子结构进行分析和确定。
这些方法提供了分子的几何构型、键角、键长和键的类型等重要信息。
3. 分子结构与化学性质分子的结构对其化学性质有着重要的影响。
例如,分子的极性、键的类型和键长决定了物质的溶解性、反应性和热力学稳定性等性质表现。
4. 分子结构在生物领域的应用生物大分子如蛋白质、核酸和多糖的结构对于其功能和性质有着重要的影响。
了解生物分子的结构有助于理解生物化学过程、药理学作用以及生物医学应用等领域。
知识点总结化学物质结构
第一章物质结构元素周期律一、原子结构1、原子A ZX中,质子有Z 个,中子有A-Z 个,核外电子有Z 个。
2、质量数(A)= 质子数(Z)+ 中子数(N)(质量数在数值上等于其相对原子质量)原子中:原子序数= 核电荷数= 质子数= 核外电子数阳离子中:质子数=核电荷数=离子核外电子数+ 离子电荷数阴离子中:质子数=核电荷数=离子核外电子数- 离子电荷数3、电子层划分电子层数 1 2 3 4 5 6 7符号K L M N O P Q离核距离近远能量高低低高4、核外电子排布规律(一低四不超)(1)核外电子总是尽先排布在能量低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层摆布(即排满K层再排L层,排满L层再排M层)。
(2)各电子层再多容纳的电子数是2n2 个(n表示电子层)(3)最外层电子数不超过8个(K层是最外层时,最多不超过2 个);次外层电子数不超过18 个;倒数第三层不超过32 个。
5、概念元素:具有相同核电荷数的同一类原子的总称核电荷数决定元素种类核素:具有一定数目质子和一定数目中子的一种原子。
同位素:质子数相同而中子数不同的同一元素的不同原子之间的互称。
例:氕(1 1H)、氘(2 1D )、氚(3 1T )同素异形体:同种元素原子组成结构不同的不同单质之间的互称。
例:O2与O3,白磷与红磷,石墨与金刚石等6、粒子半径大小的比较(1)同周期元素的原子或最高价阳离子的半径随着核电荷数的增大而逐渐减小(除稀有气体外)。
例:Na>Mg>Al>Si, Na+>Mg2+>Al3+(2)同主族元素的原子或离子随核电荷数增大而逐渐增大。
例:Li<Na<K, Li+<Na+<K+ (3)电子层结构相同(核外电子排布相同)的离子半径(包括阴阳离子)随核电荷数的增加而减小。
例:O2->F->Na+>Mg2+>Al3+(上一周期元素形成的阴离子与下一周期元素形成的阳离子有此规律)(4)同种元素原子形成的粒子半径大小为:阳离子<中性原子<阴离子;价态越高的粒子半径越小。
高一化学物质结构知识点总结
高一化学物质结构知识点总结化学是一门研究物质的学科,而物质的基本单位是原子。
在高一化学学习中,物质结构是一个重要的知识点。
本文将对高一化学物质结构的相关知识进行总结。
1. 原子原子是构成物质的基本单位,由原子核和电子构成。
原子核中包含质子和中子,质子带正电荷,中子是电中性的;电子带负电荷,围绕原子核运动。
2. 元素元素是由具有相同原子序数的原子组成的纯物质,元素可以用化学符号来表示。
元素的物理性质和化学性质由其原子结构决定。
3. 分子分子是由两个或更多原子通过共价键结合而成的,是物质的最小化学单位。
分子可以是一个元素的,也可以是两种或更多种元素的。
4. 结构式结构式是用来表示化学物质的分子结构的一种图形符号,它能够清晰地展示分子中原子的排布和化学键的种类。
5. 结构化学键结构化学键是指原子之间通过化学键连接在一起的现象。
常见的化学键有离子键、共价键和金属键。
5.1 离子键离子键是由金属和非金属元素构成的物质中,金属原子向非金属原子转移电子而形成的键。
5.2 共价键共价键是指两个非金属原子通过共用电子对而形成的键。
共价键可以是单键、双键或三键,取决于共用的电子对数目。
5.3 金属键金属键是金属元素中原子之间的键,金属原子通过海洋模型中的电子云与其它金属原子相互连接,形成金属晶体。
6. 晶体结构晶体结构是指物质中原子、离子或分子的有序排列方式。
根据原子/离子/分子之间的排列方式和规则,晶体结构可以分为简单晶体和复式晶体。
6.1 简单晶体简单晶体是由同种原子/离子/分子构成的晶体,它们的晶体结构非常规则。
例如,金属元素的晶体结构就属于简单晶体。
6.2 复式晶体复式晶体是由两种或更多种不同的原子/离子/分子构成的晶体,它们的晶体结构相对复杂。
例如,盐类化合物就属于复式晶体。
7. 赝晶体赝晶体是指具有晶体外观的非晶体物质,它们的分子排列无规律,无法形成真正的晶体结构。
例如,玻璃就是一种赝晶体。
总结:高一化学中,物质结构是一项重要的知识点,涉及到原子、元素、分子以及结构化学键等概念。
高中化学竞赛讲义《物质结构》
物质结构一、核外电子的运动状态1.电子层(1)电离能:从气态原子(或气态阳离子)中去掉电子,把它变成气态阳离子(或更高价气态阳离子),需要克服核电荷的引力而消耗的能量。
符号:I单位:电子伏特(是一个电子在真空中通过1伏特电位差所获得的动能,它是一种描述微观粒子运动的能量单位。
1电子伏特=1.6022×10-19 J)注:从元素的气态原子去掉一个电子成为+1价气态阳离子所需要消耗的能量,称为第一电离能(I1);依次类推。
可得:①I1< I2< I3< I4< I5②分析Li,原子核外有3电子。
I3比I2增大不到一倍,但I2比I1却增大了十几倍。
说明这3电子分两组,两组能量有差异。
I1比I2、I3小得多,说明有一个电子能量较高,在离核较远的区域运动,容易被去掉。
另两个电子能量较低,在离核较近的区域运动。
③结论:电子是分层排布的。
2.电子亚层和电子云的形状①能量关系:电子层由里→外,能量由低→高。
同一电子层中,电子的能量还有差别,电子云的形状也不相同。
②电子亚层:K层――一个亚层,s亚层L层――二个亚层,s亚层、p亚层M层--三个亚层,s亚层、p亚层、d亚层N层--四个亚层,s亚层、p亚层、d亚层、f亚层③电子亚层形状:s亚层――球形p亚层――纺锤形(其他不介绍)④电子亚层能量:在同一电子层中能量s < p < d < f问题:比较下列轨道能量:1s、3p、2s、3d、4s、2p(1s <2s <2p <3p <3d <4s)3.电子云的伸展方向(1)电子云具有确定的形状和一定的伸展方向。
s电子云:球形对称,在空间各方向上伸展的程度相同。
z2pd电子云:五种伸展方向;f电子云:七种伸展方向。
(2)轨道:在一定电子层上,具有一定的形状和伸展方向的电子云所占据的空间称为一个轨道。
则s、p、d、f四个亚层分别有1、3、5、7个轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物质结构、元素周期律(一)原子结构1.原子(AZX)中有质子(带正电):Z个,中子(不显电性):(A—Z)个,电子(带负电):Z个。
2.原子中各微粒间的关系:①A=N+Z(A:质量数,N:中子数,Z:质量数)②Z=核电荷数=核外电子数=原子序数③MZ ≈ MN≈1836 Meˉ(质量关系)3.原子中各微粒的作用(1)原子核几乎集中源自的全部质量,但其体积却占整个体积的千亿分之一。
其中质子、中子通过强烈的相互作用集合在一起,使原子核十分“坚固”,在化学反应时不会发生变化。
另外原子核中蕴含着巨大的能量——原子能(即核能)。
(2)质子带一个单位正电荷。
质量为1.6726×10-27kg,相对质量1.007。
质子数决定元素的种类。
(3)中子不带电荷。
质量为1.6748×10-27kg,相对质量1.008。
中子数决定同位素的种类。
(4)电子带1个单位负电荷。
质量很小,约为11836×1.6726×10-27kg。
与原子的化学性质密切相关,特别是最外层电数数及排布决定了原子的化学性质。
4.原子核外电子排布规律(1)能量最低原理:核外电子总是尽先排布在能量最低的电子层里,然后再由里往外排布在能量逐步升高的电子层里,即依次:K→L→M→N→O→P→Q顺序排列。
(2)各电子层最多容纳电子数为2n2个,即K层2个,L层8个,M层18个,N层32个等。
(3)最外层电子数不超过8个,次外层不超过18个,倒数第三层不超过32个【注意】以上三条规律是相互联系的,不能孤立理解其中某条。
如M层不是最外层时,其电子数最多为18个,当其是最外层时,其中的电子数最多为8个。
(二)元素周期律、元素周期表1.原子序数:人们按电荷数由小到大给元素编号,这种编号叫原子序数。
(原子序数=质子数=核电荷数)2.元素周期律:元素的性质随着原子序数的递增而呈周期性变化,这一规律叫做元素周期律。
具体内容如下:随着原子序数的递增,①原子核外电子层排布的周期性变化:最外层电子数从1→8个的周期性变化。
②原子半径的周期性变化:同周期元素、随着原子序数递增原子半径逐渐减小的周期性变化。
③元素主要化合价的周期性变化:正价+1→+7,负价-4→-1的周期性变化。
④元素的金属性、非金属性的周期性变化:金属性逐渐减弱,非金属性逐渐增强的周期性变化。
【注意】元素性质随原子序数递增呈周期性变化的本质原因是元素的原子核外电子排布周期性变化的必然结果。
3.元素周期表(1)元素周期表的结构:横七竖十八第一周期2种元素短周期第二周期8种元素第三周期8种元素周期第四周期18种元素(横向)长周期第五周期18种元素第六周期32种元素不完全周期:第七周期26种元素主族(A):ⅠA、ⅡA、ⅢA、ⅣA、ⅤA、ⅥA、ⅦA族副族(B):ⅠB、ⅡB、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB(纵向)第VIII 族:三个纵行,位于ⅦB族与ⅠB族中间零族:稀有气体元素【注意】表中各族的顺序:ⅠA、ⅡA、ⅢB、ⅣB、ⅤB、ⅥB、ⅦB、VIII、ⅠB、ⅡB、ⅢA、ⅣA、ⅤA、ⅥA、ⅦA、0(2)原子结构、元素性质与元素周期表关系的规律:①原子序数=核内质子数②电子层数=周期数(电子层数决定周期数)③主族元素最外层电子数=主族序数=最高正价数④负价绝对值=8-主族序数(限ⅣA~ⅦA)⑤同一周期,从左到右:原子半径逐渐减小,元素的金属性逐渐减弱,非金属逐渐增强,则非金属元素单质的氧化性增强,形成的气态氧化物越稳定,形成的最高价氧化物对应水化物的酸性增强,其离子还原性减弱。
⑥同一主族,从上到下,原子半径逐渐增大,元素的金属性逐渐增强,非金属性逐渐减弱。
则金属元素单质的还原性增强,形成的最高价氧化物对应的水化物的碱性增强,其离子的氧化性减弱。
(3)元素周期表中“位、构、性”的三角关系(4)判断微粒大小的方法①同周期元素的原子或最高价离子半径从左到右逐渐减小(稀有气体元素除外),如:Na>Mg>Al;Na+>Mg2+>Al3+。
②同主族元素的原子半径或离子半径从上到下逐渐增大,如:O<S<Se,F-<Cl-<Br-。
③电子层数相同,核电荷数越大半径越小,如:K+>Ca 2+。
④核电荷数相同,电子数越多半径越大,如:Fe2+>Fe3+。
⑤电子数和核电荷数都不同的,一般通过一种参照物进行比较,如:比较Al3+与S2-的半径大小,可找出与Al3+电子数相同,与S2-同一主族元素的O2-比较,Al3+<O2-、O2-<S2-、故Al3+<S2-。
⑥具有相同电子层结构的离子,一般是原子序数越大,离子半径越小,如:rS2->rCl->rK+>rCa2+(5)电子数相同的微粒组①核外有10个电子的微粒组:原子:Ne;分子:CH4、NH3、H2O、HF;阳离子:Na+、Mg2+、Al3+、NH4+、H3O+;阴离子:N3-、O2-、F-、OH-、NH2-。
②核外有18个电子的微粒:原子:Ar;分子:SiH4、PH3、H2S、HCl、F2、H2O2;阳离子:K+、Ca2+;阴离子:P3-、S2-、HS-、Cl-、O22-。
(三)化学键和晶体结构1.化学键:相邻原子间强烈的相互作用叫作化学键。
包括离子键和共价键(金属键)。
2.离子建(1)定义:使阴阳离子结合成化合物的静电作用叫离子键。
(2)成键元素:活泼金属(或NH4+)与活泼的非金属(或酸根,OH-)(3)静电作用:指静电吸引和静电排斥的平衡。
3.共价键(1)定义:原子间通过共用电子对所形成的相互作用叫作共价键。
(2)成键元素:一般来说同种非金属元素的原子或不同种非金属元素的原子间形成共用电子对达到稳定结构。
(3)共价键分类:①非极性键:由同种元素的原子间的原子间形成的共价键(共用电子对不偏移)。
如在某些非金属单质(H2、Cl2、O2、P4…)共价化合物(H2O2、多碳化合物)、离子化合物(Na2O2、CaC2)中存在。
②极性键:由不同元素的原子间形成的共价键(共用电子对偏向吸引电子能力强的一方)。
如在共价化合物(HCl、H2O、CO2、NH3、H2SO4、SiO2)某些离子化合物(NaOH、Na2SO4、NH4Cl)中存在。
4.非极性分子和极性分子(1)非极性分子中整个分子电荷分布是均匀的、对称的。
极性分子中整个分子的电荷分布不均匀,不对称。
(2)判断依据:键的极性和分子的空间构型两方面因素决定。
双原子分子极性键→极性分子,如:HCl、NO、CO。
非极性键→非极性分子,如:H2、Cl2、N2、O2。
多原子分子,都是非极性键→非极性分子,如P4、S8 。
有极性键几何结构对称→非极性分子,如:CO2、CS2、CH4、Cl4。
几何结构不对称→极性分子,如H2O2、NH3、H2O。
5.分之间作用力和氢键(1)分子间作用力把分子聚集在一起的作用力叫作分子间作用力。
又称范德华力。
①分子间作用力比化学键弱得多,它对物质的熔点、沸点等有影响。
②一般的对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。
(2)氢键某些物质的分子间H核与非金属强的原子的静电吸引作用。
氢键不是化学键,它比化学键弱得多,但比范德华力稍强。
氢键主要存在于HF、H2O、NH3、CH3CH2OH分子间。
如HF分子间氢键如下:故HF、H2O、NH3的沸点分别与同族氢化物沸点相比反常的高。
6.晶体①分子晶体分子间的分子间作用力相结合的晶体叫作分子晶体。
②原子晶体相邻原子间以共价键相结合而形成空间网状结构的晶体叫原子晶体。
③离子晶体离子间通过离子键结合而成的晶体叫作离子晶体。
④金属晶体通过金属离子与自由电子间的较强作用(金属键)形成的单质晶体叫作金属晶体。
7.四种晶体类型与性质比较晶体类型离子晶体原子晶体分子晶体金属晶体组成晶体的粒子阳离子和阴离子原子分子金属阳离子和自由电子组成晶体粒子间的相互作用离子键共价键范德华力(有的还有氢键)金属键典型实例NaCl 金刚石、晶体硅、SiO2、SiC 冰、干冰金属单质晶体的物理特性熔点沸点熔点较高、沸点高熔、沸点高熔、沸点低熔沸点高导热性不良不良不良良导电性固态不导电,熔化或溶于水能导电差差导电延展性不良不良不良良硬度略硬而脆高硬度较小较大8.物质熔点、沸点高低的比较(1)不同晶体类型的物质:原子晶体>离子晶体>分子晶体(2)同种晶体类型的物质:晶体内微粒间的作用力越大,溶、沸点越高。
①原子晶体要比较共价键的强弱(比较键能和鍵长),一般地说原子半径越小,键能越大,鍵长越短,共价键越牢固,晶体的溶沸点越高。
如:熔点:金刚石>水晶>金刚砂>晶体硅②离子晶体要比较离子键的强弱,一般地说阴阳离子电荷数越多,离子半径越小,则离子间作用力越大,离子键越强,溶沸点越高。
如:熔点:MgO>MgCl2>NaCl>CsCl③分子晶体:a.组成和结构相似的物质,相对分子质量越大,熔沸点越高。
b.组成和结构不相似的物质,极性大则熔沸点高(如CO>N2)。
c.有些还与分子的形状有关。
如有机同分异构体中,一般线性分子的熔沸点比带支链的高,如正戊烷>异戊烷>新戊烷。
d.有些与分子中含有的碳碳双键的多少有关。
组成结构相似的有机物,一般含碳碳双键多的熔沸点低,如油酸甘油酯(油)的熔点比硬脂酸甘油酯(脂肪)的低。
五.溶液(一)分散系1.分散系化学上把一种或几种物质分散成很小的微粒分布在另一种物质中所组成的体系。
分散成粒子的物质叫分散质,另一种物质叫分散剂。
分散质、分散剂均可以是气态、液态或固态。
2.四种分散系比较溶液胶体浊液微粒直径<10-9 m 10-9~10-7 m >10-7 m微粒组成分子或离子分子的集合体或高分子小液滴或固体小颗粒特点均一、稳定、透明均一、稳定、透明不均一、不稳定、不透明能否通过滤纸能能不能能否通过半透膜能不能不能是否具有丁达尔现象无有无实例蔗糖水食盐水蛋白溶液淀粉溶液石灰乳、油水(二)溶液1.溶液:一种或几种物质分散到另一种物质里所形成的均一稳定的混合物叫作溶液。
特征是均一、稳定、透明。
2.饱和溶液、溶解度(1)饱和溶液和不饱和溶液:在一定温度下,在一定量的溶剂里,不能再溶解某种溶质的溶液,叫作这种溶质的饱和溶液;还能继续溶解某种溶质的溶液,叫作不饱和溶液。
(2)溶解度:在一定温度下,某固体物质在100克溶剂里达到饱和状态时所溶解的质量,叫作这种物质在这种物质在这种溶剂里的溶解度。
常用s表示。
质量分数ω=S(100+s)×100%(3)温度对溶解度的影响固体物质的溶解度,一般随温度升高而增大(食盐溶解度变化不大;Ca(OH)2溶解度随温度升高而减小)。
气体物质溶解度,随温度升高而减小,随压强增大而增大。