2022年河南省新乡市辉县市中考数学一模试题及答案解析
2021-2022学年河南省新乡市辉县市九年级(上)期中数学试卷(附详解)

2021-2022学年河南省新乡市辉县市九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各式是最简二次根式的是()A. √9B. √7C. √20D. √132.下列计算正确的是()A. √2⋅√3=√6B. √30=3√10C. √8+√2=√10D. √(−5)2=−53.若a<1,化简√(a−1)2−1=()A. a−2B. 2−aC. aD. −a4.以下关于x的方程一定是一元二次方程的是()A. a2−bx+c=0B. 2(x−1)2=2x2+2C. (k+1)x2+3x=2D. (k2+1)x2−2x+1=05.用配方法解方程x2−4x+1=0时,配方后所得的方程是()A. (x−2)2=1B. (x−2)2=−1C. (x−2)2=3D. (x+2)2=3=0有两个不相等的实数根,则实数a的取值范围是6.若关于x的方程x2+x−a+94()A. a≥2B. a≤2C. a>2D. a<27.如图,在△ABC中两条中线BE、CD相交于点O,记△DOE的面积为S1,△COB的面积为S2,则S1:S2=()A. 1:4B. 2:3C. 1:3D. 1:28.式子√2sin45°+√12sin60°−2tan45°的值是()2C. 2√3D. 2A. 2√3−2B. 329.如图所示,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为()A. 1米B. 2米C. 3米D. 4米10.如图,在平面直角坐标系中,已知A(−3,3),B(−6,0),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA′B′,则△OA′B′的重心坐标是()A. (−3,1)B. (−6,2)C. (−3,1)或(3,−1)D. (6,−2)或(−6,2)二、填空题(本大题共5小题,共15.0分)11.已知(x−y+3)2+√2x+y=0,则(x+y)2021=______.12.如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10√2,AB=20,则∠A的度数是______.13.若xy+z =yz+x=zy+x=k,则k=______ .14.方程x2+2kx+k2−2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为______.15.如图∠DAB=∠CAE,请补充一个条件:______,使△ABC∽△ADE.三、解答题(本大题共9小题,共83.0分)16.计算:(1)√12−3tan30°+(π−4)0+(−12)−1;(2)6tan230°−2√3sin60°−2cos45°.17.先化简,再求值:(x+1x−2−1)÷x2−2xx2−4x+4,其中x=√3.18.解方程:(1)3x(x+2)=5(x+2);(2)(x−2)(x−5)=2.19.关于x的一元二次方程x2−3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m−1)x2+x+m−3=0与方程x2−3x+k=0有一个相同的根,求此时m的值.20.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?21.如图,在△ABC中,∠BAC=90°,BC的垂直平分线交BC于点E,交CA的延长线于D,交AB于点F,求证:AE2=EF⋅ED.22.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF:EH=4:3,求EF、EH的长.23.如图,在平面直角坐标系中,矩形OABC中,点A、B的坐标分别为A(4,0)、B(4,3),动点M、N分别从点O、B同时出发,以1单位/秒的速度运动(点M沿OA向终点A运动,点N沿B向终点C运动),过点N作NP//AB交AC于点P,连接MP.(1)直接写出OA、AB的长度;(2)试说明△CPN∽△CAB;(3)在两点的运动过程中,求△MPA的面积S与运动的时间t的函数关系式,并求出S=3时,运动时间t的值.224.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小明发现,过点C作CE//AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).(1)请回答:∠ACE的度数为______ ,AC的长为______ .(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求AC的长.答案和解析1.【答案】B【解析】解:A、√9=3故不是最简二次根式,故A选项错误;B、√7是最简二次根式,符合题意,故B选项正确;C、√20=2√5故不是最简二次根式,故C选项错误;D、√13=√33故不是最简二次根式,故D选项错误;故选:B.先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.2.【答案】A【解析】解:A.原式=√2×3=√6,所以A选项符合题意;B.√30为最简二次根式,所以B选项不符合题意;C.原式=2√2+√2=3√2,所以C选项不符合题意;D.原式=5,所以D选项不符合题意.故选:A.利用二次根式的乘法法则对A进行判断;利用二次根式的性质对B、D进行判断;利用二次根式的加减法对C进行判断.本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法法则是解决问题的关键.3.【答案】D【解析】解:√(a−1)2−1=|a−1|−1,∵a<1,∴a−1<0,∴原式=|a−1|−1=(1−a)−1=−a,故选:D.根据公式√a2=|a|可知:√(a−1)2−1=|a−1|−1,由于a<1,所以a−1<0,再去绝对值,化简.本题主要考查二次根式的化简,难度中等偏难.4.【答案】D【解析】解:A、不是关于x的一元二次方程,故此选项不符合题意;B、化简后未知数的最高次数是1,不是一元二次方程,故此选项不符合题意;C、当k=−1时,是一元一次方程,不是一元二次方程,故此选项不符合题意;D、符合一元二次方程的定义,故此选项符合题意.故选:D.根据一元二次方程的定义解答.本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5.【答案】C【解析】解:x2−4x+1=0移项得,x2−4x=−1,两边加4得,x2−4x+4=−1+4,即:(x−2)2=3.故选:C.此题考查了配方法解一元二次方程,“配方”一步.此题最重要的一步是在等式两边同时加上一次项系数一半的平方.6.【答案】C【解析】【分析】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.根据判别式的意义得到△=12−4(−a+94)>0,然后解一元一次不等式即可.【解答】解:根据题意得△=12−4(−a+94)>0,解得a>2.故选:C.7.【答案】A【解析】解:∵BE和CD是△ABC的中线,∴DE=12BC,DE//BC,∴DEBC =12,△DOE∽△COB,∴S1S2=(DEBC)2=(12)2=14,故选:A.根据三角形的中位线得出DE//BC,DE=12BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.8.【答案】B【解析】解:原式=√22×√22+2√3×√32−2×1=12+3−2=32,故选:B.根据特殊锐角三角函数值代入计算即可.本题考查特殊锐角三角函数值,掌握特殊锐角三角函数值是正确计算的前提.9.【答案】B【解析】解:设道路的宽为x米,则剩余部分可合成长为(100−x)米,宽为(80−x)米的矩形,依题意得:(100−x)(80−x)=7644,整理得:x2−180x+356=0,解得:x1=2,x2=178.∵80−x>0,∴x<80,∴x=2.故选:B.设道路的宽为x米,则剩余部分可合成长为(100−x)米,宽为(80−x)米的矩形,根据绿化面积为7644平方米,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】D【解析】解:如图,取OB中点C,连接AC,在AC上取点G,AC,则G为△ABC的重心.使CG=13∵O(0,0),B(−6,0),∴C(−3,0),∵A(−3,3),∴G(−3,1),∵以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA′B′,∴△OA′B′的重心坐标是(−6,2)或(6,−2).故选:D.首先根据三角形重心的性质求出△OAB的重心G的坐标,然后利用位似图形的性质即可求解.此题考查了三角形重心的性质,位似变换以及坐标与图形的性质,正确掌握三角形重心的性质以及位似图形的性质是解题关键.11.【答案】1【解析】解:∵(x −y +3)2+√2x +y =0,∴{x −y =−32x +y =0, 解得:{x =−1y =2, 则原式=(−1+2)2021=1.故答案为:1.利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,代入原式计算即可得到结果.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握方程组的解法及非负数的性质是解本题的关键.12.【答案】30°【解析】解:在Rt △ADC 中,∵sin∠BDC =BC BD ,∴BC =10√2×sin45°=10√2×√22=10, 在Rt △ABC 中,∵sin∠A =BC AB =1020=12,∴∠A =30°.故答案为30°.先在Rt △ADC 中利用正弦的定义可计算出BC =10√2×sin45°=10,然后在Rt △ABC 中,利用正弦定义得到sin∠A =BC AB =12,再利用特殊角的三角函数值即可得到∠A 的度数. 本题考查了解直角三角形:在直角三角形中,利用勾股定理、三角形内角和和三角函数,由已知元素求未知元素的过程就是解直角三角形.13.【答案】12或−1【解析】解:x +y +z =0时,y +z =−x ,∴k =x −x =−1,x +y +z ≠0时,k =x y+z =y z+x =z y+x =x+y+z 2(x+y+z)=12,综上所述k =12或−1.故答案为:12或−1.分x+y+z=0和x+y+z≠0两种情况,利用等比性质求解即可.本题考查了比例的性质,主要利用了等比性质,易错点在于要分情况讨论.14.【答案】1【解析】解:∵方程x2+2kx+k2−2k+1=0的两个实数根,∴△=4k2−4(k2−2k+1)≥0,解得k≥12.∵x12+x22=4,∴x12+x22=x12+2x1⋅x2+x22−2x1⋅x2=(x1+x2)2−2x1⋅x2=4,又∵x1+x2=−2k,x1⋅x2=k2−2k+1,代入上式有4k2−2(k2−2k+1)=4,解得k=1或k=−3(不合题意,舍去).故答案为:1.由x12+x22=x12+2x1⋅x2+x22−2x1⋅x2=(x1+x2)2−2x1⋅x2=4,然后根据根与系数的关系即可得到一个关于k的方程,从而求得k的值.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1⋅x2=ca.15.【答案】∠D=∠B(答案不唯一)【解析】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD⋅AC=AB⋅AE时两三角形相似.故答案为:∠D=∠B(答案不唯一).根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角可该角的两个边对应成比例即可推出两三角形相似.此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.16.【答案】解:(1)原式=2√3−3×√33+1−2 =2√3−√3+1−2=√3−1;(2)原式=6×(√33)2−2√3×√32−2×√22=6×13−3−√2=2−3−√2=−1−√2.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)原式利用特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,零指数幂、负整数指数幂,二次根式性质,以及特殊角的三角函数值,熟练掌握各自的性质是解本题的关键.17.【答案】解:原式=(x+1x−2−x−2x−2)÷x(x−2)(x−2)2=3x −2⋅x −2x=3x ,当x =√3时,原式=√3=√3.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 18.【答案】解:(1)3x(x +2)=5(x +2),3x(x +2)−5(x +2)=0,(x +2)(3x −5)=0,∴x +2=0或3x −5=0,∴x 1=−2,x 2=53.(2)原方程可化为x 2−7x +8=0,∴a =1,b =−7,c =8,∴b 2−4ac =(−7)2−4×1×8=17>0,∴x =−b±√b 2−4ac 2a=7±√172, ∴x 1=7+√172,x 2=7−√172.【解析】(1)利用因式分解法求解即可;(2)整理为一般式,再利用公式法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.【答案】解:(1)根据题意得Δ=(−3)2−4k ≥0,解得k ≤94;(2)满足条件的k 的最大整数为2,此时方程x 2−3x +k =0变形为方程x 2−3x +2=0,解得x 1=1,x 2=2,当相同的解为x =1时,把x =1代入方程(m −1)x 2+x +m −3=0得m −1+1+m −3=0,解得m =32;当相同的解为x =2时,把x =2代入方程(m −1)x 2+x +m −3=0得4(m −1)+2+m −3=0,解得m =1,而m −1≠0,不符合题意,舍去,所以m 的值为32.【解析】(1)利用判别式的意义得到Δ=(−3)2−4k ≥0,然后解不等式即可;(2)先确定k =2,再解方程x 2−3x +2=0,解得x 1=1,x 2=2,然后分别把x =1和x =2代入一元二次方程(m −1)x 2+x +m −3=0可得到满足条件的m 的值. 本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2−4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.20.【答案】解:设每件童装应降价x元,根据题意列方程得,(40−x)(20+2x)=1200,解得x1=20,x2=10(因为尽快减少库存,不合题意,舍去),答:每件童装降价20元;【解析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.21.【答案】解:∵∠BAC=90°,∴∠B+∠C=90°,∠D+∠C=90°,∴∠B=∠D,∵BC的垂直平分线交BC于点E,∠BAC=90°.∴BE=EA,∴∠B=∠BAE,∴∠D=∠BAE,∵∠FEA=∠AED,∴△FEA∽△AED,∴AEEF =DEAE.∴AE2=EF⋅ED.【解析】利用直角三角形的性质以及等角对等边得出∠B=∠EAB,∠B=∠D,进而得出△AEF∽△DEA,即可得出答案.此题主要考查了相似三角形的判定与性质以及直角三角形的性质,根据已知得出∠EAB=∠D是解题关键.22.【答案】解:∵EF:EH=4:3,∴设EF=4λ,则EH=3λ;由题意得:HG//BC ,KD =EH =3λ,HG =EF =4λ;∴△AGH∽△ACB ,而AD ⊥BC ,AK ⊥HG , ∴HG BC =AK AD ,即4λ24=12−3λ12, 解得:λ=125,∴EF =4λ=485,EH =3λ=365.【解析】如图,证明△AGH∽△ACB ,运用相似三角形的性质列出比例式,问题即可解决.该题考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.23.【答案】解:(1)根据点A 和B 的坐标可直接得出OA =4,AB =3;(2)∵四边形OABC 为矩形,∴AB ⊥BC ,又∵NP ⊥BC ,∴AB//NP ,∴△CPN∽△CAB ;(3)设两点的运动时间为t 秒,∵AB =OC =3,OA =BC =4,则CN =AM =4−t ,∵△CPN∽△CAB ,PN AB =CNBC ,∴PN =12(4−t),可求的P 点的坐标为(4−t,34t),∴S △MPA =12(4−t)⋅34t =−38(t −2)2+32,∴当t =2秒时,△MPA 面积=32.【解析】(1)根据点A和B的坐标可直接写出OA和AB的长度;(2)根据四边形OABC为矩形,推出AB⊥BC,又知NP⊥BC,可推出AB//NP,进而推出AB//NP,可证△CPN∽△CAB;(3)设两点的运动时间为x小时,由已知条件求出CN,然后根据△CPN∽△CAB,求出PN,即可求出点P的坐标,再将数值代入三角形面积公式,即可求解.此题主要考查学生对相似三角形的判定与性质,二次函数的最值,矩形的性质等知识点的理解和掌握,此题综合性较强,涉及到动点问题,有一定的拔高难度,属于中档题.24.【答案】75°;3【解析】解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB//DF,∴△ABE∽△FDE,∴ABDF =AEEF=BEDE=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=√3,AD=2DF=2√3.∴AC=AD=2√3.根据相似的三角形的判定与性质,可得ABDF =AEEF=BEDE=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.。
2021年河南省新乡市辉县市中考模拟数学试题(word版 含答案)

C.a6÷a2=a3D.(x+y)2=x2+y2
5.将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有( )
A.1个B.2个C.3个D.4个
6.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是()
A.0B.1C.2D.2020
C.愿意为5G套餐多支付10元的用户中,中期跟随用户人数最多
D.愿意为5G套餐多支付20元的用户中,后期用户人数最多
10.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1的长为半径画弧,交直线y= x于点B1;过点B1作B1A2∥y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y= x于点B2;过点B2作B2A3∥y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y= x于点B3;…按如此规律进行下去,点B2021的坐标为()
用户分类
人数
A:早期体验用户(目前已升级为5G用户)
260人
B:中期跟随用户(一年内将升级为5G用户)
540人
C:后期用户(一年后才升级为5G用户)
200人
下列推断中,不合理的是()
A.早期体验用户中,愿意为5G套餐多支付10元,20元,30元的人数依次递减
B.后期用户中,愿意为5G套餐多支付20元的人数最多
(3)根据上述信息,推断哪个年级学生专题知识的掌握情况更好,并请从两个不同的角度说明推断的合理性.
19.如图,某小区一高层住宅楼AB,高60米,附近街心花园内有一座古塔CD,小明在楼底B处测得塔顶仰角为38.5°,到楼顶A处测得塔顶仰角为22°,求住宅楼与古塔之间的距离BD的长.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
河南省新乡市辉县市市太行中学2022-2023学年九上期中数学试卷(华师版、含答案)

2022-2023学年河南省新乡市辉县市太行中学九年级(上)期中复习数学试卷一、选择题(本大题共10小题,共30分.在每小题列出的选项中,选出符合题目的一项)1. 下列函数中,自变量x的取值范围是x>3的是( )A. y=B. y=C. y=D. y=2. 若关于x的一元二次方程的常数项为0,则m的值等于( )A. 1B. 2C. 1或2D. 03. 钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为()A. B. C. D.4. 若,则()A. B. C. D.5. 如图,在方格纸中,点、、、、都在方格纸的交点处,则与的面积比为()A. :B. :C. :D. :6. 如图,,,,则度数为()A. B. C. D.7. 如图,把一块长为,宽为的矩形硬纸板的四角各剪去一个同样大小的正方形,再折叠成一个无盖的长方体纸盒.若该无盖纸盒的底面积为,设剪去的小正方形的边长为,则可列方程为()A. B.C. D.8. 若关于x的一元二次方程有两个实数根,则k的取值范围是()A. B. C. D.9. 若方程的根也是方程的根,则的值为().A. 7B.C. 5D.10. 如图,△ABC为锐角三角形,BC=6,∠A=45°,点O为△ABC的重心,D为BC中点,若固定边BC,使顶点A在△ABC所在平面内进行运动,在运动过程中,保持∠A的大小不变,设BC的中点为D,则线段OD 的长度的取值范围为()A. B.C. D.二、填空题(本大题共5小题,共15分)11. 当_____时,关于x的方程m-3x=是一元二次方程。
12. 在数+8.3,,,,0,90,,中,分数有_____个.13. 若,则化简______ .14. 甲、乙、丙三名同学在某次数学考试中成绩都是80分,在接下来的两次考试当中他们的成绩增长率如表第一次的增长率第二次增长率甲20%10%乙15%15%丙30%0%经过这两次考试后,成绩最好的同学是_____.15已知,那么___________.三、计算题(本大题共1小题,共8分)16. 解方程(1);(2);(3);(4)(配方法).四、解答题(本大题共7小题,共57分.解答应写出文字说明,证明过程或演算步骤)17. 计算:先化简,再求值:,其中x的值是一元二次方程的解.18. 在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.(1)求A、B两点的坐标;(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标.19. 手卷是国画装裱中横幅的一种体式,以能握在手中顺序展开阅览得名,它主要由“引首”、“画心”、“拖尾”三部分组成(这三部分都是矩形形状),分隔这三部分的其余部分统称为“隔水”.下图中手卷长1000cm,宽40cm,引首和拖尾完全相同,其宽度都为100cm.若隔水的宽度为xcm,画心的面积为15200cm2,求x的值.20. 已知关于x的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)如果k是符合条件的最大整数,求一元二次方程的根.21. 如图,矩形ABCD,AB=16cm,BC=6cm,动点P从点A出发,以3cm/s的速度向点B运动,直到点B 为止;动点Q同时从点C出发,以2cm/s的速度向点D运动(1)何时点P和点Q之间的距离是10cm?(2)何时四边形APQD为矩形?22. 如图,用一段长为的篱笆围成一个一边靠墙的矩形菜园,墙长为.设垂直于墙的一边长为.(1)当为何值时,菜园面积为;(2)当为何值时,菜园的面积最大?最大面积是多少?23. 如图,抛物线与轴交于点,.(1)求该抛物线的表达式.(2)点沿运动,其中轴,轴,,.若点均落在抛物线上,且抛物线的对称轴恰好平分,求的值.参考答案一、1~5:BCABD 6~10:BDDBD二、11.m≠112.4 13.14.乙15.0.4三、16. 【小问1详解】解:方程整理得:,开方得:或,解得:或;【小问2详解】解:这里,,,,;【小问3详解】解:分解因式得:,解得:或;【小问4详解】解:方程整理得:,配方得:,即,开方得:,解得.四、17. 原式;∵,∴,∴原式;18. 【小问1详解】解:∵二次函数的图象与y轴交于∴,解得a=1∴二次函数的解析式为∵二次函数的图象与x轴交于A、B两点∴令y=0,即,解得x=1或x=5∵点A在点B的左侧∴A(1,0),B(5,0).【小问2详解】解:由(1)得函数解析式为∴抛物线的顶点为(3,-4)∵点D和点C到x轴的距离相等,即为5∴点D在x轴的上方,设D的坐标为(d,5)∴,解得d=6或d=0∴点D的坐标为(6,5).19. 根据题意,得(1000﹣4x﹣200)(40﹣2x)=15200.解这个方程,得:x1=210(不合题意,舍去),x2=10.所以x的值为10.20. 【小问1详解】解:由题意得,,∴;【小问2详解】解:∵是符合条件的最大整数,∴,则方程可化为,因式分解得解得:.21.(1)设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,则PH=BC=6,PQ=10,HQ=CD-AP-CQ=16-5t.∵PH2+HQ2=PQ2,可得:(16-5t)2+62=102,解得t1=4.8,t2=1.6.答:P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.(2) 设P,Q两点从出发经过t秒时,四边形APQD为矩形,此时AP=3t,DQ=CD-CQ=16-2t3t=16-2t解得t=3.2秒答:P,Q两点从出发经过3.2秒时,四边形APQD为矩形22. (1)设垂直于墙的一边长为,则平行于墙的边长为,根据题意得:,解得:,,∵,即,∴,不符合题意,舍去,∴当时,菜园的面积为;(2)设菜园的面积为,根据题意得:,∵,∴当时,的值最大,即菜园的面积最大,最大面积是.23. 【小问1详解】解:将点,代入得:,解得,则该抛物线表达式为.【小问2详解】解:抛物线的对称轴为直线,画出抛物线的对称轴如下:轴,轴,,且抛物线的对称轴恰好平分,点的横坐标为,点的横坐标为,,点的横坐标为,当时,,即,当时,,即,,,解得,即的值为8.。
2020届河南省新乡市中考数学一模试卷(有答案)(加精)

河南省新乡市中考数学一模试卷、选择题(每小题 3 分,共 30分)1.下列各数中,最小的数是(2.大量事实证明, 环境污染治理刻不容缓. 据统计, 全球每秒钟约有 14.2 万吨污水排入江河湖海. 把 14.2 万用科学记数法表示为(知道自己的分数后, 若要判断自己能否获奖, 那么在 15 位同学成绩统计数据中, 只要知道这组数据的 ( ) A .平均数 B .中位数 C .众数 D .方差6.如图, AB 是⊙ O 的直径, OD 垂直弦 AC 于点 E ,且交⊙ O 于点 D ,过点 D 作⊙ O 的切线与 BA 的延长线相交x >0)经过线段 AB 的中点 M ,则△ AOB 的面积A .B .﹣ 1C .﹣ | ﹣ |D . 3﹣2D.C . C .① 3m+4n=7mn ;②(﹣ 2a 2)3=﹣8a 6;③ 6x 6÷2x 2=3x 3;④y 3?xy 2=xy 5,其中正确的题号A .②④ B .①③ C .①② D .③④ 5. 有 15 位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8 分获奖名额,甲同学 A .1.42 ×105 B .1.42 ×104C .142×103 D .0.142 ×106是 )B . )7.如图,双曲线 y= DF ∥AC D . OD=BC为()8.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax2+bx+c> 0 的解集是(9.如图,△ ABC中,∠ C=90°,∠ A=30°,BC=2,按照如下步骤作图:①分别以点A,B 为圆心,大于线段M,N;②作直线MN分别交AB,AC 于点D,E,连结BE,则P 不与点B、C 重合),现将△ PCD沿直线PD折叠,使点C落到点C′处;作∠ BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,D.12x<﹣1 D.x<﹣1或x>5AB长度的一半为半径画弧,两弧分别相交于点P是BC边上的一个动点(点能表示y 与x 的函数关系的图象大致是(、填空题(每小题 3 分,共 15分)11. | ﹣3| + = .12.写一个你喜欢的整数 m 的值,使关于 x 的一元二次方程 x 2﹣ 3x+2m=0有两个不相等的实数根, m=13.用 m 、n 、p 、q 四把钥匙去开 A 、B 两把锁, 其中仅有钥匙 m 能打开锁 A ,仅有钥匙 n 能打开锁 B ,则“取 一把钥匙恰能打开一把锁”的概率是 .14.如图,菱形 ABCD ,∠A=60°, AB=4,以点 B 为圆心的扇形与边 CD 相切于点 E ,扇形的圆心角为 60°, 点 E 是 CD 的中点,图中两块阴影部分的面积分别为 S 1,S 2,则 S 2﹣ S 1= .15.如图,矩形 ABCD 中, AB=8,AD=6,将矩形 ABCD 折叠,使得点 B 落在边 AD 上,记为点 G ,BC 的对应边 GI 与边 CD 交于点 H ,折痕为 EF ,则 AE= 时,△ EGH 为等腰三角形.1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是2)补全条形统计图;三、解答题(本题共 8小题,满分 75 分)16.先化简( ﹣ )÷ 然后代入合适的 x 值求值,整数 x 满足﹣ .17.截止 2016 年第一季度末, 微信每月活跃用户已达到 5.49 亿,用户覆盖 200多个国家, 超过 20 种语言, 个品牌的微信公众号总数已经超过 800 万个,微信已成为中国电子革命的代表,并成为人们生活中不可或 缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20 万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?18.如图,以Rt△ABC的直角边AB为直径作⊙ O与斜边AC交于点D,E 为BC边的中点,连接DE,OE.(1)求证:DE是⊙ O的切线.(2)填空:①当∠ CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B 处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m )20.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x 和直线AB:y=﹣x+10,交于C,D 两点,并且OC=3BD.(1)求出双曲线的解析式;21.2016 年11 月13 日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 7.5平均每吨货物可获例如(百元) 5 3.6 4( 1)若用乙、丙两种型号的货轮共 8 艘,将 55 万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各 多少艘?( 2)集团计划未来用三种型号的货轮共 20 艘装运 180 万吨的货物到国内,并且乙、丙两种型号的货轮数 量之和不超过甲型货轮的数量,如果设丙型货轮有 m 艘,则甲型货轮有 艘,乙型货轮有 艘 (用含有 m 的式子表示) ,那么如何安排装运,可使集团获得最大利润?最大利润的多少?22.如图 1,过等边三角形 ABC 边 AB 上一点 D 作 DE ∥BC 交边 AC 于点 E ,分别取 BC ,DE 的中点 M ,N ,连接 MN .△ ABC 和△ ADE 是等腰三角形,且∠ BAC=∠DAE ,M ,N 分别是底边 BC ,DE 的中点,若 y=ax 2+bx+c ( a ≠ 0)的顶点坐标为 Q (2,﹣ 1),且与 y 轴交于点 交于 A ,B 两点(点 A 在点 B 的右侧),点 P 是该抛物线上的一动点,从点 C 沿抛物线向点不重合),过点 P 作PD ∥y 轴,交 AC 于点 D .(1)求该抛物线的函数关系式;(2)当△ ADP 是直角三角形时,求点 P 的坐标;(3)在题( 2)的结论下,若点 E 在x 轴上,点 F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点 F 的坐标;若不存在,请说明理由.(1) 发现:在图 1中 (2) 应用: 如图 2,(3)拓展: 如图 3, BD ⊥ CE ,请直接写出 23. 如图, 已知抛 物线 C ( 0,3),与 x 轴A 运动(点 P 与 A 的值. ADE 绕点 A 旋转,请求出 的值;河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3 分,共30分)1.下列各数中,最小的数是()A.﹣B .﹣1 C.﹣| ﹣| D.3 【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣|﹣| <﹣1<﹣ <3﹣2,∴各数中,最小的数是﹣| ﹣| .故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2 万吨污水排入江河湖海.把14.2 万用科学记数法表示为()5 4 3 6A.1.42 ×105 B.1.42 ×104C.142×103 D.0.142 ×106 【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a× 10n的形式,其中1≤|a| <10,n为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时,n 是负数.【解答】解:14.2 万=142000=1.42 ×105.故选:A.3.如图所示是8 个完全相同的小正方体组成的几何体,则该几何体的左视图是()【考点】U2:简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选B.4.某同学做了四道题:① 3m+4n=7mn;②(﹣2a2)3=﹣8a6;③ 6x6÷2x2=3x3;④y3?xy2=xy 5,其中正确的题号是()A.②④ B .①③ C.①② D.③④【考点】4I :整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:①原式不能合并,不符合题意;②原式=﹣8a ,符合题意;③原式=3x4,不符合题意;④原式=xy 5,符合题意,故选A5.有15 位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8 分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15 位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数D .方差【考点】WA:统计量的选择.【分析】由于比赛设置了8个获奖名额,共有15 名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15 名参赛选手中最高的,而且15 个不同的分数按从小到大排序后,中位数及中位数之后的共有8 个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.6.如图,AB是⊙ O的直径,OD垂直弦AC于点E,且交⊙ O于点D,过点D作⊙ O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠ CDB=∠ BFD B.△ BAC∽△ OFD C.DF∥AC【考点】S8:相似三角形的判定;MC:切线的性质.【分析】根据切线的性质、直径的性质、相似三角形的判定和性质等知识,【解答】解:∵ AD是切线,∴OD⊥DF,∵ AC⊥ OD,∴DF∥ AC,故C 正确,∴∠ F=∠ CAB,∵∠ CDB=∠CBA,∴∠ CDB=∠BFD,故A 正确,∵AB是直径,∴∠ AEO=∠ACB=90°,∴OE∥BC,∴△ BAC∽△ OAE,∵△ OAE∽△ OFD,∴△ BAC∽△ OFD,故B正确,无法证明OD=B,C故选D.x>0)经过线段AB 的中点M,则△ AOB的面积为D.12D.OD=BC判断即可.A.18 B.24 C.6【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k 的几何意义.【分析】设点M的坐标为(m,n),由点M为线段AB的中点即可得知点A(2m,0)、点反比例函数图象上点的坐标特征结合三角形的面积即可求出S△AOB的值.【解答】解:设点M的坐标为(m,n),则点A(2m,0),点B(0,2n),∵点M在双曲线y= (x>0)上,∴ mn=6,∴ S△ AOB= OA?OB=2mn=.12△AOB故选D.8.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax2+bx+c> 0 的解集是考点】HC:二次函数与不等式(组)的取值范围即可.又∵抛物线开口向下,∴不等式ax2+bx+c > 0 的解集是﹣1<x<5.故选A.9.如图,△ ABC中,∠ C=90°,∠ A=30°,BC=2,按照如下步骤作图:①分别以点A,AB 长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC 于点B为圆心,大于线段D,E,连结BE,则B(0,2n),再根据D.x<﹣1或x>5分析】根据二次函数的对称性求出与x 轴的另一个交点坐标,然后根据函数图象写出x 轴上方部分的x解答】解:由图可知,对称轴为直线x=2,∵抛物线与x 轴的一个交点坐标为(5,0),∴抛物线与x 轴的另一个交点坐标为(﹣1,0),x<﹣考点】 N2:作图—基本作图; KG :线段垂直平分线的性质; 【分析】先根据直角三角形的性质求出 AB 的长,再由作法可知DE 是线段 AB 的垂直平分线, 故可得出 BD=AD , BE=AE ,再由直角三角形的性质即可得出结论.解答】 解:∵△ ABC 中,∠ C=90°,∠ A=30°, BC=2, ∴AB=2BC=4.∵ DE 是线段 AB 的垂直平分线, ∴ BD=AD= AB=2,BE=AE , ∴∠ ABE=∠A=30°, ∴BE= = =故选 A .10.如图,矩形 ABCD 中, AB=3, BC=5,点 P 是 BC 边上的一个动点(点 直线 PD 折叠,使点 C 落到点 C ′处;作∠ BPC ′的角平分线交 AB 于点 能表示 y 与 x 的函数关系的图象大致是( )【考点】 E7:动点问题的函数图象.【分析】 连接 DE ,根据折叠的性质可得∠ CPD=∠C ′PD ,再根据角平分线的定义可得∠ BPE=∠C ′PE ,然后 证明∠DPE=90°,从而得到△ DPE 是直角三角形,再分别表示出 AE 、CP 的长度,然后利用勾股定理进行列 式整理即可得到 y 与 x 的函数关系式,根据函数所对应的图象即可得解.【解答】 解:如图,连接 DE ,∵△ PC ′D 是△ PCD 沿 PD 折叠得到, ∴∠ CPD=∠C ′PD , ∵PE 平分∠ BPC ′, ∴∠ BPE=∠C ′PE ,∴∠ EPC ′ +∠DPC ′= ×180°=90°, ∴△ DPE 是直角三角形,C .D .KO :含 30 度角的直角三角形. P 不与点 B 、C 重合),现将△ PCD沿E .设 BP=x , BE=y,则下列图象∵ BP=x , BE=y , AB=3, BC=5,∴AE=AB ﹣BE=3﹣y ,CP=BC ﹣BP=5﹣x , 在 Rt △ BEP 中, PE 2=BP 2+BE 2=x 2+y 2,2 2 2 2 2在 Rt △ADE 中, DE 2=AE 2+AD 2=( 3﹣ y )2+52, 在 Rt △PCD 中, PD 2=PC 2+CD 2=( 5﹣ x )2+32, 在 Rt △ PDE 中,DE 2=PE 2+PD 2,2 2 2 2 2 2则( 3﹣ y )2+52=x 2+y 2+( 5﹣x ) 2+32, 整理得,﹣ 6y=2x 2﹣ 10x , 所以 y=﹣ x 2+ x (0< x <5), 纵观各选项,只有 D 选项符合. 故选: D .二、填空题(每小题 3 分,共 15分)11.| ﹣3|0+= ﹣1 .【考点】 24:立方根; 6E :零指数幂.【分析】 根据题目中的式子,可以计算出正确的结果,从而可以解答本题. 【解答】 解: | ﹣ 3| 0+=1+(﹣ 2)=﹣1, 故答案为:﹣ 1.12.写一个你喜欢的整数 m 的值,使关于 x 的一元二次方程 x 2﹣ 3x+2m=0有两个不相等的实数根,考点】AA :根的判别式.分析】 根据根的判别式求出m < ,答案不唯一,只要取小于 的整数就可以解答】 解:∵关于 x 的一元 二次方程x 2﹣ 3x+2m=0有两个不相等的实数根,2∴△ =(﹣ 3) 2﹣ 4× 1× 2m=9﹣ 8m >0, 解得: m < , 取 m=1, 故答案为: 1.m= 113.用 m 、n 、p 、q 四把钥匙去开 A 、B 两把锁, 其中仅有钥匙 m 能打开锁 A ,仅有钥匙 n 能打开锁 B ,则“取一把钥匙恰能打开一把锁”的概率是 . 【考点】 X6:列表法与树状图法.【分析】 画树状图展示所有 8 种等可能的结果数,再找出取一把钥匙恰能打开一把锁”的结果数,然后根 据概率公式求解.【解答】 解:画树状图为:共有 8 种等可能的结果数,其中取一把钥匙恰能打开一把锁”的结果数为2,所以取一把钥匙恰能打开一把锁”的概率 故答案为: .14.如图,菱形 ABCD ,∠A=60°, AB=4,以点 B 为圆心的扇形与边 CD 相切于点 E ,扇形的圆心角为 60°, 点 E 是 CD 的中点,图中两块阴影部分的面积分别为S 1,S 2,则 S 2﹣ S 1= 2 ﹣π .【考点】 MC :切线的性质; L8 :菱形的性质; MO :扇形面积的计算.【分析】 连接 BE ,由以点 B 为圆心的扇形与边 CD 相切于点 E ,得到在菱形 ABCD 中,∠ A=60°, AB=4,求 得BE ⊥CD ,由点 E 是CD 的中点,得到 CE= CD=2,BE=2 ,∠EBC=30°,于是得到结论. 【解答】 解:连接 BE ,∵以点 B 为圆心的扇形与边 CD 相切于点 E , ∵在菱形 ABCD 中,∠ A=60°, AB=4, ∴BE ⊥CD ,∵点 E 是 CD 的中点,∴ CE= CD=2, BE=2 ,∠ EBC=30°, ∵扇形的圆心角为 60°,∴S 2﹣S 1= ×CE?BE ﹣=2×2 ﹣π =2 ﹣π.故答案为: 2 ﹣π.=15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI 与边CD交于点H,折痕为EF,则AE= 4 ﹣2 时,△ EGH为等腰三角形.【考点】PB:翻折变换(折叠问题);KI:等腰三角形的判定;LB:矩形的性质.【分析】根据余角的性质得到∠ AEG=∠ DGH,根据全等三角形的性质得到DG=AE,由折叠的性质得到BE=GE,根据勾股定理列方程即可得到结论.【解答】解:∵在矩形ABCD中,∠ A=∠ D=∠ B=∠EGH=9°0 ,∴∠ AGE+∠AEG=∠AGE+∠DGH=9°0 ,∴∠ AEG=∠DGH,∵△ EGH为等腰三角形,∴EG=GH,在△ AEG与△ DGH中,,∴△ AEG≌△ DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD折叠,使得点B 落在边AD上,∴BE=GE,∴BE=8﹣AE,∴AG=AE+,2∵AG2+AE2=GE2,∴(AE+2)2+AE2=(8﹣AE)2,∴ AE=4 ﹣2,∴ AE=4 ﹣2 时,△ EGH为等腰三角形.故答案为:4 ﹣2.三、解答题(本题共 8小题,满分 75 分)=2( x ﹣2)﹣( x+2) =2x ﹣ 4﹣x ﹣ 2 =x ﹣6, ∵ x 满足﹣ ,∴当 x=1 时,原式 =1﹣ 6=﹣ 5.17.截止 2016 年第一季度末, 微信每月活跃用户已达到 5.49 亿,用户覆盖 200多个国家, 超过 20 种语言, 个品牌的微信公众号总数已经超过 800 万个,微信已成为中国电子革命的代表,并成为人们生活中不可或 缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:1)在条形统计图中,“转发内容”的人数占到样本容量的 2)补全条形统计图;16.先化简()÷ 然后代入合适的 x 值求值,整数 x 满足﹣.考点】 6D :分式的化简求值; 2B :估算无理数的大小.分析】 根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的 x 的值代入求值即可, 注意整数 x 满足﹣.解答】﹣)÷﹣ )÷ ﹣ )÷15%,则样本容量是 200解:((3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20 万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【考点】VC:条形统计图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由30 除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1 减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷ 15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500 人.18.如图,以Rt△ABC的直角边AB为直径作⊙ O与斜边AC交于点D,E 为BC边的中点,连接DE,OE.(1)求证:DE是⊙ O的切线.(2)填空:①当∠ CAB= 45° 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为正方形.【分析】(1)连接OD后,证明△ DOE≌△ BOE后,可得∠ OBE=∠ODE=9°0 ,所以DE是⊙ O的切线;(2)①由(1)可知:∠ ODE=9°0 ,要使四边形AOED是平行四边形,即需要DE∥AO,所以需要∠ AOD=9°0 ,又因为OA=O,D 所以∠ CAB=45°;②由①可知:四边形OBED是矩形,又因为OD=O,B 所以四边形OBED是正方形.【解答】解:(1)连接OD,∵E 是BC的中点,O是AB的中点,∴ OE是△ ABC的中位线,∴OE∥AC,∠BOE=∠BAC,∠DOE=∠ADO,∵OD=OA,∴∠ BAC=∠ADO,∴∠ BOE=∠DOE,在△ DOE与△ BOE中,,∴△ DOE≌△ BOE,∴∠ OBE=∠ODE=9°0 ,∴ DE是⊙ O的切线;(2)①当∠ CAB=45°时,∴∠ ADO=4°5 ,∴∠ AOD=9°0 ,又∵∠ EDO=9°0 ,∴DE∥AB,∵OE∥AC,∴四边形AOED是平行四边形;②由①可知:∠ EDO=∠ DOB=∠ABC=90°,∴四边形OBED是矩形,∵OD=OB,∴矩形OBED是正方形.故答案为:① 45°;②正方形.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中 GH 的长),经测量知 CD=2m ,在 B 处测得点D 的仰角为 60°,在 A 处测得点 C 的仰角为 30°, AB=10m ,且 A 、B 、H 三点共线,请根据以上数据计算GH的长( ,要求结果精确得到 0.1m )【分析】首先过点 D 作DE ⊥AH 于点E ,设DE=xm ,则CE (= x+2)m ,解Rt △AEC 和Rt △BED ,得出 AE= (x+2),BE= x ,根据 AE ﹣ BE=10列出方程(x+2)﹣ x=10 ,解方程求出 x 的值,进而得出 GH 的长.【解答】 解:如图,过点 D 作 DE ⊥AH 于点 E ,设 DE=xm ,则 CE=(x+2) m . 在 Rt △AEC 和 Rt △BED 中,有 tan30 tan60 ∴AE= (x+2), BE= x ∵AE ﹣BE=AB=10,∴ x=5 ﹣ 3,∴GH=CD+DE=2+5 ﹣ 3=5 ﹣ 1 ≈ 7.7 ( m ). 答: GH 的长约为 7.7m .20.在平面直角坐标系内,双曲线: y= (x >0)分别与直线 OA :y=x 和直线 AB :y=﹣x+10,交于 C ,D 两 点,并且 OC=3BD .∴ ( x+2) ﹣ x=10 ,考点】 TA :解直角三角形的应用﹣仰角俯角问题.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A、C、D 作x 轴的垂线,垂足分别是M、E、F,由直线y=x 和y=﹣x+10 可知∠AOB=∠ABO=4°5 ,证明△ CEO∽△ DEB,从而可知= =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D 在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△ OCE、△ DFB△、梯形CDFE的面积即可求出答案.【解答】解:(1)过点A、C、D作x 轴的垂线,垂足分别是M、E、F,∴∠ AMO∠= CEO=∠ DFB=90°,∵直线OA:y=x 和直线AB:y=﹣x+10,∴∠ AOB=∠ABO=4°5 ,∴△ CEO∽△ DEB==设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,2∴ 9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,2)由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△ OCE+S 梯形CDFE+S△DFB3×3+ ×(1+3)× 6+ ×1× 1=17,∴四边形OCDB的面积是1721.2016 年11 月13 日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)1057.5平均每吨货物可获例如(百元)5 3.64(1)若用乙、丙两种型号的货轮共8 艘,将55 万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20 艘装运180 万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有16﹣0.5m 艘,乙型货轮有4﹣0.5m 艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设用乙、丙两种型号的货轮分别为x艘,y 艘,根据题意列方程组即可得到结论;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,根据题意列不等式得到m=2,4,6,设集团的总利润为w,于是得到结论.【解答】解:(1)设用乙、丙两种型号的货轮分别为x 艘,y 艘,,答:用2 艘乙种型号的货轮,6 艘丙种型号的货轮;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,则4﹣0.5m+m≤16﹣0.5m,解得:m≤12,∵ m为正整数,(16﹣0.5m )与94﹣0.5m)均为正整数,∴m=2,4,6,=×设集团的总利润为 w ,则 w=10× 5( 16﹣ 0.5m ) +5×3.6 (4﹣0.5m )+7.5 × 4m=﹣ 4m+872, 当 m=2 时,集团获得最大利润,最大利润为8.64 亿元.故答案为: 16 ﹣ 0.5m , 4﹣ 0.5m . 22.如图 1,过等边三角形 ABC 边 AB 上一点 D 作 DE ∥BC 交边 AC 于点 E ,分别取 BC ,DE 的中点 M ,N ,连接 (1)发现:在图 1 中, = ;3,△ ABC 和△ ADE 是等腰三角形,且∠ BAC=∠DAE ,M ,N 分别是底边 BC ,DE 的中点,若 BD ⊥CE ,请直接写出 的值.考点】 SO :相似形综合题.【分析】(1)如图 1 中,作 DH ⊥BC 于 H ,连接 AM .只要证明四边形 MNDH 时矩形,即可解决问题. (2)如图 2 中,连接 AM 、AN .只要证明△ BAD ∽△ MAN ,利用相似比为 即可解决问题.(3)如图 3 中,连接 AM 、AN ,延长 AD 交 CE 于 H ,交 AC 于 O .由△ BAD ∽△ MAN ,推出 = =sin ∠ABC ,只要证明△ ABC 时等腰直角三角形即可解决问题.【解答】 解:(1)如图 1 中,作 DH ⊥BC 于 H ,连接 AM .∵AB=AC ,BM=CM ,∴AM ⊥BC ,∵△ ADE 时等边三角形,2)应用:如图 2,将△ ADE 绕点 A 旋转,请求出 的值;3)拓展:如图MN.∴∠ ADE=60°=∠ B,∴DE∥BC,∵AM⊥BC,∴AM⊥DE,∴ AM平分线段DE,∵DN=NE,∴A、N、M共线,∴∠ NMH∠= MND=∠DHM=9°0 ,∴四边形MNDH时矩形,∴MN=DH,=sin602)如图 2 中,连接AM、AN.∵△ ABC,△ ADE都是等边三角形,BM=M,C DN=NE,∴AM⊥BC,AN⊥DE,=sin60 °,=sin60 °,=∵∠ MAB=∠DAN=3°0 ,∴∠ BAD=∠MAN,∴△ BAD∽△ MAN,===3)如图 3 中,连接AM、AN,延长AD交CE于H,交AC于O.∵AB=AC,AD=AE,BM=CM,DN=NE,∴AM⊥BC,AN⊥DE,∵∠ BAC=∠DAE,∴∠ ABC=∠ADE,∴sin ∠ABM=sin∠ ADN,=∴△ BAD∽△ MAN,∴ = =sin ∠ ABC,∵∠ BAC=∠DAE,∴∠ BAD=∠CAE,∵AB=AC,AD=AE,∴△ BAD≌△ CAE,∴∠ ABD=∠ACE,∵BD⊥CE,∴∠ BHC=9°0 ,∴∠ ACE+∠COH=9°0 ,∵∠ AOB=∠ COH,∴∠ ABD+∠AOB=9°0 ,∴∠ BAO=9°0 ,∵AB=AC,∴∠ABC=45°,223.如图,已知抛物线y=ax 2+bx+c (a≠ 0)的顶点坐标为Q(2,﹣1),且与y 轴交于点C(0,3),与x 轴交于A,B 两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A////不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ ADP是直角三角形时,求点P 的坐标;(3)在题(2)的结论下,若点E在x 轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边∵∠BAM= BAC,∠ DAN= ∠DAE,∴∠BAM=∠DAN,∴∠BAD=∠MAN.形?若存在,求点F 的坐标;若不存在,请说明理由.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的 C 点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥ y 轴,所以∠ ADP≠90°,若△ ADP是直角三角形,可考虑两种情况:①以点P 为直角顶点,此时AP⊥DP,此时P 点位于x 轴上(即与B点重合),由此可求出P 点的坐标;②以点A为直角顶点,易知OA=OC,则∠ OAC=4°5 ,所以OA平分∠ CAP,那么此时D、P关于x 轴对称,可求出直线AC的解析式,然后设D、P 的横坐标,根据抛物线和直线AC的解析式表示出D、P 的纵坐标,由于两点关于x 轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q 重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出 F 点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:23=a(0﹣2)2﹣1,a=1;22∴y=(x﹣2)2﹣1,即y=x 2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B 重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A 在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△ AP2D2的直角顶点时;∵ OA=OC,∠ AOC=9°0 ,∴∠ OAD2=45°;当∠ D2AP2=90°时,∠ OAP2=45°,∴ AO平分∠ D2AP2;又∵ P2D2∥y 轴,∴P2D2⊥AO,∴P2、D2关于x 轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x ,﹣x+3),P2(x,x2﹣4x+3),2则有:(﹣x+3)+(x2﹣4x+3 )=0,2即x2﹣5x+6=0;解得x1=2,x2=3(舍去);22∴当x=2 时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴ P2的坐标为P2(2,﹣1)(即为抛物线顶点)∴ P点坐标为P1(1,0),P2(2,﹣1);3)由(2)知,当P 点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x 轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);2∴ x2﹣4x+3=1,解得x1=2﹣,x2=2+ ;∴符合条件的F 点有两个,即F1(2﹣,1),F2(2+ ,1).。
2020届河南省新乡市中考数学一模试卷(有答案)(加精)

河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣22.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1063.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.128.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>59.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.|﹣3|0+= .12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= .13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= .15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 时,△EGH为等腰三角形.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.21.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 5 7.5平均每吨货物可获例如(百元) 5 3.6 4(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A 不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣|﹣|<﹣1<﹣<3﹣2,∴各数中,最小的数是﹣|﹣|.故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选B.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:①原式不能合并,不符合题意;②原式=﹣8a6,符合题意;③原式=3x4,不符合题意;④原式=xy5,符合题意,故选A5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC【考点】S8:相似三角形的判定;MC:切线的性质.【分析】根据切线的性质、直径的性质、相似三角形的判定和性质等知识,一一判断即可.【解答】解:∵AD是切线,∴OD⊥DF,∵AC⊥OD,∴DF∥AC,故C正确,∴∠F=∠CAB,∵∠CDB=∠CBA,∴∠CDB=∠BFD,故A正确,∵AB是直径,∴∠AEO=∠ACB=90°,∴OE∥BC,∴△BAC∽△OAE,∵△OAE∽△OFD,∴△BAC∽△OFD,故B正确,无法证明OD=BC,故选D.7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.12【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k的几何意义.【分析】设点M的坐标为(m,n),由点M为线段AB的中点即可得知点A(2m,0)、点B(0,2n),再根据反比例函数图象上点的坐标特征结合三角形的面积即可求出S△AOB的值.【解答】解:设点M的坐标为(m,n),则点A(2m,0),点B(0,2n),∵点M在双曲线y=(x>0)上,∴mn=6,∴S△AOB=OA•OB=2mn=12.故选D.8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>5【考点】HC:二次函数与不等式(组).【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x 的取值范围即可.【解答】解:由图可知,对称轴为直线x=2,∵抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),又∵抛物线开口向下,∴不等式ax2+bx+c>0的解集是﹣1<x<5.故选A.9.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】先根据直角三角形的性质求出AB的长,再由作法可知DE是线段AB的垂直平分线,故可得出BD=AD,BE=AE,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4.∵DE是线段AB的垂直平分线,∴BD=AD=AB=2,BE=AE,∴∠ABE=∠A=30°,∴BE===.故选A.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.二、填空题(每小题3分,共15分)11.|﹣3|0+= ﹣1 .【考点】24:立方根;6E:零指数幂.【分析】根据题目中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:|﹣3|0+=1+(﹣2)=﹣1,故答案为:﹣1.12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= 1 .【考点】AA:根的判别式.【分析】根据根的判别式求出m<,答案不唯一,只要取小于的整数就可以.【解答】解:∵关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×2m=9﹣8m>0,解得:m<,取m=1,故答案为:1.13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.【考点】X6:列表法与树状图法.【分析】画树状图展示所有8种等可能的结果数,再找出取一把钥匙恰能打开一把锁”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中取一把钥匙恰能打开一把锁”的结果数为2,所以取一把钥匙恰能打开一把锁”的概率==,故答案为:.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= 2﹣π.【考点】MC:切线的性质;L8:菱形的性质;MO:扇形面积的计算.【分析】连接BE,由以点B为圆心的扇形与边CD相切于点E,得到在菱形ABCD中,∠A=60°,AB=4,求得BE⊥CD,由点E是CD的中点,得到CE=CD=2,BE=2,∠EBC=30°,于是得到结论.【解答】解:连接BE,∵以点B为圆心的扇形与边CD相切于点E,∵在菱形ABCD中,∠A=60°,AB=4,∴BE⊥CD,∵点E是CD的中点,∴CE=CD=2,BE=2,∠EBC=30°,∵扇形的圆心角为60°,∴S2﹣S1=×CE•BE﹣=2×2﹣π=2﹣π.故答案为:2﹣π.15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 4﹣2 时,△EGH为等腰三角形.【考点】PB:翻折变换(折叠问题);KI:等腰三角形的判定;LB:矩形的性质.【分析】根据余角的性质得到∠AEG=∠DGH,根据全等三角形的性质得到DG=AE,由折叠的性质得到BE=GE,根据勾股定理列方程即可得到结论.【解答】解:∵在矩形ABCD中,∠A=∠D=∠B=∠EGH=90°,∴∠AGE+∠AEG=∠AGE+∠DGH=90°,∴∠AEG=∠DGH,∵△EGH为等腰三角形,∴EG=GH,在△AEG与△DGH中,,∴△AEG≌△DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,∴BE=GE,∴BE=8﹣AE,∴AG=AE+2,∵AG2+AE2=GE2,∴(AE+2)2+AE2=(8﹣AE)2,∴AE=4﹣2,∴AE=4﹣2时,△EGH为等腰三角形.故答案为:4﹣2.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入求值即可,注意整数x满足﹣.【解答】解:(﹣)÷==2(x﹣2)﹣(x+2)=2x﹣4﹣x﹣2=x﹣6,∵x满足﹣,∴当x=1时,原式=1﹣6=﹣5.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【考点】VC:条形统计图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 45°时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为正方形.【考点】MR:圆的综合题.【分析】(1)连接OD后,证明△DOE≌△BOE后,可得∠OBE=∠ODE=90°,所以DE是⊙O的切线;(2)①由(1)可知:∠ODE=90°,要使四边形AOED是平行四边形,即需要DE∥AO,所以需要∠AOD=90°,又因为OA=OD,所以∠CA B=45°;②由①可知:四边形OBED是矩形,又因为OD=OB,所以四边形OBED是正方形.【解答】解:(1)连接OD,∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∠BOE=∠BAC,∠DOE=∠ADO,∵OD=OA,∴∠BAC=∠ADO,∴∠BOE=∠DOE,在△DOE与△BOE中,,∴△DOE≌△BOE,∴∠OBE=∠ODE=90°,∴DE是⊙O的切线;(2)①当∠CAB=45°时,∴∠ADO=45°,∴∠AOD=90°,又∵∠EDO=90°,∴DE∥AB,∵OE∥AC,∴四边形AOED是平行四边形;②由①可知:∠EDO=∠DOB=∠ABC=90°,∴四边形OBED是矩形,∵OD=OB,∴矩形OBED是正方形.故答案为:①45°;②正方形.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m,解Rt△AEC和Rt△BED,得出AE=(x+2),BE=x,根据AE﹣BE=10列出方程(x+2)﹣x=10,解方程求出x的值,进而得出GH的长.【解答】解:如图,过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m.在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∵AE﹣BE=AB=10,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m).答:GH的长约为7.7m.20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知==3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.【解答】解:(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴==3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y=(x>0)(2)由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB=×3×3+×(1+3)×6+×1×1=17,∴四边形OCDB的面积是1721.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 5 7.5平均每吨货物可获例如(百元) 5 3.6 4(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有16﹣0.5m 艘,乙型货轮有4﹣0.5m 艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设用乙、丙两种型号的货轮分别为x艘,y艘,根据题意列方程组即可得到结论;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,根据题意列不等式得到m=2,4,6,设集团的总利润为w,于是得到结论.【解答】解:(1)设用乙、丙两种型号的货轮分别为x艘,y艘,则,解得:,答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,则4﹣0.5m+m≤16﹣0.5m,解得:m≤12,∵m为正整数,(16﹣0.5m)与94﹣0.5m)均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16﹣0.5m)+5×3.6(4﹣0.5m)+7.5×4m=﹣4m+872,当m=2时,集团获得最大利润,最大利润为8.64亿元.故答案为:16﹣0.5m,4﹣0.5m.22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.【考点】SO:相似形综合题.【分析】(1)如图1中,作DH⊥BC于H,连接AM.只要证明四边形MNDH时矩形,即可解决问题.(2)如图2中,连接AM、AN.只要证明△BAD∽△MAN,利用相似比为即可解决问题.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.由△BAD∽△MAN,推出==sin∠ABC,只要证明△ABC时等腰直角三角形即可解决问题.【解答】解:(1)如图1中,作DH⊥BC于H,连接AM.∵AB=AC,BM=CM,∴AM⊥BC,∵△ADE时等边三角形,∴∠ADE=60°=∠B,∴DE∥BC,∵AM⊥BC,∴AM⊥DE,∴AM平分线段DE,∵DN=NE,∴A、N、M共线,∴∠NMH=∠MND=∠DHM=90°,∴四边形MNDH时矩形,∴MN=DH,∴==sin60°=,故答案为.(2)如图2中,连接AM、AN.∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,∴AM⊥BC,AN⊥DE,∴=sin60°,=sin60°,∴=,∵∠MAB=∠DAN=30°,∴∠BAD=∠MAN,∴△BAD∽△MAN,∴==sin60°=.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.∵AB=AC,AD=AE,BM=CM,DN=NE,∴AM⊥BC,AN⊥DE,∵∠BAC=∠DAE,∴∠ABC=∠ADE,∴sin∠ABM=sin∠ADN,∴=,∵∠BAM=BAC,∠DAN=∠DAE,∴∠BAM=∠DAN,∴∠BAD=∠MAN.∴△BAD∽△MAN,∴==sin∠ABC,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE,∴∠ABD=∠ACE,∵BD⊥CE,∴∠BHC=90°,∴∠ACE+∠COH=90°,∵∠AOB=∠COH,∴∠ABD+∠AOB=90°,∴∠BAO=90°,∵AB=AC,∴∠ABC=45°,∴=sin45°=.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).。
河南省新乡市中考数学模拟试卷

河南省新乡市中考数学模拟试卷河南省新乡市中考数学模拟试卷姓名:________ 班级:________ 成绩:________ 一、选择题:(共10题;共20分)1. (2分)(2022年七上老河口期中) 一个数的倒数的绝对值是3,这个数是()A . 3B .C . 3或3D . 或2. (2分)下面四种图案中,其中既是中心对称又是轴对称图案的是()A .B .C .D .3. (2分)(2022年七上太原期中) 如图,加工一种轴时,轴直径在299.5毫米到300.2毫米之间的产品都是合格品,在图纸上通常用φ3000.5+0.2来表示这种轴的加工要求,这里φ300表示直径是300毫米,+0.2表示最大限度可以比300毫米多0.2毫米,0.5表示最大限度可以比300毫米少0.5毫米.现加工四根轴,轴直径的加工要求都是φ500.02+0.03 ,下列数据是加工成的轴直径,其中不合格的是()A . 50.02B . 50.01C . 49.99D . 49.88第1 页共16 页4. (2分)如图,已知AD∥CD,∠1=109°,∠2=120°,则∠α的度数是()A . 38°B . 48°C . 49°D . 60°5. (2分)(2022年来宾) 下列计算正确的是()A . x2+x2=x4B . x2+x3=2x5C . 3x2x=1D . x2y2x2y=x2y6. (2分)(2022年九下武平期中) 在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A .B .C .D .7. (2分)(2022年双柏模拟) 下列四个几何体中,主视图为矩形的是()A .B .第2 页共16 页C .D .8. (2分)(2022年九上深圳期中) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A . 2个B . 3个C . 4个D . 5个9. (2分)(2022年八下绍兴期中) 若以A(0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)若抛物线y=-x+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(-2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1y2y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=-(x+1)+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为3+ + 。
2022年河南省中考数学模拟调研试卷(附答案详解)
2022年河南省中考数学模拟调研试卷一、选择题(本大题共10小题,共30.0分)1.√(−3)2的化简结果为()A. 3B. −3C. ±3D. 92.已知点A(m−1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A. −1B. −7C. 1D. 73.一个不透明的袋子中有黄色和若干个白色的两种小球,这些球除颜色外其他完全相同,已知黄球有9个,每次摸球前先将袋子中的球摇匀,任意摸出一个球记下颜色后,放回袋中,再摇匀,再摸,通过大量重复摸球后发现,摸到黄球的频率稳定在30%,估计袋子中白球的个数是()A. 15B. 18C. 20D. 214.如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A. 15√3海里B. 30海里C. 45海里D. 30√3海里5.将抛物线y=12x2−6x+21向左平移2个单位后,得到新抛物线的解析式为()A. y=12(x−8)2+5 B. y=12(x−4)2+5C. y=12(x−8)2+3 D. y=12(x−4)2+36.如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2√2,则BC⏜的长为()A. πB. √2πC. 2πD. 2√2π7.以x为自变量的二次函数y=x2−2(b−2)x+b2−1的图象不经过第三象限,则实数b的取值范围是()A. b ≥54B. b ≥1或b ≤−1C. b ≥2D. 1≤b ≤28. 二次函数y =−(x −1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A. 52B. 2C. 32D. 12 9. 如图▱ABCD ,F 为BC 中点,延长AD 至E ,使DE :AD =1:3,连结EF 交DC 于点G ,则S △DEG :S △CFG =( )A. 2:3B. 3:2C. 9:4D. 4:910. 如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,点F 的运动路径长为( )A. √3B. 2√3C. 23πD. 43π二、填空题(本大题共5小题,共15.0分)11. 从2,3,4,6中随机选取两个数记作a 和b(a <b),那么点(a,b)在直线y =2x 上的概率是______.12. 如图,在△ABC 中,sinB =13,tanC =√22,AB =3,则AC 的长为______.13. 若关于x 的一元二次方程ax 2+2x −1=0无解,则a 的取值范围是______ .14. 如图,△ABC 是等腰直角三角形,∠ACB =90°,AC =BC =2,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB′C′,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是______.15.如图,二次函数解析式为y=Ax2+Bx+C(A≠0),则下列命题中正确的有______(填序号).①ABC>0;②B2<4AC;③4A−2B+C>0;④2A+B>C.三、解答题(本大题共8小题,共75.0分)16.解方程:(1)x2−2x−3=0;(2)3x2−2√3x=−1.17.某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析;(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?18.某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为20米的发射塔AB,如图所示.在山脚平地上的D处测得塔底B的仰角为30°,向小山前进80米到达点E处,测得塔顶A的仰角为60°,求小山BC的高度.19.已知关于x的一元二次方程x2+2x−k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求aa+1−1b+1的值.20.如图,AB是⊙O的直径,C为⊙O上一点,PC切⊙O于C,AE⊥PC交PC的延长线于E,AE交⊙O于D,PC与AB的延长线相交于点P,连接AC、BC.(1)求证:AC平分∠BAD;(2)若PB:PC=1:2,PB=4,求AB的长.21.毕业季即将到来,某礼品店购进了一批适合大学生的毕业纪念品,该礼品店用4000元购进A种礼品若干件,用8400元购进B种礼品若干件,所购B种礼品的数量比A种礼品的数量多10件,且B种礼品每件的进价是A种礼品每件进价的1.4倍.(1)A、B两种礼品每件的进价分别为多少元?(2)礼品店第一次所购礼品全部售完后,再次购进A、B两种礼品(进价不变),其中A种礼品购进的数量在第一次的基础上增加了2a%,售价在进价的基础上提高了0.9a%;B种礼品购进的数量在第一次的基础上增加了2a%,售价在进价的基础上提高了a%.全部售出后,第二次所购礼品的利润为12000元(不考虑其他因素),求第二次购进A、B两种礼品各多少件?22.如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,OA.①求证:OD=12②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m−n+2=0.23.如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(−1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.答案和解析1.【答案】A【解析】解:原式=|−3|=3.故选:A.直接根据√a2=|a|进行计算即可.本题考查了二次根式的计算与化简:√a2=|a|.2.【答案】A【解析】【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数.本题考查了对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:∵点A(m−1,3)与点B(2,n+1)关于x轴对称,∴{m−1=2n+1+3=0,∴{m=3n=−4,∴m+n=3+(−4)=−1.故选A.3.【答案】D【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可.此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事是解题关键.件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn【解答】解:∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,∴根据题意任意摸出1个,摸到黄色乒乓球的概率是:30%,设袋中白色乒乓球的个数为a个,.则30%=9a+9解得:a=21,∴白色乒乓球的个数为:21个.故选D.4.【答案】B【解析】【分析】本题考查了方位角和等腰三角形的性质,属于基础题.易得∠APB=180°−30°−120°=30°=∠BAP,根据等腰三角形的性质可得BP= AB=30;【解答】解:由图可知∠BAP=30°,∠ABP=90°+30°=120°所以∠APB=180°−30°−120°=30°=∠BAP,所以BP=AB=30(海里),故选:B.5.【答案】D【解析】解:y=12x2−6x+21=12(x2−12x)+21=12[(x−6)2−36]+21=12(x−6)2+3,故y=12(x−6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=12(x−4)2+3.故选:D.直接利用配方法将原式变形,进而利用平移规律得出答案.此题主要考查了二次函数图象与几何变换,正确配方将原式变形是解题关键.6.【答案】A【解析】【分析】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于常考题.连接OB,OC,首先证明△OBC是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,OC.∵∠A=180°−∠ABC−∠ACB=180°−65°−70°=45°,∴∠BOC=90°,∵BC=2√2,∴OB=OC=2,=π,∴BC⏜的长为90×π×2180故选:A.7.【答案】A【解析】【分析】此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b的不等式组解决问题.由于二次函数y=x2−2(b−2)x+b2−1的图象不经过第三象限,所以抛物线的顶点在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.【解答】解:∵二次函数y=x2−2(b−2)x+b2−1的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,当抛物线的顶点在x轴上方时,则b2−1≥0,△=[2(b−2)]2−4(b2−1)≤0,解得b≥5;4当抛物线的顶点在x轴的下方时,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=2(b−2)>0,b2−1>0,∴△=[2(b−2)]2−4(b2−1)>0,①b−2>0,②b2−1≥0,③由①得b<5,由②得b>2,4∴此种情况不存在,∴b≥5,4故选:A.8.【答案】D【解析】解:二次函数y=−(x−1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=−(m−1)2+5,解得:m=−2.当x=n时y取最大值,即2n=−(n−1)2+5,解得:n=2或n=−2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=−(m−1)2+5,解得:m=−2.当x=1时y取最大值,即2n=−(1−1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=−(n−1)2+5,n=52,∴m=118,∵m<0,∴此种情形不合题意,所以m+n=−2+52=12.故选:D.条件m≤x≤n和mn<0可得m<0,n>0所以y的最小值为2m为负数,最大值为2n为正数.最大值为2n分两种情况,(1)结合抛物线顶点纵坐标的取值范围,求出n=2.5,结合图象最小值只能由x=m时求出.(2)结合抛物线顶点纵坐标的取值范围,图象最大值只能由x=n求出,最小值只能由x= m求出.本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴解析式是解题的关键.9.【答案】D【解析】【分析】本题主要考查了相似三角形的判定和性质,平行四边形的性质,中点的定义.表示出CF是解题的关键.先设出DE=x,进而得出AD=3x,再用平行四边形的性质得出BC=3x,进而求出CF,最后用相似三角形的性质即可得出结论.【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD//BC,BC=AD=3x,∵点F是BC的中点,∴CF=12BC=32x,∵AD//BC,∴△DEG∽△CFG,∴S△DEGS△CFG =(DECF)2=(x32x)2=49,故选:D.10.【答案】D【解析】解:如图,连接AC、BD交于点G,连接OG.∵BF⊥CE,∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙O上,当点E从点A运动到点B时,点F的运动路径长为BG⏜,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∵∠ABC=60°,∴∠BCG=60°,∴∠BOG=120°,∴BG⏜的长=120⋅π⋅2180=43π,故选:D.如图,连接AC、BD交于点G,连接OG.首先说明点E从点A运动到点B时,点F的运动路径长为BG⏜,求出圆心角,半径即可解决问题.本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.11.【答案】13【解析】解:画树状图如图所示,一共有6种情况,b=2a的有(2,4)和(3,6)两种,所以点(a,b)在直线y=2x上的概率是26=13,故答案为:13.画出树状图,找到b=2a的结果数,再根据概率公式解答本题考查了一次函数图象上点的坐标特征,列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.12.【答案】√3【解析】【分析】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.过A作AD垂直于BC,在直角三角形ABD中,利用锐角三角函数定义求出AD的长,在直角三角形ACD中,利用锐角三角函数定义求出CD的长,再利用勾股定理求出AC的长即可.【解答】解:过A作AD⊥BC,在Rt△ABD中,sinB=13,AB=3,∴AD=AB⋅sinB=1,在Rt△ACD中,tanC=√22,∴ADCD =√22,即CD=√2,根据勾股定理得:AC=√AD2+CD2=√1+2=√3,故答案为√3.13.【答案】a<−1【解析】解:∵关于x的一元二次方程ax2+2x−1=0无解,∴a≠0且△=22−4×a×(−1)<0,解得a<−1,∴a的取值范围是a<−1.故答案为:a<−1.根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22−4×a×(−1)<0,然后求出a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.14.【答案】12π【解析】【分析】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等腰直角三角形的性质和旋转的性质.先根据等腰直角三角形的性质得到∠BAC=45°,AB=√2AC=2√2,再根据旋转的性质得∠BAB′=∠CAC′=45°,则点B′、C、A共线,然后根据扇形门口计算,利用线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′−S扇形CAC′进行计算即可.【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=45°,AB=√2AC=2√2,∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C,∴∠BAB′=∠CAC′=45°,∴点B′、C、A共线,∴线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′+S△AB′C−S扇形CAC′−S△ABC=S扇形BAB′−S扇形CAC′=45⋅π⋅(2√2)2360−45⋅π⋅22360=1 2π.故答案为12π.15.【答案】①③④【解析】解:∵抛物线开口向上,∴A>0,∵对称轴x=−B2A>0,∴B<0,∵抛物线与y轴交于负半轴,∴C<0,∴ABC>0,①命题正确;∵抛物线与x轴有两个交点,∴B2−4AC>0,∴B2>4AC,②命题不正确;∵当x=−2时,y>0,∴4A−2B+C>0,③命题正确;由图可知A−B+C<0,故C<B−A<B+2A,④命题正确.故答案为:①③④.根据二次函数对称轴、开口方向、与y轴的交点,可以判定A、B、C的符号;根据图象与x轴交点情况可以判断B2−4AC的符号;根据特殊点的位置再判断剩下两个式子的符号.本题考查命题和二次函数的图象的性质.解决本题的关键在于根据图象开口方向、对称轴、与坐标轴交点、图像上特殊点的的位置,列出关系式来判定各命题是否正确.16.【答案】解:(1)(x−3)(x+1)=0,x−3=0或x+1=0,所以x1=3,x2=−1;(2)3x2−2√3x+1=0,Δ=(−2√3)2−4×3×1=0,x=−b±√b2−4ac2a =2√3±02×3=√33,所以x1=x2=√33.【解析】(1)利用因式分解法解方程;(2)先把方程化为一般式,然后利用求根公式解方程.本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法.17.【答案】解:(1)根据题意有30+35+45+60×2+70=300;答:共抽取了300名学生的数学成绩进行分析;(2)从表中可以看出80分以上(包括80分)的人数有35+70=105,共300人;所以优生率是105÷300=35%;答:该年的优生率为35%.(3)从表中可以看出及格人数为300−30−60=210人,则及格率=210÷300=70%,所以22000人中的及格人数是22000×70%=15400(名);答:全市及格的人数有15400人.【解析】本题是一道利用统计知识解答实际问题的重点考题,计算量略大,难度中等.主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.(1)从表中读出学生数,相加可得学生总数;(2)从表中成绩这一坐标中先找到80分以上(包括80分)的人数,再除以总数,得出优生率.(3)先从表中查出及格率,再计算全市共有22000人的及格人数.18.【答案】解:设BC为x米,则AC=(20+x)米,由条件知:∠DBC=∠AEC=60°,DE=80米.在直角△DBC中,tan60°=DCBC=DCx,则DC=√3x米.∴CE=(√3x−80)米.在直角△ACE中,tan60°=ACCE =20+x√3x−80=√3.解得x=10+40√3.答:小山BC的高度为(10+40√3)米.【解析】设BC为x米,则AC=(20+x)米,通过解直角△DBC和直角△ACE列出关于x的方程,利用方程求得结果.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.19.【答案】解:(1)∵方程有两个不相等的实数根,∴△=b2−4ac=4+4k>0,解得k>−1.∴k的取值范围为k>−1;(2)由根与系数关系得a+b=−2,a⋅b=k,a a+1−1b+1=ab−1ab+a+b+1=k−1k−2+1=1.【解析】(1)根据方程有两个不相等的实数根可得△=4+4k>0,解不等式求出k的取值范围;(2)由根与系数的关系可得a+b=−2,a⋅b=k,代入整理后的代数式,计算即可.此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x1+x2=−ba ,x1⋅x2=ca.20.【答案】解:(1)如图所示:连接OC.∵PC是⊙O的切线,∴OC⊥EP.又∵AE⊥PC,∴AE//OC.∴∠EAC=∠ACO.又∵∠ACO=∠OAC,∴∠EAC=∠OAC.∴AC平分∠BAD;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°.∵OB=OC,∴∠OCB=∠ABC.∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC.∵∠P=∠P,∴△PCA∽△PBC,∴PCPB =PAPC,∴PA=PC2PB=16.∴AB=PA−PB=16−4=12.【解析】(1)先AE//OC,然后依据平行线的性质可得到∠EAC=∠ACO.,接下来由∠ACO=∠AOC,可证明∠EAC=∠OAC;(2)先证明∠PCB=∠PAC,从而可证明△PCA∽△PBC,依据相似三角形的性质可求得PA 的长,最后依据AB=PA−PB求解即可.本题主要考查的是相似三角形的性质和判定、切线的性质、圆周角定理的应用,熟练掌握相关定理是解题的关键.21.【答案】解:(1)设A种礼品每件的进价为x元,则B种礼品每件的进价为1.4x元,依题意得:84001.4x −4000x=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280(元).答:A种礼品每件的进价为200元,B种礼品每件的进价为280元.(2)第一次购进A种礼品的数量为4000÷200=20(件),第一次购进B种礼品的数量为8400÷280=30(件).依题意得:200×0.9a%×20(1+2a%)+280×a%×30(1+2a%)=12000,整理得:a2+50a−5000=0,解得:a1=−100(不合题意,舍去),a2=50,∴20(1+2a%)=40(件),30(1+2a%)=60(件).答:第二次购进A种礼品40件,B种礼品60件.【解析】(1)设A种礼品每件的进价为x元,则B种礼品每件的进价为1.4x元,根据数量=总价÷单价,结合所购B种礼品的数量比A种礼品的数量多10件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价,可分别求出第一次购进A,B两种礼品的数量,利用总利润=每件礼品的利润×销售数量,即可得出关于a的一元二次方程,解之即可得出a的值,将其正值分别代入20(1+2a%)和30(1+2a%)中即可求出结论.本题考查了分式方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元二次方程.22.【答案】解:(1)①连接OB、OC,则∠BOD=12∠BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴求△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=32,根据勾股定理求出BD=√32,△ABC面积的最大值=12×BC×AD=12×2BD×32=3√34;(2)如图2,连接OC,设:∠OED =x ,则∠ABC =mx ,∠ACB =nx ,则∠BAC =180°−∠ABC −∠ACB =180°−mx −nx =12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°−mx −nx +2mx =180°+mx −nx , ∵OE =OD ,∴∠AOD =180°−2x ,即:180°+mx −nx =180°−2x ,化简得:m −n +2=0.【解析】(1)①连接OB 、OC ,则∠BOD =12∠BOC =∠BAC =60°,即可求解;②BC 长度为定值,△ABC 面积的最大值,要求BC 边上的高最大,即可求解;(2)∠BAC =180°−∠ABC −∠ACB =180°−mx −nx =12∠BOC =∠DOC ,而∠AOD =∠COD +∠AOC =180°−mx −nx +2mx =180°+mx −nx ,即可求解.本题为圆的综合运用题,涉及到30°直角三角形的性质、三角形内角和公式,其中(2)∠AOD =∠COD +∠AOC 是本题容易忽视的地方.23.【答案】解:(1)∵点A(−1,0)与点B 关于直线x =1对称,∴点B 的坐标为(3,0),代入y =x 2+bx +c ,得:{1−b +c =09+3b +c =0, 解得{b =−2c =−3, 所以二次函数的表达式为y =x 2−2x −3;(2)如图所示:由抛物线解析式知C(0,−3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC−∠PBC=30°,∴OP=√33OB=3×√33=√3,∴CP=3−√3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP’=√3OB=3√3,∴CP=3√3−3;综上,CP的长为;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2−2(a+1)−3=2a,解得a=1−√5(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1−2−3=2a,解得:a=−2(舍去);若a>1,则函数的最小值为a2−2a−3=2a,解得a=2+√7(负值舍去);综上,a的值为1−√5或2+√7.【解析】(1)先根据题意得出点B的坐标,再利用待定系数法求解可得;(2)分点P在点C上方和下方两种情况,先求出∠OBP的度数,再利用三角函数求出OP的长,从而得出答案;(3)分对称轴x=1在a到a+1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.。
河南省新乡市中考数学一模试卷
河南省新乡市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八上·海港期中) 下列几种说法正确的有()①无理数都是无限小数;②带根号的数是无理数;③实数分为正实数和负实数;④无理数包括正无理数、0和负无理数。
A . ①②③④B . ②③C . ①④D . ①2. (2分)(2017·延边模拟) 2016年10月17日,神州十一号飞船成功发射升空.发射当天约有161000个相关精彩栏目的热门视频在网络上热播.将数据161000用科学记数法表示为()A . 1.61×103B . 0.161×105C . 1.61×105D . 16.1×1043. (2分)如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A . 60°B . 50°C . 40°D . 30°4. (2分)如图,10×2网格中有一个△ABC,图中与△ABC相似的三角形的个数有()A . 1个B . 2个C . 3个5. (2分)(2016·河池) 下列四个几何体中,主视图为圆的是()A .B .C .D .6. (2分)下列二次根式中,与的乘积为有理数的是()A .B .C .D .7. (2分) (2020九上·南宁期末) 如图,是矩形内的任意一点,连接、、、, 得到 , , , ,设它们的面积分别是,,,,给出如下结论:①② ③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是()A . ①②B . ②③8. (2分)下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形;②一元二次方程x2﹣3x﹣4=0的根是x1=4,x2=﹣1;③依次连结任意四边形各边中点所得的四边形是平行四边形;④一元一次不等式2x+5≤11的整数解有3个;⑤某班演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.A . 1个B . 2个C . 3个D . 4个9. (2分) (2019九上·沙坪坝月考) 如图,平行四边形AOBC中,对角线交于点E,双曲线经过A、E两点,若平行四边形AOBC的面积为12,则k()A . 2B . 4C .D . 810. (2分)有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A . ①④D . ①②③④11. (2分)(2017·濮阳模拟) 一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A .B .C .D .12. (2分) (2017七下·晋中期末) 下列各式不能成立的是()A . (x2)3=x6B . x2•x3=x5C . (x﹣y)2=(x+y)2﹣4xyD . x2÷(﹣x)2=﹣1二、填空题 (共6题;共6分)13. (1分)(2017·静安模拟) 在实数范围内分解因式:2x2﹣6=________14. (1分)(2012·连云港) 我市某超市五月份的第一周鸡蛋价格分别为7.2,7.2,6.8,7.2,7.0,7.0,6.6(单位:元/kg),则该超市这一周鸡蛋价格的众数为________(元/kg).15. (1分)如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧BC上,且OA=AB,则∠ABC=________.16. (1分) (2016九上·海淀期末) 如图,在平面直角坐标系xOy中,△ABC与△ 顶点的横、纵坐标都是整数.若△ABC与△ 是位似图形,则位似中心的坐标是________.17. (1分) (2019八上·深圳开学考) 如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,18. (1分) (2019九上·磴口期中) 抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为________.三、解答题 (共8题;共83分)19. (5分)(2018·兰州) 计算:20. (10分) (2020八下·西安期中)(1)解不等式,并把它的解集写在数轴上.(2)解不等式组并写出它的所有整数解.21. (15分) (2017九上·盂县期末) 如图,△ABC在方格纸中(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S.22. (13分) (2020八下·房县期末) 某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查部分学生的数学成绩,并将抽样的数据进行了如下整理:①如下分数段整理样本;等级等级分数段各组总分人数A110<X≤120P4B100<X≤110843nC90<X≤100574mD80<X≤901712②根据左表绘制扇形统计图.(1)填空m=________,n=________,数学成绩的中位数所在的等级________;(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A等级学生的数学成绩的平均分数.23. (10分) (2020九上·吴兴期中) 如图,圆内接四边形ABCD,AB是⊙O的直径,OD∥AC交BC于点E.(1)求证:△BCD为等腰三角形;(2)若BE=4,AC=6,求DE.24. (5分)(2020·开远模拟) (列方程解应用题)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本,求A和B两种图书的单价分别为多少元?25. (10分)如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:DE=AD+BE.(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE又怎样的关系?请直接写出你的结论,不必说明理由.26. (15分)(2016·南充) 如图,抛物线与x轴交于点A(﹣5,0)和点B(3,0).与y轴交于点C(0,5).有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N.交x轴于点E和F.(1)求抛物线的解析式;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF= ,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共83分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
2020届中考模拟河南省新乡市中考数学一模试卷(含参考答案)
河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣22.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1063.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.128.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>59.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.|﹣3|0+= .12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= .13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= .15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 时,△EGH为等腰三角形.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.21.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 5 7.5平均每吨货物可获例如(百元) 5 3.6 4(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A 不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣|﹣|<﹣1<﹣<3﹣2,∴各数中,最小的数是﹣|﹣|.故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选B.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:①原式不能合并,不符合题意;②原式=﹣8a6,符合题意;③原式=3x4,不符合题意;④原式=xy5,符合题意,故选A5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC【考点】S8:相似三角形的判定;MC:切线的性质.【分析】根据切线的性质、直径的性质、相似三角形的判定和性质等知识,一一判断即可.【解答】解:∵AD是切线,∴OD⊥DF,∵AC⊥OD,∴DF∥AC,故C正确,∴∠F=∠CAB,∵∠CDB=∠CBA,∴∠CDB=∠BFD,故A正确,∵AB是直径,∴∠AEO=∠ACB=90°,∴OE∥BC,∴△BAC∽△OAE,∵△OAE∽△OFD,∴△BAC∽△OFD,故B正确,无法证明OD=BC,故选D.7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.12【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k的几何意义.【分析】设点M的坐标为(m,n),由点M为线段AB的中点即可得知点A(2m,0)、点B(0,2n),再根据反比例函数图象上点的坐标特征结合三角形的面积即可求出S△AOB的值.【解答】解:设点M的坐标为(m,n),则点A(2m,0),点B(0,2n),∵点M在双曲线y=(x>0)上,∴mn=6,∴S△AOB=OA•OB=2mn=12.故选D.8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>5【考点】HC:二次函数与不等式(组).【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x 的取值范围即可.【解答】解:由图可知,对称轴为直线x=2,∵抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),又∵抛物线开口向下,∴不等式ax2+bx+c>0的解集是﹣1<x<5.故选A.9.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】先根据直角三角形的性质求出AB的长,再由作法可知DE是线段AB的垂直平分线,故可得出BD=AD,BE=AE,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4.∵DE是线段AB的垂直平分线,∴BD=AD=AB=2,BE=AE,∴∠ABE=∠A=30°,∴BE===.故选A.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.二、填空题(每小题3分,共15分)11.|﹣3|0+= ﹣1 .【考点】24:立方根;6E:零指数幂.【分析】根据题目中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:|﹣3|0+=1+(﹣2)=﹣1,故答案为:﹣1.12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= 1 .【考点】AA:根的判别式.【分析】根据根的判别式求出m<,答案不唯一,只要取小于的整数就可以.【解答】解:∵关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×2m=9﹣8m>0,解得:m<,取m=1,故答案为:1.13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.【考点】X6:列表法与树状图法.【分析】画树状图展示所有8种等可能的结果数,再找出取一把钥匙恰能打开一把锁”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中取一把钥匙恰能打开一把锁”的结果数为2,所以取一把钥匙恰能打开一把锁”的概率==,故答案为:.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= 2﹣π.【考点】MC:切线的性质;L8:菱形的性质;MO:扇形面积的计算.【分析】连接BE,由以点B为圆心的扇形与边CD相切于点E,得到在菱形ABCD中,∠A=60°,AB=4,求得BE⊥CD,由点E是CD的中点,得到CE=CD=2,BE=2,∠EBC=30°,于是得到结论.【解答】解:连接BE,∵以点B为圆心的扇形与边CD相切于点E,∵在菱形ABCD中,∠A=60°,AB=4,∴BE⊥CD,∵点E是CD的中点,∴CE=CD=2,BE=2,∠EBC=30°,∵扇形的圆心角为60°,∴S2﹣S1=×CE•BE﹣=2×2﹣π=2﹣π.故答案为:2﹣π.15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 4﹣2 时,△EGH为等腰三角形.【考点】PB:翻折变换(折叠问题);KI:等腰三角形的判定;LB:矩形的性质.【分析】根据余角的性质得到∠AEG=∠DGH,根据全等三角形的性质得到DG=AE,由折叠的性质得到BE=GE,根据勾股定理列方程即可得到结论.【解答】解:∵在矩形ABCD中,∠A=∠D=∠B=∠EGH=90°,∴∠AGE+∠AEG=∠AGE+∠DGH=90°,∴∠AEG=∠DGH,∵△EGH为等腰三角形,∴EG=GH,在△AEG与△DGH中,,∴△AEG≌△DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,∴BE=GE,∴BE=8﹣AE,∴AG=AE+2,∵AG2+AE2=GE2,∴(AE+2)2+AE2=(8﹣AE)2,∴AE=4﹣2,∴AE=4﹣2时,△EGH为等腰三角形.故答案为:4﹣2.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入求值即可,注意整数x满足﹣.【解答】解:(﹣)÷==2(x﹣2)﹣(x+2)=2x﹣4﹣x﹣2=x﹣6,∵x满足﹣,∴当x=1时,原式=1﹣6=﹣5.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【考点】VC:条形统计图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 45°时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为正方形.【考点】MR:圆的综合题.【分析】(1)连接OD后,证明△DOE≌△BOE后,可得∠OBE=∠ODE=90°,所以DE是⊙O的切线;(2)①由(1)可知:∠ODE=90°,要使四边形AOED是平行四边形,即需要DE∥AO,所以需要∠AOD=90°,又因为OA=OD,所以∠CAB=45°;②由①可知:四边形OBED是矩形,又因为OD=OB,所以四边形OBED是正方形.【解答】解:(1)连接OD,. ∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∠BOE=∠BAC,∠DOE=∠ADO,∵OD=OA,∴∠BAC=∠ADO,∴∠BOE=∠DOE,在△DOE与△BOE中,,∴△DOE≌△BOE,∴∠OBE=∠ODE=90°,∴DE是⊙O的切线;(2)①当∠CAB=45°时,∴∠ADO=45°,∴∠AOD=90°,又∵∠EDO=90°,∴DE∥AB,∵OE∥AC,∴四边形AOED是平行四边形;②由①可知:∠EDO=∠DOB=∠ABC=90°,∴四边形OBED是矩形,∵OD=OB,∴矩形OBED是正方形.故答案为:①45°;②正方形.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m,解Rt△AEC和Rt△BED,得出AE=(x+2),BE=x,根据AE﹣BE=10列出方程(x+2)﹣x=10,解方程求出x的值,进而得出GH的长.【解答】解:如图,过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m.在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∵AE﹣BE=AB=10,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m).答:GH的长约为7.7m.20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知==3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.【解答】解:(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴==3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y=(x>0)(2)由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB=×3×3+×(1+3)×6+×1×1=17,∴四边形OCDB的面积是1721.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 5 7.5平均每吨货物可获例如(百元) 5 3.6 4(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有16﹣0.5m 艘,乙型货轮有4﹣0.5m 艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设用乙、丙两种型号的货轮分别为x艘,y艘,根据题意列方程组即可得到结论;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,根据题意列不等式得到m=2,4,6,设集团的总利润为w,于是得到结论.【解答】解:(1)设用乙、丙两种型号的货轮分别为x艘,y艘,则,解得:,答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,则4﹣0.5m+m≤16﹣0.5m,解得:m≤12,∵m为正整数,(16﹣0.5m)与94﹣0.5m)均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16﹣0.5m)+5×3.6(4﹣0.5m)+7.5×4m=﹣4m+872,当m=2时,集团获得最大利润,最大利润为8.64亿元.故答案为:16﹣0.5m,4﹣0.5m.22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.【考点】SO:相似形综合题.【分析】(1)如图1中,作DH⊥BC于H,连接AM.只要证明四边形MNDH时矩形,即可解决问题.(2)如图2中,连接AM、AN.只要证明△BAD∽△MAN,利用相似比为即可解决问题.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.由△BAD∽△MAN,推出==sin∠ABC,只要证明△ABC时等腰直角三角形即可解决问题.【解答】解:(1)如图1中,作DH⊥BC于H,连接AM.∵AB=AC,BM=CM,∴AM⊥BC,∵△ADE时等边三角形,∴∠ADE=60°=∠B,∴DE∥BC,∵AM⊥BC,∴AM⊥DE,∴AM平分线段DE,∵DN=NE,∴A、N、M共线,∴∠NMH=∠MND=∠DHM=90°,∴四边形MNDH时矩形,∴MN=DH,∴==sin60°=,故答案为.(2)如图2中,连接AM、AN.∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,∴AM⊥BC,AN⊥DE,∴=sin60°,=sin60°,∴=,∵∠MAB=∠DAN=30°,∴∠BAD=∠MAN,∴△BAD∽△MAN,∴==sin60°=.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.∵AB=AC,AD=AE,BM=CM,DN=NE,∴AM⊥BC,AN⊥DE,∵∠BAC=∠DAE,∴∠ABC=∠ADE,∴sin∠ABM=sin∠ADN,∴=,∵∠BAM=BAC,∠DAN=∠DAE,∴∠BAM=∠DAN,∴∠BAD=∠MAN.∴△BAD∽△MAN,∴==sin∠ABC,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE,∴∠ABD=∠ACE,∵BD⊥CE,∴∠BHC=90°,∴∠ACE+∠COH=90°,∵∠AOB=∠COH,∴∠ABD+∠AOB=90°,∴∠BAO=90°,∵AB=AC,∴∠ABC=45°,∴=sin45°=.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).。
2020届河南省新乡市中考数学一模试卷(有答案)(已纠错)
河南省新乡市中考数学一模试卷一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣22.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×1063.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.128.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>59.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.|﹣3|0+= .12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= .13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= .15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 时,△EGH为等腰三角形.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.21.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 5 7.5平均每吨货物可获例如(百元) 5 3.6 4(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A 不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.河南省新乡市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中,最小的数是()A.﹣ B.﹣1 C.﹣|﹣| D.3﹣2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣|﹣|<﹣1<﹣<3﹣2,∴各数中,最小的数是﹣|﹣|.故选:C.2.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为()A.1.42×105B.1.42×104C.142×103D.0.142×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.2万=142000=1.42×105.故选:A.3.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.【解答】解:该几何体的左视图是:故选B.4.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④ B.①③ C.①② D.③④【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:①原式不能合并,不符合题意;②原式=﹣8a6,符合题意;③原式=3x4,不符合题意;④原式=xy5,符合题意,故选A5.有15位同学参加一个知识竞赛活动,若他们比赛得分互不相同,且该竞赛共设8分获奖名额,甲同学知道自己的分数后,若要判断自己能否获奖,那么在15位同学成绩统计数据中,只要知道这组数据的()A.平均数B.中位数C.众数 D.方差【考点】WA:统计量的选择.【分析】由于比赛设置了8个获奖名额,共有15名选手参加,故应根据中位数的意义分析.【解答】解:因为8位获奖者的分数肯定是15名参赛选手中最高的,而且15个不同的分数按从小到大排序后,中位数及中位数之后的共有8个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.6.如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,过点D作⊙O的切线与BA的延长线相交于点F,下列结论不一定正确的是()A.∠CDB=∠BFD B.△BAC∽△OFD C.DF∥AC D.OD=BC【考点】S8:相似三角形的判定;MC:切线的性质.【分析】根据切线的性质、直径的性质、相似三角形的判定和性质等知识,一一判断即可.【解答】解:∵AD是切线,∴OD⊥DF,∵AC⊥OD,∴DF∥AC,故C正确,∴∠F=∠CAB,∵∠CDB=∠CBA,∴∠CDB=∠BFD,故A正确,∵AB是直径,∴∠AEO=∠ACB=90°,∴OE∥BC,∴△BAC∽△OAE,∵△OAE∽△OFD,∴△BAC∽△OFD,故B正确,无法证明OD=BC,故选D.7.如图,双曲线y=(x>0)经过线段AB的中点M,则△AOB的面积为()A.18 B.24 C.6 D.12【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k的几何意义.【分析】设点M的坐标为(m,n),由点M为线段AB的中点即可得知点A(2m,0)、点B(0,2n),再根据反比例函数图象上点的坐标特征结合三角形的面积即可求出S△AOB的值.【解答】解:设点M的坐标为(m,n),则点A(2m,0),点B(0,2n),∵点M在双曲线y=(x>0)上,∴mn=6,∴S△AOB=OA•OB=2mn=12.故选D.8.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>5【考点】HC:二次函数与不等式(组).【分析】根据二次函数的对称性求出与x轴的另一个交点坐标,然后根据函数图象写出x轴上方部分的x 的取值范围即可.【解答】解:由图可知,对称轴为直线x=2,∵抛物线与x轴的一个交点坐标为(5,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),又∵抛物线开口向下,∴不等式ax2+bx+c>0的解集是﹣1<x<5.故选A.9.如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是()A.B.3 C.D.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KO:含30度角的直角三角形.【分析】先根据直角三角形的性质求出AB的长,再由作法可知DE是线段AB的垂直平分线,故可得出BD=AD,BE=AE,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4.∵DE是线段AB的垂直平分线,∴BD=AD=AB=2,BE=AE,∴∠ABE=∠A=30°,∴BE===.故选A.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.二、填空题(每小题3分,共15分)11.|﹣3|0+= ﹣1 .【考点】24:立方根;6E:零指数幂.【分析】根据题目中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:|﹣3|0+=1+(﹣2)=﹣1,故答案为:﹣1.12.写一个你喜欢的整数m的值,使关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,m= 1 .【考点】AA:根的判别式.【分析】根据根的判别式求出m<,答案不唯一,只要取小于的整数就可以.【解答】解:∵关于x的一元二次方程x2﹣3x+2m=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×2m=9﹣8m>0,解得:m<,取m=1,故答案为:1.13.用m、n、p、q四把钥匙去开A、B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能打开一把锁”的概率是.【考点】X6:列表法与树状图法.【分析】画树状图展示所有8种等可能的结果数,再找出取一把钥匙恰能打开一把锁”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有8种等可能的结果数,其中取一把钥匙恰能打开一把锁”的结果数为2,所以取一把钥匙恰能打开一把锁”的概率==,故答案为:.14.如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的中点,图中两块阴影部分的面积分别为S1,S2,则S2﹣S1= 2﹣π.【考点】MC:切线的性质;L8:菱形的性质;MO:扇形面积的计算.【分析】连接BE,由以点B为圆心的扇形与边CD相切于点E,得到在菱形ABCD中,∠A=60°,AB=4,求得BE⊥CD,由点E是CD的中点,得到CE=CD=2,BE=2,∠EBC=30°,于是得到结论.【解答】解:连接BE,∵以点B为圆心的扇形与边CD相切于点E,∵在菱形ABCD中,∠A=60°,AB=4,∴BE⊥CD,∵点E是CD的中点,∴CE=CD=2,BE=2,∠EBC=30°,∵扇形的圆心角为60°,∴S2﹣S1=×CE•BE﹣=2×2﹣π=2﹣π.故答案为:2﹣π.15.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE= 4﹣2 时,△EGH为等腰三角形.【考点】PB:翻折变换(折叠问题);KI:等腰三角形的判定;LB:矩形的性质.【分析】根据余角的性质得到∠AEG=∠DGH,根据全等三角形的性质得到DG=AE,由折叠的性质得到BE=GE,根据勾股定理列方程即可得到结论.【解答】解:∵在矩形ABCD中,∠A=∠D=∠B=∠EGH=90°,∴∠AGE+∠AEG=∠AGE+∠DGH=90°,∴∠AEG=∠DGH,∵△EGH为等腰三角形,∴EG=GH,在△AEG与△DGH中,,∴△AEG≌△DGH,∴DG=AE,∵AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,∴BE=GE,∴BE=8﹣AE,∴AG=AE+2,∵AG2+AE2=GE2,∴(AE+2)2+AE2=(8﹣AE)2,∴AE=4﹣2,∴AE=4﹣2时,△EGH为等腰三角形.故答案为:4﹣2.三、解答题(本题共8小题,满分75分)16.先化简(﹣)÷然后代入合适的x值求值,整数x满足﹣.【考点】6D:分式的化简求值;2B:估算无理数的大小.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的x的值代入求值即可,注意整数x满足﹣.【解答】解:(﹣)÷==2(x﹣2)﹣(x+2)=2x﹣4﹣x﹣2=x﹣6,∵x满足﹣,∴当x=1时,原式=1﹣6=﹣5.17.截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【考点】VC:条形统计图;V2:全面调查与抽样调查;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.18.如图,以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,OE.(1)求证:DE是⊙O的切线.(2)填空:①当∠CAB= 45°时,四边形AOED是平行四边形;②连接OD,在①的条件下探索四边形OBED的形状为正方形.【考点】MR:圆的综合题.【分析】(1)连接OD后,证明△DOE≌△BOE后,可得∠OBE=∠ODE=90°,所以DE是⊙O的切线;(2)①由(1)可知:∠ODE=90°,要使四边形AOED是平行四边形,即需要DE∥AO,所以需要∠AOD=90°,又因为OA=OD,所以∠CA B=45°;②由①可知:四边形OBED是矩形,又因为OD=OB,所以四边形OBED是正方形./ 【解答】解:(1)连接OD,∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∠BOE=∠BAC,∠DOE=∠ADO,∵OD=OA,∴∠BAC=∠ADO,∴∠BOE=∠DOE,在△DOE与△BOE中,,∴△DOE≌△BOE,∴∠OBE=∠ODE=90°,∴DE是⊙O的切线;(2)①当∠CAB=45°时,∴∠ADO=45°,∴∠AOD=90°,又∵∠EDO=90°,∴DE∥AB,∵OE∥AC,∴四边形AOED是平行四边形;②由①可知:∠EDO=∠DOB=∠ABC=90°,∴四边形OBED是矩形,∵OD=OB,∴矩形OBED是正方形.故答案为:①45°;②正方形.19.数学兴趣小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点共线,请根据以上数据计算GH 的长(,要求结果精确得到0.1m)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m,解Rt△AEC和Rt△BED,得出AE=(x+2),BE=x,根据AE﹣BE=10列出方程(x+2)﹣x=10,解方程求出x的值,进而得出GH的长.【解答】解:如图,过点D作DE⊥AH于点E,设DE=xm,则CE=(x+2)m.在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∵AE﹣BE=AB=10,∴(x+2)﹣x=10,∴x=5﹣3,∴GH=CD+DE=2+5﹣3=5﹣1≈7.7(m).答:GH的长约为7.7m.20.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知==3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.【解答】解:(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴==3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y=(x>0)(2)由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB=×3×3+×(1+3)×6+×1×1=17,∴四边形OCDB的面积是1721.2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:甲乙丙平均货轮载重的吨数(万吨)10 5 7.5平均每吨货物可获例如(百元) 5 3.6 4(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有16﹣0.5m 艘,乙型货轮有4﹣0.5m 艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设用乙、丙两种型号的货轮分别为x艘,y艘,根据题意列方程组即可得到结论;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,根据题意列不等式得到m=2,4,6,设集团的总利润为w,于是得到结论.【解答】解:(1)设用乙、丙两种型号的货轮分别为x艘,y艘,则,解得:,答:用2艘乙种型号的货轮,6艘丙种型号的货轮;(2)甲型货轮有(16﹣0.5m)艘,乙型货轮有(4﹣0.5m)艘,则4﹣0.5m+m≤16﹣0.5m,解得:m≤12,∵m为正整数,(16﹣0.5m)与94﹣0.5m)均为正整数,∴m=2,4,6,设集团的总利润为w,则w=10×5(16﹣0.5m)+5×3.6(4﹣0.5m)+7.5×4m=﹣4m+872,当m=2时,集团获得最大利润,最大利润为8.64亿元.故答案为:16﹣0.5m,4﹣0.5m.22.如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.(1)发现:在图1中, = ;(2)应用:如图2,将△ADE绕点A旋转,请求出的值;(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.【考点】SO:相似形综合题.【分析】(1)如图1中,作DH⊥BC于H,连接AM.只要证明四边形MNDH时矩形,即可解决问题.(2)如图2中,连接AM、AN.只要证明△BAD∽△MAN,利用相似比为即可解决问题.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.由△BAD∽△MAN,推出==sin∠ABC,只要证明△ABC时等腰直角三角形即可解决问题.【解答】解:(1)如图1中,作DH⊥BC于H,连接AM.∵AB=AC,BM=CM,∴AM⊥BC,∵△ADE时等边三角形,∴∠ADE=60°=∠B,∴DE∥BC,∵AM⊥BC,∴AM⊥DE,∴AM平分线段DE,∵DN=NE,∴A、N、M共线,∴∠NMH=∠MND=∠DHM=90°,∴四边形MNDH时矩形,∴MN=DH,∴==sin60°=,故答案为.(2)如图2中,连接AM、AN.∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,∴AM⊥BC,AN⊥DE,∴=sin60°,=sin60°,∴=,∵∠MAB=∠DAN=30°,∴∠BAD=∠MAN,∴△BAD∽△MAN,∴==sin60°=.(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.∵AB=AC,AD=AE,BM=CM,DN=NE,∴AM⊥BC,AN⊥DE,∵∠BAC=∠DAE,∴∠ABC=∠ADE,∴sin∠ABM=sin∠ADN,∴=,∵∠BAM=BAC,∠DAN=∠DAE,∴∠BAM=∠DAN,∴∠BAD=∠MAN.∴△BAD∽△MAN,∴==sin∠ABC,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE,∴∠ABD=∠ACE,∵BD⊥CE,∴∠BHC=90°,∴∠ACE+∠COH=90°,∵∠AOB=∠COH,∴∠ABD+∠AOB=90°,∴∠BAO=90°,∵AB=AC,∴∠ABC=45°,∴=sin45°=.23.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P点的坐标;(3)P、B重合,E点在x轴上,这样A、P、E三点在x轴上,所以A、P、E、F为顶点不可能构成平行四边形,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页,共24页 2022年河南省新乡市辉县市中考数学一模试卷
一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项) 1. −3的绝对值是( )
A. 13 B. −3 C. 3 D. ±3
2. 千磨万击还坚劲,任尔东西南北风.在全球疫情肆虐的大背景下,一场自上世纪大萧条以
来最严重的经济衰退也随之而来,但是率先控制疫情、率先启动复工复产、率先实现经济增长转正的中国,1月18日,国家统计局发布了2020年中国经济年报,经过初步核算,全年国内生产总值达101万亿元!数据101万亿用科学记数法可表示为( ) A. 10.1×10
10 B. 1.01×1011 C. 1.01×1013 D. 1.01×1014
3. 下列计算结果正确的是( )
A. 𝑎
8÷𝑎4=𝑎2 B. 𝑎2⋅𝑎3=𝑎6 C. (𝑎3)2=𝑎6 D. (−2𝑎2)3=8𝑎6
4. 现在道路上的车辆是越来越多了,如果没有交通规则约束和交通标志指示,那么路上的
车辆一定是混杂堵塞,所以开车时一定要看清标志,文明驾车.下列交通标志中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D. 5. 已知
𝑥𝑥+𝑦=35,则𝑦
𝑥=( )
A. 25 B. 34 C. 32 D. 23
6. 把一副直角三角板按如图所示的方式摆放在一起,其中∠𝐶=90°,∠𝐹=90°,∠𝐷=30°,
∠𝐴=45°,则∠1+∠2等于( )
A. 270° B. 210° C. 180° D. 150°
7. 如图,在⊙𝑂中,𝐴𝐵⏜=𝐴𝐶
⏜,∠𝐴𝑂𝐵=40°,则∠𝐴𝐷𝐶的度数是( ) 第2页,共24页
A. 40° B. 30° C. 20° D. 15°
8. 如图,菱形𝐴𝐵𝐶𝐷放置在直线𝑙上(𝐴𝐵与直线𝑙重合),𝐴𝐵=4,∠𝐷𝐴𝐵=60°,将菱形𝐴𝐵𝐶𝐷
沿直线𝑙向右无滑动地在直线𝑙上滚动,从点𝐴离开出发点到点𝐴第一次落在直线𝑙上为止,点𝐴运动经过的路径总长度为( )
A. 16√3𝜋3 B. 16𝜋3 C. 4𝜋3+4√3𝜋3 D. 8𝜋3+8√3𝜋3
9. 对于二次函数𝑦=𝑎𝑥
2
−2𝑎𝑥−3𝑎+3的性质,下列说法中错误的是( )
A. 抛物线的对称轴为直线𝑥=1
B. 抛物线一定经过两定点(−1,3)与(3,3)
C. 当𝑎<0时,抛物线与𝑥轴一定有两个不同的交点
D. 当𝑎>0时,抛物线与𝑥轴一定有两个不同的交点
10. 如图,已知四边形𝐴𝐵𝐶𝐷为矩形,点𝐵在第一象限角平分线上,𝐵𝐶//𝑥轴,𝑂𝐵=√2𝐴𝐵,
反比例函数𝑦=
𝑘
𝑥(𝑘>0)过点𝐴交𝐵𝐶于点𝐸,连接𝑂𝐴、𝐴𝐸、𝑂𝐸,△𝐴𝑂𝐸的面积为6,则𝑘=( )
A. 4 B. 6 C. 8 D. 10
二、填空题(本大题共5小题,共15.0分) 第3页,共24页
11. 如图,在平面直角坐标系中,函数𝑦=𝑘𝑥+𝑏(𝑘≠0)与𝑦=
𝑚
𝑥(𝑚≠0)的图象相交于点
𝐴(2,3),𝐵(−6,−1),则关于𝑥的不等式
𝑘𝑥+𝑏>
𝑚
𝑥的解集是______.
12. 已知𝑥
1,𝑥2是方程𝑥2+6𝑥+3=0的两实数根,则𝑥2𝑥1+𝑥1𝑥2的值为______.
13. 如图,四边形𝐴𝐵𝐶𝐷是菱形,𝑂是两条对角线的交点,过𝑂点的三条直线将菱形分成阴影
和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为______.
14. 如图,四边形𝐴𝐵𝐶𝐷为正方形,且边长𝐴𝐵=15,点𝐸是以𝐴𝐵为直径的圆上一动点,当
tan∠𝐸𝐴𝐵=34时,𝐷𝐸的长度为______.
15. 如图,矩形𝐴𝐵𝐶𝐷中,𝐴𝐷=2,𝐴𝐵=5,𝑃为𝐶𝐷边上的动点,当△𝐴𝐷𝑃与△𝐵𝐶𝑃相似时,
𝐷𝑃=________. 第4页,共24页
三、计算题(本大题共1小题,共6.0分) 16. 计算:
(1)计算:
22−(−12)−2+3−1−√19+(𝜋−3.14)0
;
(2)计算:𝑎2𝑎−3−𝑎−3;
(3)计算,使结果不含负整指数幂:(3𝑎2𝑏)−2(𝑎−3𝑏−2)
−1
.
四、解答题(本大题共7小题,共56.0分。解答应写出文字说明,证明过程或演算步骤) 17. (本小题8.0分) 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12. (1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸
到的球都是白球的概率. 18. (本小题8.0分) 目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表: 进价(元/只) 售价(元/只) 甲型 25 30 乙型 45 60 (1)如何进货,进货款恰好为46000元?
(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?
19. (本小题8.0分) 如图,已知⊙𝑂的直径𝐴𝐵=4,点𝐶、𝐷分别为⊙𝑂上的两点,𝐶𝐷⏜=𝐵𝐷⏜,过点𝐷作𝐷𝐸⊥𝐴𝐵于点𝐸,⊙𝑂的切线𝐷𝐹与直线𝐴𝐹交于点𝐹,且𝐴𝐹过点𝐶,连接𝐵𝐷、𝐴𝐷. (1)求证:𝐶𝐹=𝐵𝐸;
(2)填空:
①当𝐴𝐷=______时,四边形𝐴𝑂𝐷𝐶是菱形; ②当𝐴𝐷=______时,四边形𝐴𝐸𝐷𝐹是正方形. 第5页,共24页
20. (本小题8.0分) 学校运动场的四角各有一盏探照灯,其中一盏探照灯𝐵的位置如图所示,已知坡长𝐴𝐶=12𝑚,坡角𝛼为30°,灯光受灯罩的影响,最远端的光线与地面的夹角𝛽为27°,最近端的光线恰好与地面交于坡面的底端𝐶处,且与地面的夹角为60°,𝐴、𝐵、𝐶、𝐷在同一平面上.(结果精确到0.1𝑚.参考数据:𝑠𝑖𝑛27°≈0.45,𝑐𝑜𝑠27°≈0.89,𝑡𝑎𝑛27°≈0.51,
√3≈1.73.)
(1)求灯杆𝐴𝐵的高度;
(2)求𝐶𝐷的长度.
21. (本小题8.0分) 如图,已知𝐴(−4,
12),𝐵(−1,𝑚)是一次函数𝑦=𝑘𝑥+𝑏与反比例函数𝑦=−2
𝑥(𝑥<0)图象的两
个交点,𝐴𝐶⊥𝑥轴于点𝐶,𝐵𝐷⊥𝑦轴于点𝐷. (1)求一次函数解析式及𝑚的值;
(2)𝑃是线段𝐴𝐵上的一点,连接𝑃𝐶,𝑃𝐷,若△𝑃𝐶𝐴和△𝑃𝐷𝐵面积相等,求点𝑃坐标. 第6页,共24页
22. (本小题8.0分) 在平面直角坐标系中,已知点𝐴(1,4),𝐵(−1,0),𝐶(0,2),抛物线𝑦=𝑎𝑥2+𝑏𝑥+3经过𝐴,𝐵,
𝐶三点中的两点.
(1)求抛物线的表达式;
(2)点𝑀(𝑚,𝑛)为(1)中所求抛物线上一点,且0<𝑚<4,求𝑛的取值范围;
(3)一次函数𝑦=(𝑘−1)𝑥−3𝑘+3(其中𝑘≠1)与(1)中所求抛物线交点的横坐标分别是𝑥1和
𝑥2,且𝑥1<−1<𝑥2,请直接写出𝑘的取值范围.
23. (本小题8.0分) 如图1,在△𝐴𝐵𝐶中,∠𝐵𝐶𝐴=90°,𝐴𝐶=3,𝐵𝐶=4,点𝑃为斜边𝐴𝐵上一点,过点𝑃作射线𝑃𝐷⊥𝑃𝐸,分别交𝐴𝐶、𝐵𝐶于点𝐷,𝐸.
(1)问题产生
若𝑃为𝐴𝐵中点,当𝑃𝐷⊥𝐴𝐶,𝑃𝐸⊥𝐵𝐶时,𝑃𝐷𝑃𝐸=______;
(2)问题延伸
在(1)的情况下,将若∠𝐷𝑃𝐸绕着点𝑃旋转到图2的位置,𝑃𝐷𝑃𝐸的值是否会发生改变?如果不变,请证明;如果改变,请说明理由; (3)问题解决
如图3,连接𝐷𝐸,若△𝑃𝐷𝐸与△𝐴𝐵𝐶相似,求𝑃𝐵的值.