初一数学第一单元检测题9d

合集下载

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案第一章:整式的乘除单元测试卷(一)一、精心选择(每小题3分,共21分)1.多项式xy^4+2x^3y^3-9xy+8的次数是A。

3 B。

4 C。

5 D。

62.下列计算正确的是A。

2x^2·6x^4=12x^8 B。

(y^4)m/(y^3)m=ymC。

(x+y)^2=x^2+y^2 D。

4a^2-a^2=33.计算(a+b)(-a+b)的结果是A。

b^2-a^2 B。

a^2-b^2 C。

-a^2-2ab+b^2 D。

-a^2+2ab+b^24.3a^2-5a+1与-2a^2-3a-4的和为A。

5a^2-2a-3 B。

a^2-8a-3 C。

-a^2-3a-5 D。

a^2-8a+55.下列结果正确的是A。

-2/(1/3)=-6 B。

9×5=45 C。

(-5)³=-125 D。

2-3=-1/86.若(am·bn)^2=a^8b^6,那么m^2-2n的值是A。

10 B。

52 C。

20 D。

327.要使式子9x^2+25y^2成为一个完全平方式,则需加上()A。

15xy B。

±15xy C。

30xy D。

±30xy二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式3xy^2,m,6a^2-a+3,12,4x^2yz-(1/2)xy^2,3ab中,单项式有5个,多项式有2个。

2.单项式-5x^2y^4z的系数是-5,次数是7.3.多项式3ab^4-ab+1/5有3项,它们分别是3ab^4、-ab、1/5.4.⑴x^2·x^5=x^7.⑵(y^3)^4=y^12.⑶(2a^2b)^3=8a^6b^3.⑷( -x^5y^2)^4=x^20y^8.⑸a^9÷a^3=a^6.⑹10×5-2×4=46.5.⑴(-2)/(1/3)=-6.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷(-12x^5y^3)/(-3xy^2)=4x^4y。

初一数学试卷第一单元模拟题

初一数学试卷第一单元模拟题

初一数学试卷第一单元模拟题一、选择题(每题3分,共30分)1. 如果规定向东为正,那么 -50米表示()A. 向东行进50米。

B. 向南行进50米。

C. 向西行进50米。

D. 向北行进50米。

解析:因为规定向东为正,那么和东相反的方向西就为负,-50米表示向西行进50米,答案为C。

2. 在 -2,0,1,3这四个数中,比0小的数是()A. - 2.B. 0.C. 1.D. 3.解析:负数比0小,在这四个数中 -2是负数,所以比0小的数是 -2,答案为A。

3. -1/2的相反数是()A. -2.B. 2.C. -1/2.解析:互为相反数的两个数和为0,设 -1/2的相反数为x,则 -1/2+x = 0,解得x=1/2,答案为D。

4. -3的值是()A. -3.B. 3.C. 1/3.D. -1/3.解析:绝对值表示一个数在数轴上离原点的距离,所以 -3 = 3,答案为B。

5. 计算:( -2)+( -3) =()A. -5.B. -1.C. 1.D. 5.解析:同号两数相加,取相同的符号,并把绝对值相加,2+3 = 2 + 3=5,结果为-5,答案为A。

6. 计算:3 - 5的结果是()A. -2.B. 2.C. 8.解析:3 - 5 = 3+( -5),异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值, -5>3,5 - 3 = 2,结果为 -2,答案为A。

7. 计算:( -2)×( -3) =()A. -6.B. -5.C. 6.D. 5.解析:两数相乘,同号得正,异号得负,并把绝对值相乘,所以( -2)×( -3)=6,答案为C。

8. 计算: -4÷2 =()A. -2.B. 2.C. -1/2.D. 1/2.解析:两数相除,异号得负,并把绝对值相除,4÷2 = 2,结果为 -2,答案为A。

9. 下列各数中,是有理数的是()A. π.B. 0.1010010001…C. -2.解析:有理数包括整数和分数, -2是整数,属于有理数;π、0.1010010001…(无限不循环小数)、√3(开方开不尽的数)都是无理数,答案为C。

(常考题)人教版初中数学七年级数学上册第一单元《有理数》检测题(包含答案解析)(3)

(常考题)人教版初中数学七年级数学上册第一单元《有理数》检测题(包含答案解析)(3)

一、选择题1.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个B .2个C .3个D .4个 2.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-1123.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个 4.下列各式中,不相等的是( ) A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53| 5.已知n 为正整数,则()()2200111n -+-=( ) A .-2 B .-1 C .0 D .26.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7±7.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .10068.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3 9.下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|10.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12 B .2或-12 C .-2或12D .-2或-12 11.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米 12.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是( )A .3504×103B .3.504×106C .3.5×106D .3.504×107二、填空题13.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.14.数轴上A 、B 两点所表示的有理数的和是 ________.15.若两个不相等的数互为相反数,则两数之商为____.16.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.17.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃18.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.19.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________. 20.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题21.计算(1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-. 22.已知: b 是最小的正整数,且a 、b 满足(c -5)2+|a + b |= 0请回答问题: (1)请直接写出a 、b 、c 的值: a = ,b = ,c = ,(2)数轴上a , b , c 所对应的点分别为A ,B ,C ,则 B ,C 两点间的距离为 ;(3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t 秒,①此时A 表示的数为 ;此时B 表示的数为 ;此时C 表示的数为 ;②若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC - AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.23.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.24.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷25.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.26.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可.【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故③错误; ()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A .【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.2.A解析:A【分析】逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 4.B解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.5.C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 6.C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键. 7.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键. 8.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数,故选:A .【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键. 10.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.11.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米. 【详解】∵1-12=12, ∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45. 【点睛】 此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键. 14.-1【解析】由数轴得点A 表示的数是﹣3点B 表示的数是2∴AB 两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2,∴ A ,B 两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.15.-1【分析】设其中一个数为a (a≠0)它的相反数为-a 然后作商即可【详解】解:设其中一个数为a (a≠0)则它的相反数为-a 所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a (a ≠0),它的相反数为-a ,然后作商即可.【详解】解:设其中一个数为a (a ≠0),则它的相反数为-a ,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.16.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶 解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.17.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 18.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1; (2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1; (3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.19.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.20.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.三、解答题21.(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5 -÷⨯-11 116()55 =-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.22.(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.24.(1)2;(2)4【分析】(1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.25.(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.26.(1)6;(2)58. 【分析】(1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。

初中七年级数学第一单元达标测试卷及答案

初中七年级数学第一单元达标测试卷及答案

初中七年级数学第一单元达标测试卷及答案一、选择题1. ()是最小的数。

A. 0B. 1C. -12. 下列不等式中,正确的是:A. 3 > 4B. 8 < 5C. 6 = 6二、填空题1. 数学家拉格朗日的出生年份是_____年。

2. 一个多边形的边数为6,它的内角和为______度。

三、解答题1. 请用文字表达下列算式:$2 \times 3 + 4$。

解答:我们可以用文字表达为:2乘以3加4。

2. 将下列算式计算出结果:$5^2 - 3 \times 4$。

解答:首先计算指数运算,得到$5^2 = 25$。

然后计算乘法运算,得到$3 \times 4 = 12$。

最后进行减法运算,得到答案$25 - 12 = 13$。

四、简答题1. 什么是互质数?请举一个例子。

简答:互质数指的是两个或多个数的最大公约数为1的情况。

例如,6和35就是互质数,因为它们的最大公约数是1。

2. 请给出一个实际生活中使用分数的例子。

简答:一个实际生活中使用分数的例子是购买商品时遇到的打折情况。

例如,某商品原价100元,打8折后的价格是80元,这里就使用了分数的概念:8折相当于原价的$\frac{8}{10}$。

答案:一、选择题1. A2. C二、填空题1. 17362. 720度三、解答题1. 2乘以3加42. 13四、简答题1. 互质数是指两个或多个数的最大公约数为1的情况。

例如,6和35是互质数。

2. 一个实际生活中使用分数的例子是购买商品时遇到的打折情况。

例如,打8折相当于原价的$\frac{8}{10}$。

初一数学第一单元测试卷

初一数学第一单元测试卷

第1章基本平面图形检测题【本试卷满分150分,测试时间120分钟】出题者一、选择题(每小题4分,共48分)1.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线第1题图D.线段AB与线段BA是同一条线段2.如图,从A地到B地最短的路线是()A.A-C-G-E-BB.A-C-E-BC.A-D-G-E-BD.A-F-E-B3. 已知A、B两点之间的距离是10 cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3 cmB.4 cmC.5 cmD.不能计算4.(2013·武汉中考)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有()A.21个交点 B.18个交点 C. 15个交点 D.10个交点5.已知α、β都是钝角,甲、乙、丙、丁四人计算(α+β)的结果依次是28°、48°、60°、88°,其中只有一人计算正确,他是( ) A.甲B.乙C.丙D.丁6.如图,B 是线段AD 的中点,C 是BD 上一点,则下列结论中错误的是( ) A.BC =AB -CDB.BC =AD -CDC.BC =(AD +CD )D.BC =AC -BD第6题图7.如图,观察图形,下列说法正确的个数是( )①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD 是同一条射线; ③AB +BD >AD ;④三条直线两两相交时,一定有三个交点. A.1 B.2 C.3 D.48. (2013·福州中考改编)如图,OA⊥OB,若∠1=34°,则∠2的度数是( ) A.20° B.40° C.56° D.60°第8题图6121219.如图,阴影部分扇形的圆心角是()A.15°B.23°C.30°D.45°10、平面上有三点,经过每两点作一条直线,则能作出的直线的条数是()A、1条B、3条C、1条或3条D、以上都不对11、如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3,则∠AOA4的大小为()A、 8°B、 4°C、 2°D、 1°12.如图,甲顺着大半圆从A地到B地,乙顺着两个小半圆从A地到B地,设甲、乙走过的路程分别为a、b,则()A.a=bB.a<bC.a>bD.不能确定第10题图二、填空题(每小题4分,共24分)13. 已知线段AB=10 cm,BC=5 cm,A、B、C三点在同一条直线上,则AC=_ _.14. 如图,OM平分∠AOB,ON平分∠COD.若∠MON=42°,∠BOC=5°,则∠AOD= __________.第12题图15. 如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于________cm.16. 一条直线上立有10根距离相等的标杆,一名学生匀速地从第1根标杆向第10根标杆行走,当他走到第6根标杆时用了6.5 s,则当他走到第10根标杆时所用时间是_________.17. (1)15°30′5″=_______″;(2) 7 200″=_______´=________°;(3)0.75°=_______′=________″;(4) 30.26°=_______°_______´______〞. 18. 平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=___________.三、解答题(共46分)19.(8分)按要求作图:如图,在同一平面内有四个点A、B、C、D.①画射线CD;②画直线AD;③连接AB;④直线BD与直线AC相交于点O.20.(10分)如图,C是线段AB的中点,D是线段BC的中点,已知图中所有线段的长度之和为39,求线段BC的长.第20题图21.(12分)已知线段,试探讨下列问题:(1)是否存在一点,使它到,两点的距离之和等于?(2)是否存在一点,使它到,两点的距离之和等于?若存在,它的位置唯一吗?(3)当点到,两点的距离之和等于时,点一定在直线外吗?举例说明.22.(12分)如图,在直线上任取1个点,2个点,3个点,4个点,填写下表:2)在直线上取n个点,可以得到几条线段,几条射线?23.(12分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=97°,∠1=40°,求∠2和∠3的度数.24.(12分)已知:如图,∠AOB是直角,∠AOC=30°,ON是∠AOC的平分线OM是∠BOC的平分线.求∠MON的大小.25.(12分)如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D 把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2 012个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.。

2019——2020七年级数学第一单元检测题(青岛版)

2019——2020七年级数学第一单元检测题(青岛版)

2019——2020学年度第一学期七年级第一单元检测题数 学 试 题注意事项:命题人:刘双栋亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站。

请你在答题之前,—定 要仔细阅读以下说明:1.试题共4页,满分120分,考试时间100分钟。

2.将姓名、考场号、座号、考号填写在试题和答题卡指定的位置。

愿你放松心情,放飞思维,充分发挥,争取交一份圆满的答卷。

第Ⅰ卷 选择题(共36分)一、选择题。

(每题仅有一个正确的选项。

每题3分,共12题,共36分)1.下列不是立体图形的是 ( )A.圆柱 B.圆 C.球 D.圆锥2.如图所示为几何体的平面展开图,从左到右,其对应的几何体名称分别为( )A.圆锥,正方体,三棱柱,圆柱B.圆柱,正方体,四棱柱,圆锥C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱3.如图,某同学沿直线将三角形的一个角(阴影部分)剪掉后,发现剩下部分的周长比原三角形的周长小,能较好地解释这一现象的数学知识是( )A 、两点确定一条直线 B 、线段是直线的一部分C 、经过一点有无数条直线 D 、两点之间,线段最短4.如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC 不过点A ”;乙说:“点A 在直线CD 外”;丙说:“D 在射线CB 的反向延长线上”;丁说:“A ,B ,C ,D 两两连接,有5条线段”;戊说:“射线AD 与射线CD 不相交”.其中说明正确的有( )A.3人 B.4人 C.5人 D.2人5.如图,AC=BD 可判断AB 与CD 的大小关系为()A.AB >CDB.AB =CDC.AB <CDD.不能确定6.下列说法正确的是()A.线段AB 和线段BA 表示的不是同一条线段B.射线AB 和射线BA 表示的是同一条射线C.若点P 是线段AB 的中点,则PA =AB12B .若点C 在线段AB 上,则AB =AC +BC D.线段 AB 叫做 A 、B 两点间的距离7.下列说法不正确的是( )A .若点 C 在线段 BA 的延长线上,则 BA =AC -BC C .若 AC +BC >AB ,则点C 一定在线段 AB 外D .若A ,B ,C ,三点不在一直线上,则AB <AC +BC8.两根木条,一根长20 cm ,另一根长24 cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4 cmC.2 cm 或22 cmD.4 cm 或44 cm9.如图所示:C 、D 是线段AB 上两点,若AB =10cm ,BC =7cm ,C 为AD 中点,则BD =A .3.5cmB .6cmC .4cmD .3cm10.如图,点A ,B 在线段EF 上,点M ,N 分别是线段EA ,BF 的中点,EA ∶AB ∶BF =1∶2∶3,若MN =8 cm ,则线段EF 的长是( )A .9 cmB .10 cmC .11 cmD .12 cm11.如图是正方体的展开图,如果a 在后面,b 在下面,c 在左面,则f 在( )A.前面B.上面C.右面D.不确定12.2条直线最多有1个交点,3条直线最多有3个交点,4条直线最多有6个交点,…由此猜想,8条直线最多有( )个交点.A .32B .16C .28D .40第Ⅱ卷 非选择题(共84分)二、填空题。

初一第一单元数学试卷

初一第一单元数学试卷一、选择题(每题 3 分,共30 分)1. 下列各数中,是负数的是()A. 0B. -2C. 3D. 52. 向东走5 米记作+5 米,那么向西走3 米记作()A. +3 米B. -3 米C. 8 米D. -8 米3. -3 的绝对值是()A. -3B. 3C. -1/3D. 1/34. 下列各数中,最小的数是()A. 0B. -1C. -2D. -35. 计算:(-2)+3 =()A. 1B. -1C. 5D. -56. 计算:-5-(-3) =()A. -2B. 2C. -8D. 87. 下列计算正确的是()A. (-2)×3 = -6B. (-2)×(-3) = 6C. 2×(-3) = 6D. (-2)÷(-3) = 2/38. 一个数的相反数是5,这个数是()A. 5B. -5C. 1/5D. -1/59. 绝对值小于4 的所有整数的和是()A. 4B. 0C. 6D. -610. 若a、b 互为相反数,c、d 互为倒数,m 的绝对值是2,则m²-cd+a+b 的值是()A. 3B. 5C. 3 或5D. 3 或-5二、填空题(每题 3 分,共18 分)11. 比-3 大2 的数是______。

12. -5 的倒数是______。

13. 数轴上表示-2 和3 的两点之间的距离是______。

14. 若|x| = 3,则x =______。

15. 规定一种新运算:a*b = a² - b,则(-2)*3 =______。

16. 若|a| = 2,|b| = 3,且a<b,则a + b =______。

三、解答题(共52 分)17. 计算:(每题4 分,共16 分)-(1)12 - (-18)+(-7)-15-(2)(-8)×(-7) - 12÷(-3)-(3)(-1/2 + 2/3 - 1/4)×(-24)-(4)-2²×5 - (-2)³÷418. 化简:(每题4 分,共8 分)-(1)5x - 3y - 2x + y-(2)2(a - 2b) - 3(2a - b)19. 先化简,再求值:(8 分)- 3x²y - [2xy² - 2(xy - 3/2x²y)+xy]+3xy²,其中x = 3,y = -1/3。

初一数学第一单元测试卷

4题5题a BAC21b21212121AC E9题21F DBAD 10题21FE C B12ABDC初一数学第一单元测试卷班级 姓名 座号 评分一、选择题(每题3分,共21分)1、在平面直角坐标系中,点〔-2,4〕所在的象限是 〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、以下四个图形中,∠1和∠2是对顶角的有〔 〕个 A 1 B 2 C 3D 43、线段CD 是由线段AB 平移得到的.点A 〔-1,40〕的对应为点C 〔4,7〕,那么点B 〔-4,-1〕的对应点的坐标为D 〔 〕A 〔2,9〕B 〔5,3〕C 〔1,2〕D 〔-9,-4〕 4、如下图,∠1=∠2,那么以下结论中正确的选项是〔 〕A ∠3+∠4=180°B ∠2+∠4=180°C c ∥dD ∠1=∠35、如图,直线a b ∥,点B 在直线b 上,且AB BC ⊥,155∠=,那么2∠的度数为〔 〕 A 350 B 450 C 550 D 12506、以下不是命题的是〔 〕A 同角的余角相等.B 对顶角向同.C 平行于同一直线的两条直线.D 同旁内角互补.7、同一平面内的四条直线满足a ⊥b,b ⊥c,c ⊥d,那么以下式子成立的是〔 〕 A a ∥d B b ⊥d C a ⊥d D b ∥c 二、填空题〔每题3分,共30分〕8、平面内两条直线的位置关系有 两种. 9、如图,AB ∥CD,EF 分别交AB 、CD 于点E 、F,∠1=60°, 那么∠2=______度.10、 如图直线A B ⊥C D,∠1=380,那么∠2= 11题11、如图,每个小方格的边长为1,分别写出点的坐标A B C 12、在平面直角坐标系中,把点A 〔2,-3〕向上平移3个单位后的坐标为 13、把命题“平行于同一直线的两直线平行〞写成“如果…那么…〞的形式为14、第二象限的点P 到x 轴的距离为3,到y 轴的距离为2,那么点P 的坐标为15、如图的围棋盘放在某个平面直角坐标系内,白棋② 的坐标为〔-7,-4〕白棋④的坐标为〔-6,-8〕,那么黑棋①的坐标应该是 .15题 17题 16、假设点M a b N a b (,)(,)在第四象限,则点--+2在第 象限.17、如图,AC 平分∠DAB,∠1=∠2,填空:由于AC 平分∠DAB,所以∠1= ,所以∠2= ,ECBAB ACD EFDA三、解做题:〔每题5分,共25分〕 18、如图1,直线a 、b 、c 被直线l 所截,量得∠1=∠2=∠3,从∠1=∠2可以知道 ∥ ,它的根据是〔 〕 .从∠1=∠3可以知道 ∥ ,它的根据是 〔 〕.19、如下图,将△ABC 平移,可以得到△DEF,点B 的对应点 为点E,请画出点A 的对应点D 、点C 的对应点F 的位置.20、在河岸CD 上找一个缺口P,把河水引到村庄A,要求水流AP 最短,请在图中你画出AP 的位置,你的依据是 21、如图,BD 是∠ABC 的平分线,ED ∥BC,∠FED =∠BDE,那么EF 也是∠AED 的平分线.完成以下推理过程: ∵ BD 是∠ABC 的平分线,〔〕∴ ∠ABD=∠DBC( ) ∵ ED ∥BC()∴ ∠BDE=∠DBC( ) ∴ ∠ABD=∠BDE(等量代换), 又∵∠FED=∠BDE 〔〕∴ EF ∥BD( ), ∴ ∠AEF=∠ABD( )∴ ∠AEF=∠FED( ),所以EF 是∠AED 的平分线〔角平分线的定义〕 22、如图,每个小方格的边长为1,分别写出A 、B 、C 三点的坐标,并求出三角形ABC 的面积.D CBAEabd c321班级 姓名 座号 四、解做题〔每题6分,共24分〕23、如图,AD 是∠EAC 的平分线,AD ∥BC,∠B = 30°,你能算出∠EAD 、∠DAC 、∠C 的度数吗?为什么?24、如下图,直线a 、b 被c 、d 所截,角∠1=∠2=∠3=630, 请说明:a 与b,c•与d 的位置关系分别是什么?为什么?25、如图,这是某市局部简图,请以你喜欢的地方为坐标原点建立平面直角坐标系,并分别写出各地的坐标.体育场文化宫医院火车站宾馆市场超市26、如图,描出A 〔– 3,– 2〕、B 〔2,– 2〕、C 〔– 2,1〕、D 〔3,1〕四个点,顺次连接A 、B 、C 、D 四点组成的图形,再把四边形ABCD 平移到四边形A 1B 1C 1D 1,使B 1的坐标为〔5,-4〕.五、解做题〔每题10分,共20分〕27、如图:∠1=∠2=∠3,CD⊥AB说明〔1〕CD∥FG( 2) FG⊥AB 28、如图,假设∠1=∠2,∠C=∠D,问∠A与∠F有什么关系?并说明理由.A。

上海疁城实验学校七年级数学上册第一单元《有理数》检测卷(有答案解析)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分 2.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是A .B .C .D . 3.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( )A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯ 4.在数轴上距原点4个单位长度的点所表示的数是( ). A .4 B .-4 C .4或-4 D .2或-2 5.下列有理数的大小比较正确的是( )A .1123<B .1123->-C .1123->-D .1123-->-+ 6.如果向右走5步记为+5,那么向左走3步记为( ) A .+3 B .-3 C .+13 D .-137.计算-3-1的结果是( )A .2B .-2C .4D .-48.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m 9.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 10.6-的相反数是( )A .6B .-6C .16D .16- 11.计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .2201812.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题13.23(2)0x y -++=,则x y 为______.14.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.15.计算1-2×(32+12)的结果是 _____. 16.填空:17.把35.89543精确到百分位所得到的近似数为________.18.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.19.已知2x =,3y =,且x y <,则34x y -的值为_______.20.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.三、解答题21.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷422.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立.(1)14-25+13(2)42111|23|()823---+-⨯÷24.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.25.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.26.计算①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.3.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.5.B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.6.B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.7.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.8.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.10.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.11.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.12.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M+|-20|=|M|+|20|,∴M≥0,为非负数.故答案为B.【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题13.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 14.【解析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值大于10时n 是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.16000000 =71.610⨯.15.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12) =1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 16.166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.17.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.18.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可.【详解】解:∵a >0,b <0,|b|>|a|,∴b <-a <a <-b ,故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.19.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 20.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案.三、解答题21.(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键. 22.(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.23.(1)2;(2)4【分析】(1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.24.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】 解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.25.数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】 本题考查了数轴,熟练掌握数轴的定义是解题关键.26.①-2;②458-;③-10;④-9;⑤-13. 【分析】①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

人教版初中七年级数学上册第一单元《有理数》阶段测试(含答案解析)

一、选择题1.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .122.2--的相反数是( ) A .12-B .2-C .12D .23.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( ) A .7.26×1010 B .7.26×1011C .72.6x109D .726×1084.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a 5.如果|a |=-a ,下列成立的是( ) A .-a 一定是非负数 B .-a 一定是负数 C .|a |一定是正数D .|a |不能是06.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|7.下列运算正确的是( ) A .()22-2-21÷= B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-8.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( ) A .8个B .16个C .32个D .64个 9.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-1210.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m11.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃12.已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2± B .±1 C .2±或0 D .±1或0 13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18 B .1- C .18- D .2 14.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .61200015.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题16.数轴上表示有理数-3.5与4.5两点的距离是___________.17.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.18.数轴上表示 1 的点和表示﹣2 的点的距离是_____. 19.数轴上A 、B 两点所表示的有理数的和是 ________.20.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数 21.计算1-2×(32+12)的结果是 _____. 22.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______.23.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.24.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______. 25.一个数的25是165-,则这个数是______.26.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.三、解答题27.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯ 28.计算: (1)()21112424248⎛⎫-+--+⨯-⎪⎝⎭ (2)()()1178245122-÷-⨯--⨯+÷ 29.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ; (2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了? 30.计算: (1)231+-+; (2)()3202111024⎡⎤-⨯+-÷⎣⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学第一单元检测题
姓名 学号 得分
一、精心选一选(每题3分,共36分)
1. 如果高出海平面20米,记作+20米,那么-30米表示 ( )
(A)不足30米;(B)低于海平面30米; (C)高出海平面30米;(D)低于海平面20米
2.仔细思考以下各对量:
①胜二局与负三局;②气温上升30 C与气温下降30 C;③盈利5万元与支出5万元;
④增加10%与减少20%。其中具有相反意义的量有 ( )
﹙A)1 对 ﹙B﹚2 对 (C)3 对 (D)4对
3.下列说法错误的是 ( )
(A)整数和分数统称有理数; (B)正分数和负分数统称分数;
(C)正数和负数统称有理数; (D)正整数、负整数和零统称整数。
4. 零是 ( )
A.最小的有理数。 B.最小的正整数。
C.最小的自然数。 D.最小的整数。
5.下列数轴的画法中,正确的是 ( )

A
1
-1

0

B
0

1
-1

C
0

1
-1

D
0

6.下列各对数中,互为相反数的是 ( )
(A)21和0.2 (B)32和23 (C)—1.75和431 (D)2和2
7.大于—2.6而小于3的整数共有 ( )
A. 7个 B. 5个 C. 6个 D. 4个
8.下列说法正确的是 ( )
A.若两数的绝对值相等,则这两数必相等
B.若两数不相等,则这两数的绝对值一定不相等
C.若两数相等,则这两数的绝对值相等
D.两数比较大小,绝对值大的数大
9.冬季某天我国三个城市的最高气温分别是-10°C,1°C,-7°C,把它们从高到低排列正
确的是 ( )
A、-10°C, -7°C,1°C B、-7°C, -10°C,1°C
C、1°C, -7°C, -10°C D、1°C,-10°C,-7°C
10.一个数的相反数是最大的负整数,则这个数是 ( )
(A)—1 (B)1 (C)0 (D)±1
11.数轴上到数—2所表示的点的距离为4的点所表示的数是 ( )
(A)—6 (B)6 (C)2 (D)—6或2
12.一个数的绝对值等于这个数本身,这个数是 ( )
(A)0 (B)正数 (C)非正数 (D)非负数
二、细心填一填(每题3分,共30分)
13.若上升15米记作+15米,则-8米表示 ______
14.写出一个负分数: 。
15.一艘潜艇正在水下–50米处执行任务,距它正上方30米处有一条鲨鱼正好游过,这条
鲨鱼所处位置的高度为________.
16.规定了__________、____________、_____________的直线叫数轴.
17.用“<”号或“>”号填空: -9 -11。
18.抽查四个零件的长度,超过为正,不足为负:(1)-0.3;(2)-0.2;(3)0.4;
(4)0.05.则其中误差最大的是 。(填序号)
19.一个点从数轴上的原点出发,先向右移动3个单位长度,再向左移动8个单位长度到达
P点,那么P点所表示的数是_________.
20. 比—2.99小的最大整数是__________
21.绝对值大于3而不大于6的整数分别是 ________________________ 。

22.在数轴上,绝对值小于3并且离—2两个单位长度的点所表示的数是_____________.
三、认真做一做(本题共有4小题,共34分)
23.(本题4分)12325.0

24.(本题4分)2135101
25. (本题12分)把下列各数的序号填在相应的数集内:
①1 ②-35 ③+3.2 ④0 ⑤13 • ⑥-5 ⑦+108 ⑧-6.5 ⑨-647.
(1)正整数集{ „}
(2)正分数集{ „}
(3)负分数集{ „}
(4)有理数集{ „}
26.(本题6分) 将下列各数在数轴上表示出来.
-4.5, 5, 0, -3, 211, -1。

27.(本题8分)出租车司机小李某天下午营运全是在东西向的人民大道上进行的.•如果
规定向东为正,他这天下午行车里程(单位:千米)如下:
+15, -2, +5, -1, +10, -3, -2, +12, +4, -5, +6.
(1)将最后一名乘客送到目的地时,小李一共行了多少千米?

(2)若汽车耗油量为0.2升/千米,这天下午小李共耗油多少升?
测试后分析:
一、试题难度
从测试结果和成绩来看,本试题难度适中,着重基础知识的考核,有利于增强学生的学
习积极性。当然对少数同学来讲,此试题还是存在一定的难度,对这部分同学,有待加
强基础知识的学习。
二、存在的问题
从这次试卷测试的结果来看,就个人意见分析本张试题存在的问题大致有以下几个方
面:
1. 一部分同学存在基础知识掌握不牢,对一些基本的概念理解不透彻,该记的地方没
有记住。
2. 解题格式不符合要求,没有学会有条理的解决 问题。
3. 做题不够仔细认真,没有养成检查的良好习惯,存在过失性丢分。
4. 还没有掌握并灵活应用好的解题方法和解题技巧。
以上就是我个人通过本次测试,就学生在考试中存在的问题进行的简单分析,有不足之
处还望各位老师多提出指导意见。

相关文档
最新文档