函数的最大值和最小值-
3.5 函数的极值与最大值最小值

因为在1的左右邻域内f (x)0
所以f(x)在1处没有极值 同理 f(x)在1处也没有极值
首页
上页
返回
下页
结束
铃
例4已知f(x)x3+ax2bx在x=1处有极值-12,试确定常系数a与b 解 因为f(x)x3+ax2bx,所以 f (x)3x2+2ax+b 因为f(1)=-12为极值点,所以,令f (1)0
下页 结束 铃 首页 上页 返回
三、数学建模——最优化问题
1.数学建模 数学模型是用数学符号、数学公式、程序、图、表 刻画客观事物的本质的属性、结构与联系。创建一个 数学模型的全过程称为数学建模。为解决一个实际问 题,建立数学模型是一种有效的重要方法.
2.最优化模型 给定一个函数(称为目标函数),寻找自变量的一个取值使得 对于定义域中所有的情况中,目标函数取得最小值或者最大 值.
f (x)
f(x)
↗
不可导
极大值0
↘
0
极小值
1 2
↗
(4)函数f(x)在区间( 0)和(1 )单调增加, 在区间 (0 1)单调减少. 在点x0处有极大值0,在点x1处有极小值-1/2
首页 上页 返回 下页 结束 铃
定理3(第二充分条件)
设函数f(x)在点x0处具有二阶导数且f (x0)0 f (x0)0 那么 >>>证明 (2)当f (x0)0时 函数f(x)在x0处取得极小值
M
注意:极值在哪些点处取得?
m
驻点 + 奇点
x1 x2
首页
x3 x4 x5
上页 返回 下页 结束 铃
最大值和最小值的求法 (1)求出函数f(x)在(a b)内的驻点和不可导点 设这此点
函数的极值与最大值最小值

lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n
则
0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.
函数的极值与最大值最小值

x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.
[方案]三角函数中的最大值与最小值
![[方案]三角函数中的最大值与最小值](https://img.taocdn.com/s3/m/251df01a4b7302768e9951e79b89680202d86b50.png)
三 角 函 数 中 的 最 大 值 与 最 小 值湖南省南县一中 陈敬波(*****************)(413200)三角函数的最值问题是对三角函数的概念、图象与性质以及诱导公式、同角间的基本关系、两角的和与差公式的综合考查,也是函数思想的具体体现.解决三角函数的最值问题可通过适当的三角变换或代数换元,化归为某种三角函数或代数函数,再利用三角函数的有界性或常用的求函数最值的方法去处理,通常有以下六种类型.(1) sin y a x b =+(或cos y a x b =+)型的函数此类函数利用sin 1x ≤(或cos 1x ≤)即可求解,max min ||,|a|+b,y a b y =+=-显然这里x R ∈.例1.求sin cos 6y x x π⎛⎫=-⎪⎝⎭的最大值与最小值.解:111sin cos sin 2sin sin 2,6266264y x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=--=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()max min 1111131,1.244244y y ∴=⨯-==⨯--=-(若不要求记忆和差与积互化公式,则按下列解法)解:21111cos 2cos cos cos cos 22222111111112cos 2sin 2cos 2sin 24442224264x y x x x x x x x x x x x x π⎫+=-=-=-⨯⎪⎪⎝⎭⎛⎫⎛⎫=--=⨯--=-- ⎪ ⎪⎝⎭⎝⎭()max min 1111131,1.244244y y ∴=⨯-==⨯--=-(2) sin cos y a x b x =+型的函数()αϕ+其中辅助角ϕ所在的象限由a,b 的符号确定,角ϕ的值由tan ba ϕ=确定.例2.当22x ππ-≤≤时,函数()sin f x x x =的( )A. 最大值是1,最小值是-1 B. 最大值是1,最小值是-121C. 最大值是2,最小值是-2 D. 最大值是2,最小值是-1解析:()sin 2sin .3f x x x x π⎛⎫==+⎪⎝⎭()()max min 5,,22636,,2,3261,,2 1.3622x x x x f x x x f x πππππππππππ-≤≤∴-≤+≤∴+===⎛⎫+=-=-=⨯-=- ⎪⎝⎭故选(D)(3) 22sin sin cos cos y a x b x x c x =++型的函数此类函数可先降次,再整理转化为()sin y A x B ωϕ=++的形式来解决.例3.求22sin 2sin cos 3cos y x x x x =++的最小值,并求y 取最小值时的x 的集合.解:()22222sin 2sin cos 3cos sin cos 2sin cos 2cos y x x x x x x x x x=++=+++()1sin 21cos 2sin 2cos 2224x x x x x π⎛⎫=+++=++=++ ⎪⎝⎭,∴当sin 214x π⎛⎫+=- ⎪⎝⎭即()322,428x k x k k Z πππππ+=-+=-∈时,y 取最小值2,使y 取最小值的x 的集合为3|,.8x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭(4) 2sin cos y a x b x c =++型的函数此类函数可转化为形如()211y At Bt C t =++-≤≤的二次函数,从而讨论其最值.例4.求函数2cos 2sin y x a x a =--(a 为定值)的最大值M.解: ()()2222cos 2sin 1sin 2sin sin 1.y x a x a x a x a x a a a =--=---=-++-+令sin x t =,则()()221||1.y t a a a t =-++-+≤如下图(1)若-a<-1,即a>1,则当t=-1时,有最大值M=-(-1+a)2+a 2-a+1=a;(2)若-1≤-a ≤1,即-1≤a ≤1,则当t=-a 时,有最大值M=a 2-a+1;(3)若-a>1,即a<-1,则当t=1时,有最大值M=-3a.注:本例借助函数思想,把所求的问题转化为给定区间上的二次函数的最值问题.(5) sin cos a x cy b x d+=+型的函数此类函数可转化为()()sin x g y ϕ+=去处理,或利用万能公式换元后用判别去处理.例5.求下列函数的最大值与最小值.()()()3cos 2cos 1;2.2sin 2cos x xy y x R x x-+==∈+-解:(1)原函数可变形为sin cos 32,y x x y +=-即()sin x ϕ+=又()|sin |1x ϕ+≤()22213213128022y y y y y ≤⇔-≤+⇔-+≤⇔≤≤故所求最小值与最大值分别为:2(2)原函数可转化为()21cos ,1y x y -=+则()221131030,1y y y y -≤⇒-+≤+解得min max 113,, 3.33y y y ≤≤∴==(6) 巧用换元法转化为代数函数的最值问题① 对于含有s i n c o s ,s i n c o x x x x ±的函数的最值问题,常用的解决方法是令sin cos ,x x t ±=||t ,将sin cos x x 转化为t 的关系式,最终化归为二次函数或其他函数的最值问题.例6.已知0a <≤求函数()()sin cos y x a x a =++的最值解: ()()()2sin cos sin cos sin cos y x a x a x x a x x a=++=+++设sin cos x x t +=,则21||cos ,2t t x x -≤=()222211122t y at a t a a -⎡⎤∴=++=++-⎣⎦.当t a =-时,2min 12a y -=;当t =, 2max 1.2y a =++例7.求函数sin 21sin cos xy x x =+-的最大值与最小值.解: sin 22sin cos 1sin cos 1sin cos x x xy x x x x==+-+-令:sin cos ,x x t -=则||t ≤且1t ≠-原函数变为:211.1t y t t-==+-则[11)(1,1y ∈--min max 11y y ==② 首先利用换元法转化为代数函数by ax x=+,再利用函数的单调性求最值.例8.已知1sin cos ,0,sin cos 2y x x x x x π⎛⎫=+∈ ⎪⎝⎭,求y 的最小值.解析:令11sin cos sin 2,0,,(0,]222u x x x x u π⎛⎫==∈∈ ⎪⎝⎭则11,(0,].2y u u u =+∈由函数的单调性的定义易证1y u u =+在1(0,]2u ∈上是减函数,min 152.22y ∴=+=。
函数最大值的求法

函数最大值的求法
---------------------------------------------------------------------- 函数最值分为函数最小值与函数最大值。
简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值,下面是求最大值和最小值的方法。
一、求函数的最大值和最小值:
f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的最大值和最小值。
一般而言,可以把函数化简,化简成为:
f(x)=k (ax+b)2+c的形式,在x的定义域内取值。
当k>0时,k(ax+b)2≥0,f(x)有极小值c。
当k<0时,k(ax+b)2≤0,f(x)有最大值c。
二、常见的求函数最值方法有:
1、配方法:形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。
2、判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程.由于, 0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。
3、利用函数的单调性﹒首先明确函数的定义域和单调性,再求最值。
4、利用均值不等式,形如的函数,及,注意正,定,等的应用条件,即: a,b均为正数,是定值,a=b的等号是否成立。
5、换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。
最大值与最小值

知识探究
������
从图形中找出极值,最值
没有极值 最大值
������(������)
������
最小值 ������(������)
从图形中找出极值,最值
������1
������
������
极大值 无
极小值 ������ ������1
最大值 ������ ������
最大值与最小值
知 识回顾
一、函数极值的定义
一般地,设函数y=f(x)在x=x0及其附近有定义,如果f(x0)的 值比x0附近所有点的函数值都大,我们就说f(x0)是函数的一个极大 值,记作y极大值= f(x0) ,x0是极大值点.如果f(x0)的值比x0附近所 有点的函数值都小,我们就说f(x0)是函数的一个极小值.记作 y极小值= f(x0) ,x0是极小值点.极大值与极小值统称为极值.
最小值 ������ ������1
从图形中找出极值,最值
������
������
������1
极大值 ������ ������1 极小值
无
最大值 ������ ������1 最小值 ������ ������
从图形中找出极值,最值
������ ������1 ������2
������3 ������4 ������5
������ 0 ������′(������) ������(������) 0
(0,
2 3
������)
+
2 ������
3
(2 ������, 4 ������)
33
4 ������
3
函数的最大值与最小值
(3)函数在其定义域上的最大值与最小值至多各有一个, 而函数的极值则可能不止一个,也可能没有极值,并且 极大值(极小值)不一定就是最大值(最小值),但除端点 外在区间内部的最大值(或最小值),则一定是极大值 (或极小值).
(4)如果函数不在闭区间[a,b]上可导,则在确定函数的最 值时,不仅比较该函数各导数为零的点与端点处的值, 还要比较函数在定义域内各不可导的点处的值. (5)在解决实际应用问题中,如果函数在区间内只有一个 极值点(这样的函数称为单峰函数),那么要根据实际 意义判定是最大值还是最小值即可,不必再与端点的 函数值进行比较.
练习2:求函数f(x)=p2x2(1-x)p(p是正数)在[0,1]上的最 大值. 2 p1 解: f ( x) p x(1 x) [2 (2 p) x].
2 . 令 f ( x ) 0,解得 x1 0, x2 1, x3 2 p 2 p 2 p ) 4( ) , 在[0,1]上,有f(0)=0,f(1)=0, f ( 2 p 2 p p 2 p 故所求最大值是4( ) . 2 p
x1 (0,2), 所以当 x 2 时, S ( x )max 3 2 3 32 3 ,0) 时,矩形的最大面积是 . 因此当点B为( 2 2 9
2 3
3 32 3 . 9
3
例2:已知x,y为正实数,且x2-2x+4y2=0,求xy的最大值. 解:由x2-2x+4y2=0得:(x-1)2+4y2=1.
1 1 2 2 例3:证明不等式: ln x ( x 1) 1 (1 x )3 ( x 0). x 2 3 1 1 2 2 3 f ( x ) ln x ( x 1 ) ( x 1 ) ( x 0). 证 :设 x 2 3 1 1 2 3 2x 1 则 f ( x ) 2 ( x 1) 2( x 1) ( x 1) 2 , x x x
excel中最大值最小值公式
excel中最大值最小值公式
在Excel中,最大值和最小值可以通过以下公式来计算:
1.最大值:使用MAX函数可以找到一系列数值中的最大值。
例如,要在A1到A10单元格范围内找到最大值,可以使用以下公式:
=MAX(A1:A10)。
2.最小值:使用MIN函数可以找到一系列数值中的最小值。
例如,要在A1到A10单元格范围内找到最小值,可以使用以下公式:
=MIN(A1:A10)。
拓展:
除了基本的MAX和MIN函数,还有一些其他函数可以用来计算最
大值和最小值:
1.最大值(最小值)函数(MAXA和MINA):这些函数可以计算包
括文本和逻辑值在内的数据范围的最大值(最小值)。
例如,要在A1
到A10单元格范围内找到包括文本和逻辑值的最大值,可以使用以下
公式:=MAXA(A1:A10)。
2.多条件最大值(最小值)函数(MAXIFS和MINIFS):这些函数
可以根据满足指定条件的数据范围来计算最大值(最小值)。
例如,
要在A1到A10单元格范围内找到满足B1到B10单元格范围内条件为"
苹果"的最大值,可以使用以下公式:=MAXIFS(A1:A10, B1:B10, "苹果")。
3.条件最大值(最小值)函数(LARGE和SMALL):这些函数可以
计算指定排名的最大值(最小值)。
例如,要在A1到A10单元格范围
内找到第二大的值,可以使用以下公式:=LARGE(A1:A10, 2)。
这些公式和函数可以帮助在Excel中准确地计算最大值和最小值,并根据需要进行拓展和定制。
大学数学_3_4 函数的最大值与最小值
例5 3 甲船以 20nmile / h 的速度向东行驶,同一时间 乙船在甲船的正北 82nmile 处以16nmile / h 的速度向南行 驶,问经过多少时间,甲乙两船相距最近. y 82 解 设在时刻 t 0 时甲船位于 O 点, 16t 乙船位于甲船正北82nmile 处,在时刻 t B (单位:h)甲船由点 O 出发向东行驶了 20t (单位:nmile)至A点,乙船向南行驶 O 20t A x 了16t (单位:nmile)至B点(图 3-7) 图3-7 甲乙两船的距离为
内容小结
1. 最值点应在极值点和边界点上找
2. 应用题可根据问题的实际意义判别
作业
P134 1(1), (5), 2, 3, 4
由这个例子看出,为什么我们经常用n次测量值的算 术平均值作为所测量值的近似值. 例题中x-xi代表第i次的 测量值xi与真值x的误差,由于x-xi(i=1,2, …,n)可为正 也可为负,不能用它们的和作为n次测量值的总误差,以 免正负误差相抵消,因此一般采用n次测量误差的平方和 作为总误差,寻求如何取近似值能使这个总误差最小. 这 就是通常所谓的最小二乘法.
2 ( x 差平方和 1
x1 x2 n
xn
( x x2 )2 ( x xn ) 2 为最小. 2 2 2 y ( x x ) ( x x ) ( x x ) 证 记 1 2 n . 现求y的最小
值.
y 2[( x x1 ) ( x x2 ) ( x xn )] 2[nx ( x1 x2 xn )]. 令 y 0 得唯一驻点 1 x ( x1 x2 xn ). n 1 又y一定存在最小值,故当x ( x1 x2 xn ).时误差平 n 方和最小.
excel中最大值最小值公式
excel中最大值最小值公式在Excel中,可以使用以下公式来找到最大值和最小值:1.最大值:使用MAX函数,语法为MAX(range)。
它将返回一组数值中的最大值。
例如,要找到A1:A10范围内的最大值,可以使用=MAX(A1:A10)。
2.最小值:使用MIN函数,语法为MIN(range)。
它将返回一组数值中的最小值。
例如,要找到A1:A10范围内的最小值,可以使用=MIN(A1:A10)。
拓展:除了以上基本的最大值和最小值公式,Excel还提供了一些其他有用的函数来处理数值数据:1.大于等于最小值:使用LARGE函数,语法为LARGE(range,k)。
它将返回一组数值中的第k个最大值。
例如,要找到A1:A10范围内的第2个最大值,可以使用=LARGE(A1:A10,2)。
2.小于等于最大值:使用SMALL函数,语法为SMALL(range,k)。
它将返回一组数值中的第k个最小值。
例如,要找到A1:A10范围内的第2个最小值,可以使用=SMALL(A1:A10,2)。
3.多条件最大值和最小值:使用MAXIFS和MINIFS函数。
这些函数可以根据指定的条件在给定范围内筛选数据,并返回满足条件的最大或最小值。
例如,要找到A1:A10范围内满足条件B1:B10>5的最大值,可以使用=MAXIFS(A1:A10,B1:B10,">5")。
4.数值筛选:使用FILTER函数。
这个函数可以根据指定的条件在给定范围内筛选数据,并返回满足条件的数值。
例如,要筛选出A1:A10范围内大于5的数值,可以使用=FILTER(A1:A10,A1:A10>5)。
总结起来,Excel中有多种方法可以找到最大值和最小值,并且还有其他函数可以处理更复杂的数值数据筛选和计算。