5.2 北师大版八年级数学上册求解二元一次方程组(二)
北师大版八年级数学上册 第五章 解二元一次方程组50题配完整答案

北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
北师版八年级数学(上)第五章二元一次方程组分节练习及答案【含知识点】

八(上) 第五章二元一次方程组 分节练习第1节 认识二元一次方程组01、【基础题】若方程4233=+nmy x 是二元一次方程,那么n m +的值是______. 02、【基础题】下面4组数值中,哪些是二元一次方程102=+y x 的解?(1)⎩⎨⎧==62y x - (2)⎩⎨⎧==43y x (3)⎩⎨⎧==34y x (4)⎩⎨⎧==26-y x2.1、【基础题】二元一次方程组⎩⎨⎧xy y x 2102==+的解是______.(1)⎩⎨⎧==34y x (2)⎩⎨⎧==63y x (3)⎩⎨⎧==42y x (4)⎩⎨⎧==24y x 2.2、【基础题】若⎩⎨⎧2213-=+=m y m x 是二元一次方程1034=-y x 的一个解,求m 的值.3、根据题意列方程组:(1)小明从邮局买了面值50分和80分的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?(2)周末,8个人去红山公园玩,买门票一共花了34元,已知每张成人票5元,每张儿童票3元,请问8个人中有几个成人、几个儿童?(3)某班共有学生45人,其中男生比女生的2倍少9人,则该班男生、女生各多少人?(4)老牛比小马多驮了2个包裹,如果把小马驮的其中1个包裹放到老牛背上,那么老牛的包裹是小马的2倍,请问老牛和小马开始各驮了多少包裹?(5)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本,又差了7本.共有多少本笔记本、多少个同学?第2节 求解二元一次方程组4、【基础题】 用代入消元法解下列方程组:(1)⎩⎨⎧122=+=y x x y (2)⎪⎩⎪⎨⎧653425=+-=y x y x (3)⎩⎨⎧=711y x y x -=+ (4)⎩⎨⎧=32923y x y x +=- (5)⎩⎨⎧=x y y x 23=- (6)⎩⎨⎧=825y x y x +=+ (7)⎩⎨⎧=42534y x y x -=+ (8)⎪⎩⎪⎨⎧=123222n m n m +=- (9)⎩⎨⎧=31423+=+y x y x (10)⎩⎨⎧=1341632y x y x +=+5、【基础题】 用加减消元法解下列方程组:(1)⎩⎨⎧=1929327-+=-y x y x ; (2)⎩⎨⎧=156356-+=-y x y x ; (3)⎩⎨⎧=52534--=+t s t s ; (4)⎩⎨⎧=547965--=-y x y x ;(5)⎩⎨⎧=17431232y x y x +=+; (6)⎩⎨⎧=)5(3)1(55)1(3+-+=-x y y x ;5.1、【基础题】用加减消元法解下列方程组: (1)⎩⎨⎧=31351434y x y x +=-; (2)⎩⎨⎧=23342152y x y x +=-- ; (3)⎩⎨⎧=17541974y x y x -=-+; (4);(5)⎪⎩⎪⎨⎧=132353y x y x -=-; (6)⎪⎩⎪⎨⎧1)3(3241=--+=+x y x x y ; (7)5.2、【综合Ⅰ】 如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解,那么a ,b 的值是( )(A ).⎩⎨⎧=-=01b a (B ).⎩⎨⎧==01b a (C ).⎩⎨⎧==10b a (D ).⎩⎨⎧-==1b a第3节 应用二元一次方程组——鸡兔同笼6、【综合Ⅰ】 列方程解应用题:(1)小梅家有鸡也有兔,鸡和兔共有头16个,鸡和兔共有脚44只,问:小梅家的鸡与兔各有多少只?(2)今有雉(鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(3)今有牛五、羊二,直金十两;牛二、羊五,直金八两.请问牛、羊各直金几何? 题目大意是:5头牛和2只羊共价值10两金子,2头牛和5只羊共价值8两金子,每头牛、每只羊各价值多少两金子.(4)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马? (5)《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元. 问有多少人?该物品价值多少元?6.1、【综合Ⅱ】 列方程解应用题:(1)以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.请问,绳长、井深各几何?(2)用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺,那么这根绳子有多长?环绕大树一周需要多少尺?第4节 应用二元一次方程组——增收节支7、【综合Ⅱ】列方程解应用题:(1)某工厂去年的利润(总产值减总支出)为200万元. 今年总产值比去年增加20%,总支出比去年减少10%,今年的利润为780万元. 去年的总产值、总支出是多少万元?(2)一、二班共有100名学生,他们的体育达标率(达到标准的百分率)为81%,如果一班学生的体育达标率是87.5%,二班学生的体育达标率为75%,那么一、二两班各有多少名学生?(3)医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质,若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?(4)甲、乙两人从相距36 km的两地相向而行,如果甲比乙先走2 h,那么他们在乙出发2.5 h后相遇;如果乙比甲先走2 h,那么他们在甲出发3 h后相遇,请问甲、乙两人的速度各是多少?7.1、【综合Ⅱ】列方程解应用题:(1)某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元,请问两种客房各租住了多少间?(2)某体育场的环形跑道长400 m,甲、乙分别以一定的速度练习长跑和自行车,如果反向而行,那么他们每隔30 s相遇一次;如果同向而行,那么每隔80 s乙就追上甲一次. 甲、乙的速度分别是多少?(3)某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共40 kg,到市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:他当天卖完这些黄瓜和茄子可赚多少元?第5节应用二元一次方程组——里程碑上的数8、【综合Ⅱ】列方程解应用题:(1)小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来的两个加数分别是多少?(2)有一个两位数,个位上的数字比十位上的数字的3倍多2,若把个位数字与十位数字对调,所得新的两位数比原来的两位数的3倍少2,求原来的两位数.(3)两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边接着写较小的两位数,也得到一个四位数. 已知前一个四位数比后一个四位数大2178,求这两个两位数.(4)一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1. 这个两位数是多少?8.1、【综合Ⅱ】列方程解应用题:(1)小颖家离学校1880 m,其中有一段为上坡路,另一段为下坡路,她跑步去学校共用了16 min,已知小颖在上坡路上的平均速度是4.8 km/h,在下坡路上的平均速度是12 km/h. 请问小颖上坡、下坡各用了多长时间?(2)某商店准备用两种价格分别为36 元/ kg 和20元/ kg 的糖果混合成杂拌糖果出售,混合后糖果的价格是28元/ kg 。
北师大版数学八年级上册5.2.1解二元一次方程组代入消元法教学设计

4.各小组展示解题成果,分享代入消元法的应用经验。其他小组认真倾听,互相学习,共同提高。
(四)课堂练习,500字
1.教师出示几道不同难度的课堂练习题,要求学生在规定时间内独立完成。
2.学生认真审题,运用代入消元法解答习题,教师巡回检查学生的解题过程,及时发现问题并进行个别辅导。
5.合作交流,拓展思维
组织学生进行小组讨论,分享解题心得和技巧。通过合作交流,培养学生的团队意识和沟通能力,拓展学生的思维。
6.总结反馈,查漏补缺
在课堂尾声,教师带领学生总结本节课所学内容,强调重点和难点。同时,鼓励学生提出疑问,及时解答,帮助学生查漏补缺。
7.课后作业,巩固提高
布置适量的课后作业,让学生在课后对所学知识进行巩固。作业难度要适中,既能巩固基础知识,又能提高学生的解题能力。
3.教师选取部分学生的答案进行展示,组织学生共同分析解题思路和答案的正确性。
4.针对学生在练习过程中出现的问题,教师进行总结,强调注意事项,提高学生的解题能力。
(五)总结归纳,500字
1.教师带领学生回顾本节课所学内容,总结代入消元法的概念、原理、操作步骤和应用技巧。
2.学生分享自己在学习代入消元法过程中的收获和感悟,提出疑问,教师及时解答。
3.讲解示范,突破难点
针对学生在探究过程中遇到的问题,教师进行讲解和示范,帮助学生掌握代入消元法的适用条件和计算方法。同时,强调注意事项,降低学生在解题过程中的错误率。
4.练习巩固,提高能力
设计不同难度的习题,让学生独立完成。在练习过程中,教师巡回指导,针对学生的问题进行个别辅导。通过练习,使学生熟练掌握代入消元法,提高解题能力。
2.作业难度分层,以满足不同层次学生的需求。
北师大版八年级数学上册5.2.2求解二元一次方程教学设计

(一)教学重点
1.理解二元一次方程组的概念,掌握代入法、消元法求解二元一次方程组。
2.能够根据实际问题列出二元一次方程组,并运用所学方法解决实际问题。
3.理解二元一次方程组的几何意义,培养学生的空间想象力和直观思维能力。
(二)教学难点
1.对二元一次方程组的求解方法,尤其是消元法的掌握。
1.强化学生对二元一次方程组概念的理解,通过典型例题引导学生将实际问题转化为数学方程。
2.注重培养学生的解题思路,让学生在掌握代入法、消元法的基础上,学会灵活运用。
3.针对学生团队合作能力的不足,教学中应多设计小组讨论、合作探究的环节,提高学生的团队协作能力。
4.关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导和帮助,使全体学生都能在原有基础上得到提高。
五、作业布置
为了使学生能够更好地巩固本节课所学的知识,特布置以下作业:
1.必做题:
(1)根据课堂上讲解的代入法、消元法,求解以下二元一次方程组:
① 2x + 3y = 8,x - y = 1
② 5x - 4y = 3,3x + 2y = 19
③ 4x + 7y = 25,6x - 5y = 1
(2)运用二元一次方程组解决实际问题,例如:某商店举行促销活动,购买A商品可享受8折优惠,购买B商品满100元减20元。若小明购买A商品3件和B商品2件,总共花费360元,请问A商品和B商品的原价分别是多少?
7.跟踪辅导,关注个体差异
课后对学生的学习情况进行跟踪辅导,关注个体差异,针对学生的薄弱环节给予个性化的指导,使全体学生都能在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
在这一阶段,我将通过一个生活情境的引入,激发学生对二元一次方程组的兴趣。我会讲述一个关于两个好朋友小明和小红去购物的问题:他们一起去商场,小明看中了一件衣服,小红看中了一个玩具。他们决定用自己的零花钱合买,但总共只有一定数量的钱。如果衣服的价格是x元,玩具的价格是y元,他们总共带了z元,那么如何找出x和y的值,使得他们正好用完所有的钱?
【志鸿全优设计】2013-2014学年八年级数学上册 第五章 2求解二元一次方程组例题与讲解 北师大

2 求解二元一次方程组1.用代入消元法解二元一次方程组(1)代入法的定义:在二元一次方程组中,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.这种解方程组的方法称为代入消元法,简称代入法.(2)代入法解二元一次方程组的基本思想是:通过代入达到消元的目的,从而将解二元一次方程组转化为解一元一次方程.其步骤为:①变形:从方程组中选一个系数比较简单的方程,将这个方程化为用含一个字母的代数式表示另一个字母.例如y ,用含x 的代数式表示出来,得y =ax +b .②代入:将y =ax +b 代入另一个方程中,消去y ,得到一个关于x 的一元一次方程. ③解元:解所得的一元一次方程,求出x 的值.④求值:把求得的x 的值代入y =ax +b 中,求出y 的值,从而得到方程组的解. ⑤把求得的x ,y 的值联立起来就是方程组的解. 谈重点代入消元法解二元一次方程组代入消元法是通过代入将“二元”变为“一元”的,体现了“转化”的思想方法.对于一般形式的二元一次方程用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程,将要消的元用含另一个未知数的代数式表示,再把它代入没有变形的方程中去.这样就把二元一次方程组转化为一元一次方程了.总之,用代入消元法解二元一次方程组时,一定要使变形后的方程比较简单或代入消元后化简比较容易,这样不但避免错误,还能提高运算速度.【例1-1】 解方程组:⎩⎪⎨⎪⎧ 3x -y =5,2x +3y =7.①②分析:方程①中y 的系数为-1,容易把它化为用含x 的代数式表示y ,故把①变形为y =3x -5③,然后代入方程②转化为关于x 的一元一次方程求出x ,再代入③求出y 即可.解:把①变形为y =3x -5.③ 把③代入②,得2x +3(3x -5)=7. 解得xx =2代入③,得y =1.故原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.析规律用代入消元法解方程的条件当有一个方程的某个未知数的系数为1或-1时,选择该方程变形,并用含另一个未知数的代数式表示该未知数,然后代入另一个方程.【例1-2】 解方程组:⎩⎪⎨⎪⎧2x -7y =3,3x -8y =10.分析:这两个方程中未知数的系数都不是1,那么如何求解呢?消哪一个未知数呢?如果将2x -7y =3写成用一个未知数来表示另一个未知数,那么用x 表示y ,还是用y 表示x 好呢?观察方程组,因为x 的系数为正数,且系数也较小,所以应用y 来表示x 较好.解:由方程2x -7y =3变形,得x =7y +32.将x =7y +32代入方程3x -8y =10,得3×7y +32-8y =10,解得y =115.再把y =115代入x =7y +32,得x =465.因此原方程组的解是⎩⎪⎨⎪⎧x =465,y =115.2.用加减消元法解二元一次方程组(1)加减法的定义:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.(2)加减法的基本思想是:解二元一次方程组时,使方程组中同一个未知数的系数相等或是互为相反数,再将所得两个方程的两边分别相减或相加,消去一个未知数,从而转化为一元一次方程.其步骤为:①变形:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就要用适当的数去乘方程的两边,使其中一个未知数的系数相等或互为相反数.②加减:当同一个未知数的系数互为相反数时,用加法消去这个未知数,得到关于另一个未知数的一元一次方程;当同一个未知数的系数相等时,用减法消去这个未知数,得到关于另一个未知数的一元一次方程.③解元:解所得的一元一次方程,求出未知数的值.④求值:把求出的未知数的值代入原方程组中的任一个方程中,求出另一个未知数的值,从而得到方程组的解.⑤求得的两个未知数的值联立起来就是方程组的解. 谈重点加减消元法解二元一次方程组当方程组中两个未知数的系数均不成整数倍时,一般选择系数较为简单的未知数消元,将两个方程分别乘以某个数,使该未知数的系数的绝对值相等,再加减消元求解,但必须注意,在方程两边同乘以某个数时,每一项都要乘,尤其常数项不要漏乘.【例2-1】 解方程组:⎩⎪⎨⎪⎧3x -5y =4,① 2x +5y =1.②分析:两个方程中未知数y 的系数正好互为相反数,可将两方程直接相加消元求出x ,再代入①或②求出y 即可.解:①+②,得5x =5,x =1. 把x =1代入②,得y =-15.故原方程组的解为⎩⎪⎨⎪⎧x =1,y =-15.点技巧巧用加减消元法当方程组中两个方程中的同一个未知数的系数的绝对值相等时,可直接用加减法进行消元.【例2-2】 解方程组:⎩⎪⎨⎪⎧3x -2y =1, x +3y =4.①②分析:两个方程中的未知数x 的系数成倍数关系,可通过将x 的系数化成相等后消元,求出y ,再代入②求出x 即可.解:由②×3,得3x +9y =12.③③-①,得11y =11,yy =1代入②,得x ⎩⎪⎨⎪⎧x =1,y =1.析规律变系数,用加减消元法解方程组如果方程组中未知数的系数的绝对值不相等,这时可以变化其中一个未知数的系数,使其系数的绝对值相等.3.灵活选用代入法或加减法解二元一次方程组本节的重点是灵活选用代入法或加减法解二元一次方程组,特别是在实际情景中的应用,难点是需变形的二元一次方程组的求解问题.【例3-1】 解方程组:错误!①,②分析:方程组中的系数是分数或小数,一般要化成整数后再消元.方程①可化为4x +3y =12,方程②可化为3x +4y =16,利用加减法求解即可.解:①×12,②×10得⎩⎪⎨⎪⎧4x +3y =12,③3x +4y =16.④③+④,得7x +7y =28,即x +y =4.⑤ ③-④,得x -y =-4.⑥解由⑤、⑥组成的方程组,得⎩⎪⎨⎪⎧x =0,y =4.点评:当二元一次方程组的形式较复杂时,一般要把它化为形式简单的方程组,再消元求解.【例3-2】 解方程组:⎩⎪⎨⎪⎧y -2=x -26-x -y2,2x =x +2y 3+2.分析:先化简,再观察系数的特点,再选择方法求解.解:化简方程组,得 ⎩⎪⎨⎪⎧2x +3y =10,①5x -2y =6.②①×2+②×3,得19x =38,x =2. 把x =2代入①,得y =2.故原方程组的解为⎩⎪⎨⎪⎧x =2,y =2.析规律化简较复杂的方程组为基本形式当方程组比较复杂时,应通过去分母,去括号,移项,合并同类项等,使之化为⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式(同类项对齐),为消元创造条件.4.换元法解二元一次方程组换元消元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化,使复杂问题简单化,使问题变得容易处理.换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,把隐含的条件显露出来,或者把条件与结论联系起来,或者变为熟悉的形式,把复杂的计算和推证简化.换元法要注意变量之间的等价性,消元的实质是由繁到简、由难到易、由多(元)到少(元)的转化方法.析规律用换元法解二元一次方程组当二元一次方程组的结构比较复杂,但又有一定的规律时,可以考虑利用换元法,从而使原方程组变成结构比较简单、求解方便的二元一次方程组.【例4】 解方程组:⎩⎪⎨⎪⎧x +y 2+x -y3=13,x +y 3-x -y4=3.分析:考虑方程组的结构虽然比较复杂,但还是有一定的规律:x +y 和x -y 的相同因子.故可以通过换元,设x +y =m ,x -y =n ,这样就可以化复杂为简单,从而能快速、准确地求解.解:设x +y =m ,x -y =n ,则原方程组可变形为 ⎩⎪⎨⎪⎧12m +13n =13,13m -14n =3,即⎩⎪⎨⎪⎧3m +2n =78,4m -3n =36,解得⎩⎪⎨⎪⎧m =18,n =17.因此⎩⎪⎨⎪⎧x +y =18,x -y =17,解得⎩⎪⎨⎪⎧x =352,y =12.故原方程组的解为⎩⎪⎨⎪⎧x =352,y =12.5.整体思想解二元一次方程组整体思想:利用整体代入法或整体加减法解二元一次方程组可避繁就简、减少错误、简化运算.如解方程组:⎩⎪⎨⎪⎧2x -3y -2=0, ①2x -3y +57+2y =9.②通过观察两个方程都有2x -3y ,于是考虑整体代入②即可. 由①得2x -3y =2,③ 把③代入②,得 2+57+2yy =4. 把y =4代入①得2x -3×4-2=0,解得x =7. 故原方程组的解是⎩⎪⎨⎪⎧x =7,y =4.析规律用整体思想解方程组解题时要注意观察两式子的共同部分,把它们看成一个整体.利用“整体思想”可以避繁就简地帮助解决问题.【例5】 解方程组:⎩⎪⎨⎪⎧6(x -y )-7(x +y )=21,2(x -y )-5(x +y )=-1.分析:方法一:将两个方程化简后,再利用代入法解答;方法二:根据方程组的特点考虑把(x +y ),(x -y )看成一个整体,利用整体加减法解答.解法一:原方程可化为⎩⎪⎨⎪⎧ x +13y =-21,3x +7y =1.①②①×3-②,得32y =-64,y =-2. 把y =-2代入①,得x =5.故原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2.解法二:⎩⎪⎨⎪⎧ 6(x -y )-7(x +y )=21,2(x -y )-5(x +y )=-1.①②把(x +y )、(x -y )看成整体, ①-②×3,得x +y =3.③把③代入②,得2(x -y )-5×3=-1, 即x -y =7.④由③、④联立方程组,得⎩⎪⎨⎪⎧x -y =7,x +y =3.解得⎩⎪⎨⎪⎧x =5,y =-2.。
八年级数学上册 第五章 二元一次方程组 2求解二元一次方程组 第1课时 代入法作业课件

的解.
第二十三页,共二十五页。
解:由①得2x-3y=2,代入②得1+2y=9,所以y=4,从而求得x=
7,则方程组的解是xy==47.,
第二十四页,共二十五页。
内容(nèiróng)总结
第五章 二元一次方程组。C。12.已知y=kx+b,当x=-1时,y=1。当x=2时,y=-2, 求k和b的值.。解:k=-1,b=0.。20.对于(duìyú)数对(a,b),(c,d),定义:当且仅当a=c且 b=d时,(a,b)=(c,d)。A.-1 B.0 C.1 D.2
13.用代入法解下列方程组:2x+y=13. 解:xy==35.,
第十四页,共二十五页。
第十五页,共二十五页。
14.若二元一次方程2x+y=3,3x-y=2都和2x-my=-1有公共 解,则m的值为( C )
A.-2 B.-1 C.3 D.4 2x+m=1,
15.由方程组y-3=m 可得出x与y的关系是( A ) A.2x+y=4 B.2x-y=4 C.2x+y=-4 D.2x-y=-4
第六页,共二十五页。
y=3-x,① (2)2x+3y=7.②
解:把①代入②,得2x+3(3-x)=7.解得x=2.把x=2代入①,得
y=1.所以原方程组的解是xy==12.,
第七页,共二十五页。
知识点2:方程变形后用代入法解二元一次方程组
2x+3y-2=0,①
6.用代入法解方程组4x+1=9y②
x=-1,
8.二元一次方程组x2- x+y= y=-03,的解是_____y_=__2______.
第九页,共二十五页。
北师大版初二数学上册5.2-1求解二元一次方程
§5.2求解一兀一次方程组
(1)
课
型
新授
章节/单
元
5
教学目标
重点难点与策略
知识目标:
会用代入消元法解二元一次方程 组模型
能力目标:
了解“消元”思想,初步体会数 学研究中“化未知为已知”的化归思 想.
重点:
用代入消元法解二元一次方程组.
难点:
在解题过程中体会“消元”思想 和“化未知为已知”的化归思想.策略:
t2x-3y+5“小
'+2y—9
j7
师生相互父流总结解一元一次方程 组的基本思路是“消元”,即把“一元” 变为一兀;解一兀一次方程组的第 一种解法一一代入消元法,其主要步骤
学生体会
整体思想
学生归纳
教师提炼
是:将其中的一个方程中的某个未知数 用含有另个未知数的代数式表示出 来,并代入另一个方程中,从而消去一 个未知数,化一兀次方程组为兀 次方程.解这个一兀一次方程,便可得到 一个未知数的值,再将所求未知数的值 代入变形后的方程,便求出了 对未知 数的值.即求得了方程组的解.
教师根据学 生的自学情 况有针对性 地选择提升 题目
C.由②得x=x+5
2
D.由②得y=2x—5
3.将x=—3y—1代入4x—9y=8,可得到
2
一兀一次方程
4.用代入法解方程组
”3x-5y=2①
〔9x+2y = 23②
的最佳策略疋()
A.消y,由②得y=l(23—9x)
2
B.消x,由①得x=l(5y+2)
7.已知方程组l2x+ky=8的解x和y互为相反数,求k的值
8.先阅读,然后解方程组
北师大版八年级数学初二上册: 二元一次方程组的解法 含答案
二元一次方程组的解法预备知识一元一次方程的解法.知识要点较简单的二元一次方程组的求解.1.把下列方程改写成用含一个未知数的代数式表示另一个未知数的形式.(1)x-4y-5=0;(2)2x-4y-5=0.2.解下列二元一次方程组:(1)5,4;x yy x+=⎧⎨=⎩(2)3246,35;x yy x-=⎧⎨=-⎩(3)37,35;x yx y+=⎧⎨-=⎩(4)2512,23 6.x yx y+=⎧⎨+=⎩3.小红与小英的数学测验成绩的平均数为95分,小红比小英高4分,•问两人的成绩各为多少?4.今年,小明父亲的年龄是小明的3倍;13年之后,将变成2倍.列出二元一次方程组,求出小明与小明父亲今年的年龄.5.已知4,3xy=⎧⎨=⎩是关于x、y的二元一次方程组1,2ax yx by+=-⎧⎨-=-⎩的解,求出a+b的值.答案:1.(1)x=4y+5或y=14(x-5) (2)x=12(4y+5)或y=14(2x-5) 2.(1)1,4x y =⎧⎨=⎩ (2)4,17x y =⎧⎨=-⎩ (3)2,1x y =⎧⎨=⎩ (4)3,23x y ⎧=-⎪⎨⎪=⎩3.设小红、小英的成绩分别为x 、y ,可列方程组952,4,x y x y +=⨯⎧⎨-=⎩ 解得97,93,x y =⎧⎨=⎩即小红97分,小英93分4.设小明与小明父亲今年的年龄分别为x 、y ,可列方程组3,132(13),y x y x =⎧⎨+=+⎩ 解得13,39,x y =⎧⎨=⎩ 即今年小明13岁,•小明父亲39岁 5.由方程组的解的意义,可得431,432,a b +=-⎧⎨-=-⎩ 解得1,2,a b =-⎧⎨=⎩因此a+b=1。
2024八年级数学上册第五章二元一次方程组2求解二元一次方程组第1课时代入消元法习题课件新版北师大版
对折索子来量竿,却比竿子短一托(其大意为:现有一根
竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如
果将绳索对折后再去量竿,就比竿短5尺).则索长
为
20
尺.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
8. 用代入消元法解下列方程组:
+ = ,①
A. 直接把①代入②,消去 y
B. 直接把①代入②,消去 x
C. 直接把②代入①,消去 y
D. 直接把②代入①,消去 x
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
2. [2024株洲模拟][教材P108例1变式]对于二元一次方程组
= − ,①
൝
将①式代入②式,消去 y 可以得到
+ = ,②
第五章
2
二元一次方程组
求解二元一次方程组
第1课时
代入消元法
CONTENTS
目
录
01
1星题
落实四基
02
2星题
提升四能
03
3星题 发展素养
知识点1直接用代入消元法解二元一次方程组
= − ①,
1. [2024南大附中期末]用代入法解方程组൝
− = ②
时,下列说法正确的是( A )
解:(2)由①,得 x =2 y +2.③
将③代入②,得 (2 y +2)+3 y =5.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用代入消元法解二元一次方程组的一般步骤: 1.给两个方程编号①、②; 2.变形.
通常将系数为1或-1的方程变形,用含有一个未 知数的代数式表示另一个未知数,并编号为③.
3.将③代入没有变形的方程,从而将二元一次 方程组转化为一元一次方程. 4.求解这个一元一次方程. 5.将已求出的未知数的值代入方程③,求出另 一个未知数的值. X= 6.下结论. ∴原方程组的解是 y= 7.检验.
二元一次方程组 5.2 求解二元一次方程组 (2)
学习目标:
会用代入消元法解
二元一次方程组.
基本思路是: "消元"------把二元变为一元. 主要步骤是: 将其中一个方程中的某个未知 数用另一个未知数的代数式表示出 来,并代入另一个方程中,从而消去 一个未知数,化二元一次方程组为一 元一次方程,这种解方程组的方法称 为代入消元法,简称代入法.
3、用代入消元法解下列方程组:
5x-3y=16 (1) 3x-5y=0
4s+3t=5 (2) 3s-2t=-5 2x+3y=10 (: y=x (1) 4x+y=15 x-7y=0 (2) x–9y+8=0 2x-3y=1 (3) -x+2y=4
2、用代入消元法解下列方程组: 2x+3y=12 (1) 4x+3y=18
3x+2y=1, (2) 3x + 4y= -7
6x 5y 25 (3) 3x 20 4y