2018年七年级数学单元测精彩试题

合集下载

七年级数学第五章一元一次方程单元综合测试含解析

七年级数学第五章一元一次方程单元综合测试含解析

《第五章一元一次方程》单元测试一、填空题1.方程x+3=3x﹣1的解为.2.方程去分母得.3.当x=时,代数式4x+2与3x﹣9的值互为相反数.4.若关于x的方程ax﹣6=2的解为=﹣2,则a=.5.若3a3b5n﹣2与10b3m+n a m﹣1是同类项,则m=,n=.6.已知关于x的方程x m+3+2=0是一元一次方程,则m=.二、选择题7.方程﹣2x=的解是()A.x=B.x=﹣4 C.x=D.x=48.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C.2 D.89.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x 10.某中学修建综合楼后,剩有一块长比宽多5m、周长为50m 的长方形空地.为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是a元,那么种植草皮至少需用()A.25a元B.50a元 C.150a元D.250a元11.某数x的43%比它的一半少7,则列出求x的方程应是()A.43%x﹣B.43%(x﹣)=7 C.43%x﹣D.x﹣7=43%x12.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x﹣x=50 B.80%×(1+45%)x﹣x=50C.x﹣80%×(1+45%)x=50D.80%×(1﹣45%)x﹣x=50三、解方程13.解方程:1﹣3(8﹣x)=﹣2(15﹣2x)14.15.设,,当x为何值时,y1、y2互为相反数.四、解答题16.甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲追上甲时离展览馆还有多远?17.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件.求该企业分别捐给甲、乙两所学校的矿泉水各多少件?18.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?《第五章一元一次方程》单元测试参考答案与试题解析一、填空题1.方程x+3=3x﹣1的解为.【考点】解一元一次方程.【专题】计算题.【分析】方程移项合并,将x系数化为1,即可求出解.【解答】解:x+3=3x﹣1,移项合并得:﹣2x=﹣4,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.2.方程去分母得.【考点】等式的性质.【分析】把方程两边同时乘以10,便可得出答案.【解答】解:方程两边同时乘以10得,5x﹣10=2x.【点评】此题比较简单,考查了方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.3.当x=时,代数式4x+2与3x﹣9的值互为相反数.【考点】解一元一次方程;相反数.【专题】计算题.【分析】因为相反数的两个数之和是0,那么(4x+2)+(3x﹣9)=0.【解答】解:根据题意得(4x+2)+(3x﹣9)=0化简得:4x+2+3x﹣9=0解得:x=1.【点评】本题考查相反数的定义,从而推出相反数的两个数之和是0,列出方程解答就可以了.4.若关于x的方程ax﹣6=2的解为=﹣2,则a=.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,把x=﹣2代入方程中,解关于a的方程即可.【解答】解:把x=﹣2代入方程得:﹣2a﹣6=2解得:a=﹣4.故答案是:﹣4.【点评】主要考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.5.若3a3b5n﹣2与10b3m+n a m﹣1是同类项,则m=,n=.【考点】解一元一次方程;同类项.【专题】计算题.【分析】利用同类项的定义列出关于m与n的方程,求出方程的解即可得到m与n的值.【解答】解:根据题意得:3m+n=5n﹣2,m﹣1=3,解得:m=4,n=3。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试题及答案(1)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试题及答案(1)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。

【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。

最新人教版七年级下册第五章《相交线与平行线》单元测试及答案

最新人教版七年级下册第五章《相交线与平行线》单元测试及答案

人教版七年级下册第 5 章订交线与平行线能力水平测试卷一.选择题(共10 小题)1.如图,直线AB,CD 订交于点O,OE,OF,OG分别是∠ AOC,∠ BOD,∠ BOC 的均分线,以下说法不正确的选项是()A.∠ DOF与∠ COG 互为余角B.∠ COG与∠ AOG 互为补角C.射线 OE,OF不必定在同一条直线上D.射线 OE,OG 相互垂直2.如图,直线AB、CD订交于点O,EO⊥ AB,垂足为 O,∠ EOC=35° 15′.则∠ AOD 的度数为()A.55° 15′B. 65°15′C.125° 15′D. 165°15′3.如图 ,∠ ACB=90° ,CD⊥ AB,垂足为 D,则点 B 到直线 CD的距离是指()A.线段 BC的长度B.线段 CD的长度C.线段 AD 的长度D.线段 BD 的长度4.在以下图形中,由∠1=∠ 2 必定能获得AB∥ CD 的是()A.B.C.D.5.如图,以下条件:①∠1=∠2,②∠ 3+∠4=180 °,③∠ 5+∠ 6=180 °,④∠ 2=∠ 3,⑤∠ 7=∠ 2+∠3,⑥∠ 7+∠4-∠ 1=180°中能判断直线a∥ b 的有()A.3 个B.4 个C.5 个D.6 个6.以下命题中是假命题的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确立一条直线D.两点之间的全部连线中,线段最短7.如图,直线EF分别交 AB、CD 于点 E、F,EG均分∠ BEF,AB∥ CD.若∠ 1=72 °,则∠ 2 的度数为()A.54°B. 59°C.72°D. 108 °A、B 两8.已知直线m∥ n,将一块含30°角的直角三角板ABC,按如下图方式搁置,此中点分别落在直线m、 n 上,若∠ 1=25°,则∠ 2 的度数是()A.25°B. 30°C. 35°D.55°9.如图,将三角板与直尺贴在一同,使三角板的直角极点C(∠ ACB=90°)在直尺的一边上,若∠ 2=56°,则∠ 1的度数等于()A.54°B. 44°C. 24°D.34°10.如图在一块长为12m, 宽为 6m 的长方形草地上,有一条曲折的柏油小道(小道任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70B. 60C. 48D.18二.填空题(共 6 小题)11.如图,∠ 1=15° ,∠ AOC=90°,点 B、 O、 D 在同向来线上,则∠2的度数为.12.命题“同位角相等”的抗命题是13.如图,直线 a,b 与直线 c 订交,给出以下条件:①∠ 1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180 °;④∠ 5+∠ 3=180°;⑤∠ 6=∠ 8,此中能判断a∥ b 的是(填序号)14.如图,∠ A=70°,O 是 AB 上一点,直线OD 与 AB 所夹的∠ AOD=100°,要使 OD∥ AC,直线OD 绕点 O 按逆时针方向起码旋转.15.将一块 60°的直角三角板DEF搁置在 45°的直角三角板ABC上,挪动三角板DEF使两条直角边DE、 DF恰分别经过B、 C 两点,若EF∥ BC,则∠ ABD=°.16.在长为 a(m), 宽为 b(m)一块长方形的草坪上修了一条宽2(m)的笔挺小道,则余下草坪的面积可表示为m2;先为了增添美感,把这条小道改为宽恒为2(m) 的曲折小道(如图),则此时余下草坪的面积为m2.三.解答题(共7 小题)17.如图,直线AB 和直线 CD 订交于点 O,已知∠ AOC=30°,作 OE均分∠ BOD.(1)求∠ AOE 的度数;(2)作 OF⊥ OE,请说明 OF 均分∠ AOD 的原因.18.如图, AB、 CD 交于点 O,∠ AOE=4∠ DOE,∠ AOE 的余角比∠ DOE小 10°(题中所说的角均是小于平角的角).(1)求∠ AOE 的度数;(2)请写出∠ AOC在图中的全部补角;(3)从点 O 向直线 AB 的右边引出一条射线 OP,当∠ COP=∠ AOE+∠ DOP 时,求∠ BOP 的度数.19.如图, OD 是∠ AOB 的均分线 ,∠ AOC=2∠BOC.(1)若 AO⊥ CO,求∠ BOD 的度数;(2)若∠ COD=21°,求∠ AOB 的度数.20.填空或标注原因:如图,已知∠ 1=∠ 2,∠A=∠ D,试说明: AE∥ BD证明:∵∠ 1=∠ 2(已知)∴AB∥ CD()∴∠ A=()()∵∠ A=∠ D(已知)∴=∠D()∴AE∥ BD()21.如图,已知点D、E、B、C 分别是直线m、 n 上的点,且m∥ n,延伸 BD、CE交于点 A,DF 均分∠ ADE,若∠ A=40° ,∠ ACB=80°.求:∠ DFE的度数.22.如图,直线A B∥ CD,而且被直线 MN 所截, MN 分别交 AB 和 CD于点 E、 F,点 Q 在 PM 上,且∠ AEP=∠ CFQ.求证:∠ EPM=∠ FQM.23.如图,在 6× 6 的正方形网格中,每个小正方形的边长为1,点 A、B、C、D、E、F、M 、N、 P 均为格点(格点是指每个小正方形的极点).(1)利用图①中的网格,过P 点画直线MN 的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF经过平移使之首尾按序相接构成一个三角形(在图②中画出三角形).(3)第( 2)小题中线段AB、 CD、EF首尾按序相接构成一个三角形的面积是.答案:1-5CCDAC6-10 AACDB11. 10512.相等的角是同位角13.①③④⑤14.10 °15.1516.( ab-2a) , ( ab-2a)17.解:( 1)∵∠ AOC=30°,∴∠ BOD=∠AOC=30°,∵OE均分∠ BOD,∴∠ EOB=15°,∴∠ AOE=180° -15 °=165°,(2)∵∠ AOC=30°,∴∠ AOD180° -30 ° =150°,∵∠ DOE=∠EOB=15°,∵OF⊥ OE,∴∠ EOF=90°,∴∠ DOF=90° -15 ° =75°,∴∠ DOF=∠AOF=150° -75 ° =75°,∴OF均分∠ AOD18.解:( 1)设∠ DOE=x,则∠ AOE=4x,∵∠ AOE的余角比∠ DOE小 10°,∴90° -4x=x-10°,∴x=20°,∴∠ AOE=80°;(2)∠ AOC 在图中的全部补角是∠ AOD 和∠ BOC;(3)∵∠ AOE=80°,∠ DOE=20°,∴∠ AOD=100°,∴∠ AOC=80°,如图,当OP 在 CD 的上方时,设∠ AOP=x,∴∠ DOP=100° -x,∵∠ COP=∠ AOE+∠ DOP,∴80° +x=80°+100° -x,∴x=50°,∴∠ AOP=∠ DOP=50°,∵∠ BOD=∠AOC=80°,∴∠ BOP=80° +50°=130°;当OP 在CD 的下方时,设∠ DOP=x,∴∠ BOP=80° -x,∵∠COP=∠AOE+∠DOP,∴100° +x=80° +80° -x,∴x=30°,∴∠BOP=30°,综上所述,∠ BOP的度数为 130°或 30°.19.解:( 1)∵ AO⊥ CO,∴∠ AOC=90°,∵∠ AOC=2∠ BOC,∴∠ BOC=45°,∴∠ AOB=∠AOC+∠ BOC=135°,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=67.5°;(2)∵∠ AOC=2∠ BOC,∴∠ AOB=3∠ BOC,∵OD是∠ AOB的均分线,∴∠ BOD=∠ AOB=∠ BOC,∵∠ COD=21°,∴21° +∠ BOC=∠ BOC,∴∠ BOC=42°,∴∠ AOB=3∠ BOC=126°.20. 故答案为:内错角相等,两直线平行;∠AEC;两直线平行,内错角相等;∠AEC;等量代换;同位角相等,两直线平行.21.解:∵ m∥n,∠ ACB=80°∴∠ AED=∠ACB=80°,∵∠ A=40°,∴△ ADE中,∠ ADE=180° - (∠ A+∠ AED) =180°- ( 40°+80°) =60°,七年级人教版数学下册第 5 章订交线与平行线单元测试题人教版七年级数学下册第 5 章订交线与平行线单元检测题一、选择题:1.下边四个语句:(1)只有铅垂线和水平线才是垂直的;(2)经过一点起码有一条直线与已知直线垂直;(3)垂直于同一条直线的垂线只有两条;(4)两条直线订交所成的四个角中,假如此中有一个角是直角,那么其他三个角也必定相等.此中错误的选项是()A. ( 1)( 2)( 4)B. ( 1)( 3)( 4)C.( 2)( 3)( 4)D.(1)( 2)( 3)2.点 P为直线 MN外一点 , 点 A、B、C为直线 MN上三点 ,PA=4 厘米 ,PB=5 厘米 ,PC=2 厘米 , 则 P到直线MN的距离为()A.4 厘米B.2厘米C.小于2厘米D.不大于2厘米3.如图 , 以下结论错误的选项是()A. ∠1与∠ B是同位角B.∠ 1与∠ 3 是同旁内角C. ∠2与∠ C是内错角D.∠ 4与∠ A是同位角4.如图, AB∥CD, CD⊥EF,若∠ 1=125°,则∠ 2=()A.25 °B.35°C.55°D.65°5.如图, a∥ b,将三角尺的直角极点放在直线 a 上,若∠ 1=40°,则∠ 2=()A.30 °B.40°C.50°D.60 °6. 将如下图的图案经过平移后能够获得的图案是()A. B. C. D.7.如图,AB ∥ CD,AE 均分∠CAB交 CD于点 E, 若∠C=50°, 则∠AED=()A.65 °B.115 °C.125 °D.130 °8.如图, AE∥BD,∠ 1=120°,∠ 2=40°,则∠ C的度数是()A.10 °B.20°C.30°D.40°9.如下图,已知AB∥CD, EF均分∠ CEG,∠ 1=80°,则∠ 2 的度数为 ()A.20°B.40°C.50°D.60°10.如图,若两条平行线EF, MN与直线 AB, CD订交,则图中共有同旁内角的对数为()A.4B.8C.12D.1611. 以下条件中能获得平行线的是()①邻补角的角均分线;②平行线内错角的角均分线;③平行线同旁内角的角均分线.A. ①②B.②③人教版七年级数学下册第 5 章订交线与平行线单元测试题(分析版)一.选择题(共10 小题)1.如图各图中,∠ 1 与∠ 2 是对顶角的是()A.B.C.D.2.以下表达中正确的选项是()A.相等的两个角是对顶角B.若∠ 1+∠2+ ∠ 3= 180°,则∠ 1,∠ 2,∠ 3 互为补角C.和等于 90°的两个角互为余角D.一个角的补角必定大于这个角3.在如图图形中,线段PQ 能表示点P 到直线 L 的距离的是()A.B.C.D.4.在以下图形中,由条件∠1+∠ 2= 180°不可以获得AB∥ CD 的是()A.B.C.D.5.如图,已知∠1=68°,要使AB∥ CD ,则须具备另一个条件()A .∠ 2= 112°B .∠ 2= 122°C.∠ 2=68°D.∠ 3= 112°6.如下图,点 E 在AC 的延伸线上,以下条件中能判断AB∥ CD ()A.∠1=∠2B.∠3=∠ 4C.∠ D =∠ DCE D.∠D +∠ ACD= 180°7.如图,直线a∥ b, AC⊥ AB, AC 交直线 b 于点C,∠1=55°,则∠ 2 的度数是()A .35°B .25°C. 65°D. 50°8.如图,已知AB∥ DE,∠ ABC = 75°,∠ CDE = 145°,则∠BCD的值为()A .20°B .30°C. 40°D. 70°9.如下图是一条街道的路线图,若 AB∥ CD ,且∠ ABC = 130°,那么当∠CDE等于()时, BC∥ DE.A .40°B .50°C. 70°D. 130°10.如图,在直角三角形ABC 中,∠ BAC= 90°, AB= 3,AC= 4,将△ ABC 沿直线 BC 平移 2.5 个单位获得三角形DEF ,连结 AE.有以下结论:① AC∥ DF;② AD∥BE,AD=BE ABE DEF ED ACA.4 个B.3 个C.2 个D.1 个二.填空题(共8 小题)11.在体育课上某同学立定跳远的状况如下图,l 表示起跳线,在丈量该同学的实质立定跳远成绩时,应丈量图中线段PC 的长,原因是.12.如图,直线 AD 与 BE 订交于点O,∠ COD = 90°,∠COE = 70°,则∠ AOB=.13.如图,直线a, b 与直线 c 订交,给出以下条件:① ∠ 1=∠ 2;② ∠ 3=∠ 6;③ ∠ 4+∠ 7= 180°;④ ∠ 5+∠ 3= 180°;⑤ ∠ 6=∠ 8,此中能判断a∥b 的是(填序号)14.如图:请你增添一个条件能够获得DE∥AB15.如图, AB∥ EF ,设∠ C= 90°,那么x, y,z 的关系是.16.如图,将一张矩形纸片按图中方式折叠,若∠1= 63°,则∠ 2 为度.17.如图,已知长方形纸片的一条边经过直角三角形纸片的直角极点,则图中∠1与∠2之间的数目关系为.18.如下图,一块正方形地板,边长60cm,上边横竖各有两道宽为5cm 的花纹(图中阴影部分),空白部分的面积是.三.解答题(共7 小题)19.如图,点O 在直线 AB 上, CO⊥ AB,∠ BOD﹣∠ COD = 34°,求∠ AOD 的度数.20.如图, AO⊥ CO, DO⊥ BO.(1)∠ AOD 与∠ BOC 相等吗?为何?(2)已知∠ AOB= 140°,求∠ COD 的度数.21.已知:如图,直线AB 与 CD 被 EF 所截,∠ 1=∠ 2,求证: AB∥ CD .22.如图,∠ DAC +∠ACB= 180°, CE 均分∠ BCF ,∠ FEC =∠ FCE ,∠ DAC = 3∠ BCF ,∠ACF =20°.(1)求证: AD ∥ EF;(2)求∠ DAC、∠ FEC 的度数.23.如图,在△ ABC 中,GD ⊥ AC 于点 D,∠AFE =∠ ABC,∠1+∠ 2= 180°,∠ AEF =65°,求∠ 1 的度数.解:∠ AFE =∠ ABC(已知)∴(同位角相等,两直线平行)∴∠ 1=∠(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴(等量代换)∴EB∥ DG∴∠ GDE=∠ BEAGD⊥ AC(已知)∴(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠﹣∠= 90°﹣ 65°= 25°(等式的性质)24.如图,已知∠1=∠ 2= 50°, EF∥ DB .(1)DG 与 AB 平行吗?请说明原因.(2)若 EC 均分∠ FED ,求∠ C 的度数.25.直线AB、 CD 被直线EF 所截, AB∥ CD ,点 P 是平面内一动点.设∠PFD =∠ 1,∠PEB=∠ 2,∠ FPE =∠α.( 1)若点 P 在直线 CD 上,如图①,∠α= 50°,则∠ 1+∠ 2=°;(2)若点 P 在直线 AB、CD 之间,如图②,试猜想∠α、∠ 1、∠ 2 之间的等量关系并给出证明;(3)若点 P 在直线 CD 的下方,如图③,( 2)中∠α、∠ 1、∠2 之间的关系还建立吗?请作出判断并说明原因.人教版七年级数学下册第 5 章订交线与平行线单元测试题参照答案与试题分析一.选择题(共10 小题)1.【剖析】依据对顶角的定义判断即可.【解答】解:依据两条直线订交,才能构成对顶角进行判断,A、C、 B 都不是由两条直线订交构成的图形,错误,D是由两条直线订交构成的图形,正确,应选: D.【评论】本题主要考察了对顶角的定义,有一个公共极点,而且一个角的两边分别是另一个角的两边的反向延伸线,拥有这类地点关系的两个角,互为对顶角.2.【剖析】依据余角、补角、对顶角的定义进行判断即可.【解答】解: A、两个对顶角相等,但相等的两个角不必定是对顶角;故 A 错误;B、余、补角是两个角的关系,故 B 错误;C、假如两个角的和是一个直角,那么这两个角互为余角;故 C 正确;D 、锐角的补角都大于这个角,而直角和钝角不切合这样的条件,故 D 错误.应选: C.【评论】本题考察对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.3.【剖析】依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点判断.P 到直【解答】解:图A、B、C中,线段PQ不与直线L 垂直,故线段PQ 不可以表示点线 L 的距离;图 D 中,线段 PQ 与直线 L 垂直,垂足为点 Q,故线段 PQ 能表示点 P 到直线 L 的距离;应选:D.【评论】本题考察了点到直线的距离的观点,重点是依据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的观点解答.4.【剖析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解: A、∠ 1 的对顶角与∠ 2 的对顶角是同旁内角,它们互补,因此能判断AB∥CD;B、∠ 1 的对顶角与∠ 2 是同旁内角,它们互补,因此能判断AB∥ CD;C、∠ 1 的邻补角∠BAD =∠ 2,因此能判断AB∥CD ;D 、由条件∠ 1+ ∠ 2=180°能获得AD ∥ BC,不可以判断AB∥ CD;应选: D.【评论】本题考察了平行线的判断,解题的重点是注意平行判断的前提条件一定是三线八角.5.【剖析】欲证 AB∥ CD,在图中发现AB、CD 被向来线所截,且已知∠ 1= 68°,故可按同旁内角互补,两直线平行增补条件.【解答】解:∵∠ 1= 68°,∴只需∠ 2= 180°﹣ 68°= 112°,即可得出∠ 1+∠2= 180°.应选: A.【评论】本题主要考察了判断两直线平行的问题,可环绕截线找同位角、内错角和同旁内角.本题是一道探究性条件开放性题目,能有效地培育学生“执果索因”的思想方式与能力.6.【剖析】依据平行线的判断分别进行剖析可得答案.【解答】解: A、依据内错角相等,两直线平行可得AB∥ CD,故此选项正确;B、依据内错角相等,两直线平行可得C、依据内错角相等,两直线平行可得 D 、依据同旁内角互补,两直线平行可得应选: A.BD ∥AC,故此选项错误;BD ∥AC,故此选项错误;BD ∥ AC,故此选项错误;【评论】本题主要考察了平行线的判断,解答此类要判断两直线平行的题,可环绕截线找同位角、内错角和同旁内角.7.【剖析】依据平行线的性质求出∠3,再求出∠ BAC= 90°,即可求出答案.【解答】解:∵直线a∥b,∴∠ 1=∠ 3= 55°,∵AC⊥ AB,∴∠ BAC= 90°,∴∠ 2= 180°﹣∠ BAC﹣∠ 3= 35°,应选: A.【评论】本题考察了平行线的性质的应用,注意:平行线的性质有① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补.8.【剖析】延伸 ED 交 BC 于 F,依据平行线的性质求出∠MFC =∠ B= 75°,求出∠ FDC = 35°,依据三角形外角性质得出∠C=∠ MFC ﹣∠ MDC ,代入求出即可.【解答】解:延伸ED 交 BC 于 F,如下图:∵AB∥DE ,∠ABC=75°,∴∠ MFC =∠ B= 75°,∵∠ CDE= 145°,∴∠ FDC = 180°﹣ 145°= 35°,∴∠ C=∠ MFC ﹣∠ MDC = 75°﹣ 35°= 40°,应选: C.【评论】本题考察了三角形外角性质,平行线的性质的应用,解本题的重点是求出∠ MFC 的度数,注意:两直线平行,同位角相等.9.【剖析】第一利用平行线的性质定理获得∠BCD = 130°,而后利用同旁内角互补两直线平行获得∠ CDE 的度数即可.【解答】解:∵ AB∥CD ,且∠ ABC = 130°,∴∠ BCD=∠ ABC= 130°,∵当∠ BCD +∠ CDE = 180°时 BC∥ DE,∴∠ CDE= 180°﹣∠ BCD= 180°﹣ 130°= 50°,应选: B.【评论】本题考察了平行线的判断与性质,注意平行线的性质与判断方法的差别与联系.10.【剖析】依据平移的性质获得AC∥ DF ,AB∥ DE ,AD ∥ CF,AD = CF= 2.5,∠ EDF =∠BAC=90°,则利用平行线的性质得∠ ABE=∠ DEF ,利用垂直的定义得 DE ⊥ DF ,于是依据平行线的性质可判断 DE⊥ AC.【解答】解:∵将△ ABC 沿直线向右平移 2.5 个单位获得△ DEF ,∴ AC∥ DF ,AB ∥ DE,AD ∥ CF , AD= CF = 2.5,∠ EDF =∠ BAC=90°,∴∠ ABE=∠ DEF ,DE⊥ DF ,∴ DE⊥ AC,∴ ①②③④ 都正确.应选: A.【评论】本题考察了平移的性质:把一个图形整体沿某向来线方向挪动,会获得一个新的图形,新图形与原图形的形状和大小完整同样;新图形中的每一点,都是由原图形中的某一点挪动后获得的,这两个点是对应点.连结各组对应点的线段平行(或共线)且相等.二.填空题(共8 小题)11.【剖析】依据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的原因是依据垂线段最短.故答案为:垂线段最短.【评论】本题主要考察了垂线段的性质,重点是掌握性质定理.12.【剖析】由题意可知∠DOE= 90°﹣∠ COE,∠ AOB 与∠ DOE 是对顶角相等,由此得解.【解答】解:∵已知∠COD = 90°,∠ COE= 70°,∴∠ DOE= 90°﹣ 70°= 20°,又∵∠ AOB 与∠ DOE 是对顶角,∴∠ AOB=∠ DOE= 20°,故答案为: 20°.【评论】本题考察了对顶角与邻补角,利用余角的定义、对顶角的性质是解题重点.13.【剖析】直接利用平行线的判断方法分别剖析得出答案.【解答】解:① ∵∠ 1=∠ 2,∴ a∥ b,故此选项正确;② ∠ 3=∠ 6 没法得出a∥b,故此选项错误;③ ∵∠ 4+∠ 7= 180°,∴ a∥ b,故此选项正确;④ ∵∠ 5+∠ 3= 180°,∴∠ 2+∠ 5= 180°,∴ a∥ b,故此选项正确;⑤ ∵∠ 7=∠ 8,∠ 6=∠ 8,∴∠ 6=∠ 7,∴a∥ b,故此选项正确;综上所述,正确的有①③④⑤ .故答案为:①③④⑤ .【评论】本题主要考察了平行线的判断,正确掌握平行线的几种判断方法是解题重点.14.【剖析】依照平行线的判断条件进行增添,即内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:若∠ EDC =∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA=180°,则 DE∥ AB,故答案为:∠ EDC=∠ C 或∠ E=∠ EBC 或∠ E+∠ EBA= 180°等.【评论】本题主要考察了平行线的判断,正确辨别“三线八角”中的同位角、内错角、同旁内角是正确答题的重点,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.【剖析】过 C 作 CM ∥AB ,延伸 CD 交 EF 于 N,依据三角形外角性质求出∠CNE= y ﹣z,依据平行线性质得出∠ 1= x,∠ 2=∠ CNE ,代入求出即可.【解答】解:过 C 作 CM∥ AB,延伸 CD 交 EF 于 N,则∠ CDE=∠ E+∠ CNE,即∠ CNE= y﹣ z∵CM∥ AB,AB∥ EF,∴CM∥ AB∥EF,∴∠ ABC= x=∠ 1,∠ 2=∠ CNE,∵∠ BCD= 90°,∴∠ 1+∠ 2= 90°,∴x+y﹣ z=90°,∴z+90 °= y+x,即 x+y﹣ z= 90°.【评论】本题考察了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:① 两直线平行,同位角相等,② 两直线平行,内错角相等,③ 两直线平行,同旁内角互补,题目比较好,难度适中.16.【剖析】依据平行线的性质和平角的定义即可获得结论.【解答】解:∵ a∥ b,∴∠ 5=∠ 1= 63°,∠ 2=∠ 3,又由折叠的性质可知∠4=∠ 5,且∠ 3+∠ 4+∠ 5= 180°,∴∠ 3= 180°﹣∠ 5﹣∠ 4= 54°,∴∠ 2= 54°,故答案为: 54.【评论】本题主要考察平行线的性质和判断,掌握平行线的判断和性质是解题的重点,即①两直线平行 ? 同位角相等,②两直线平行 ? 内错角相等,③两直线平行 ? 同旁内角互补,④ a∥ b, b∥ c? a∥c.17.【剖析】先依据平角的定义得出∠3= 180°﹣∠ 2,再由平行线的性质得出∠4=∠ 3,依据∠ 4+∠ 1= 90°即可得出结论.【解答】解:∵∠ 2+∠ 3=180°,∴∠ 3= 180°﹣∠ 2.∵直尺的两边相互平行,∴∠ 4=∠ 3,∴∠ 4= 180°﹣∠ 2.∵∠ 4+∠ 1= 90°,∴ 180°﹣∠ 2+∠1= 90°,即∠ 2﹣∠ 1= 90°.∴∠ 1 与∠ 2 之间的数目关系为:∠2﹣∠ 1=90°,故答案为:∠2﹣∠ 1= 90°.【评论】本题考察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.【剖析】由题意可知:利用“挤压法”,将图形中的花纹挤去,求出节余的正方形的边长,即可求出白色部分的面积.【解答】解:( 60﹣ 2× 5)2,=50×50,=2500(平方厘米);∴空白部分的面积是 2500 平方厘米.故答案为: 2500平方厘米【评论】本题考察了生活中的平移现象,解答本题的重点是:利用“挤压法”,求出节余的长方形的边长,从而求其面积.三.解答题(共7 小题)19.【剖析】依据垂直的定义获得∠AOC=∠ BOC= 90°,获得∠ BOD +∠ COD =90°,根据已知条件即可获得结论.【解答】解:∵ CO⊥ AB,∴∠ AOC=∠ BOC= 90°,∴∠ BOD+∠ COD = 90°,∵∠ BOD﹣∠ COD = 34°,∴∠ COD = 28°,∴∠ AOD=∠ AOC+∠ COD = 118°.【评论】本题主要考察了垂线以及角的计算,正确掌握垂线的定义是解题重点.20.【剖析】( 1)依据垂线的定义获得∠AOC=∠ BOD= 90°,依据余角的性质即可获得结论;(2)依据角的和差即可获得结论.【解答】解:( 1)∠ AOD=∠ BOC,原因:∵ AO⊥ CO,DO⊥ BO,∴∠ AOC=∠ BOD= 90°,∵∠ COD =∠ COD ,∴∠ AOC﹣∠ COD =∠ BOD ﹣∠ COD ,∴∠ AOD=∠ BOC;(2)∵∠ AOB=140°,∠ BOD = 90°,∴∠ AOD=∠ AOB﹣∠ BOD = 50°,∴∠ COD =∠ AOC﹣∠ AOD =40°.【评论】本题考察了垂线,余角的定义,娴熟掌握垂线的定理是解题的重点.21.【剖析】依据对顶角相等,等量代换和平行线的判断定理进行证明即可.【解答】证明:∵∠ 2=∠ 3(对顶角相等),又∵∠ 1=∠ 2(已知),∴∠ 1=∠ 3,∴ AB∥ CD (同位角相等,两直线平行).【评论】本题考察的是平行线的判断,掌握平行线的判断定理是解题的重点.22.【剖析】( 1)依据同旁内角互补,两直线平行,可证BC∥ AD,依据角均分线的性质和已知条件可知∠FEC =∠ BCE ,依据内错角相等,两直线平行可证BC∥ EF,依据两条直线都和第三条直线平行,那么这两条直线平行,可证AD∥ EF;( 2)先依据CE 均分∠ BCF,设∠ BCE=∠ ECF =∠ BCF=x.由∠ DAC=3∠ BCF可得出∠ DAC = 6x,由平行线的性质即可得出x 的值,从而得出结论.【解答】( 1)证明:∵∠ DAC +∠ACB= 180°,∴ BC∥ AD,∵ CE 均分∠ BCF ,∴∠ ECB=∠ FCE ,∵∠ FEC=∠ FCE ,∴∠ FEC=∠ BCE,∴BC∥ EF,∴AD∥ EF;(2)设∠ BCE=∠ ECF =∠ BCF = x.由∠ DAC =3∠ BCF 可得出∠ DAC= 6x,则6x+x+x+20°= 180°,解得 x=20°,则∠ DAC 的度数为120°,∠ FEC 的度数为20°.【评论】本题考察的是平行线的判断,平行线的性质,用到的知识点为:同旁内角互补,两直线平行;内错角相等,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;两直线平行,同旁内角互补.23.【剖析】依据平行线的性质和判断可填空.【解答】解:∠ AFE =∠ ABC(已知)∴EF∥ BC(同位角相等,两直线平行)∴∠ 1=∠ EBC(两直线平行,内错角相等)∠ 1+∠2= 180°(已知)∴∠ EBC+∠ 2= 180°(等量代换)∴EB∥ DG (同旁内角互补,两直线平行)∴∠ GDE=∠ BEA (两直线平行,同位角相等)GD⊥ AC(已知)∴∠ GDE= 90°(垂直的定义)∴∠ BEA=90°(等量代换)∠ AEF = 65°(已知)∴∠ 1=∠ BEA﹣∠ AEF = 90°﹣ 65°= 25°(等式的性质)故答案为: EF∥ BC ,∠ EBC,∠ EBC +∠ 2= 180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE ,∠ BEA,∠ AEF .【评论】本题考察了平行线的判断和性质,灵巧运用平行线的性质和判断解决问题是本题的重点.24.【剖析】(1)依照 EF ∥ DB 可得∠ 1=∠ D,依据∠ 1=∠ 2,即可得出∠ 2=∠ D,从而判断 DG∥ AC;( 2)依照 EC 均分∠ FED ,∠ 1=50°,即可获得∠DEC =∠ DEF=65°,依照DG∥AC,即可获得∠C=∠ DEC= 65°.【解答】解:( 1) DG 与 AB 平行.∵EF∥ DB∴∠ 1=∠ D,又∵∠ 1=∠ 2,∴∠ 2=∠ D,∴DG ∥AC;( 2)∵ EC均分∠FED ,∠ 1=50°,∴∠ DEC=∠DEF =×( 180°﹣ 50°)= 65°,∵DG ∥AC,∴∠ C=∠ DEC= 65°.【评论】本题考察了平行线的性质和判断的应用,能正确运用定理进行推理是解本题的重点.25.【剖析】( 1)依据平行线的性质即可获得结论;(2)过点 P 作 PG∥ AB,依据平行线的性质即可获得结论;(3)过点 P 作 PG∥ CD ,依据平行线的性质即可获得结论.【解答】解:( 1)∵ AB∥ CD ,∴∠ α= 50°,故答案为: 50;(2)∠α=∠ 1+∠2,证明:过点P 作 PG∥∵ AB∥ CD,∴PG∥ CD,∴∠ 2=∠ 3,∠ 1=∠ 4,∴∠ α=∠ 3+∠ 4=∠ 1+ ∠2;( 3)∠α=∠ 2﹣∠ 1,证明:过点P 作 PG∥ CD ,∵AB∥ CD ,∴ PG∥ AB,∴∠ 2=∠ EPG,∠ 1=∠ 3,∴∠ α=∠ EPG﹣∠ 3=∠ 2﹣∠ 1.【评论】本题考察了平行线的性质,娴熟掌握平行线的性质是解题的重点.。

【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

【精选习题】人教版七年级数学上册单元试题:第2章整式的加减(含答案).doc

人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。

七年级数学下册单元测试全套及答案

七年级数学下册单元测试全套及答案

最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是( )A. 8421262x x x =⋅B. ()()m m m y y y =÷34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是( ) A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=- 6. 若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 327.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322b a 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。

七年级数学第五章几何的初步单元测试精选题目含答案

七年级数学第五章几何的初步单元测试精选题目含答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、一个正方体的表面展开图可以是下列图形中的()2、下列图形中,不是正方体表面展开图的是3、下图中, 是正方体的展开图是( )A B C D4、如图所示的正方体,用一个平面截去它的一个角,则截面不可能是()(改编)A.锐角三角形B.等腰三角形C.等腰直角三角形D.等边三角形5、在右图的几何体中,它的左视图是()6、已知某几何体的一个视图(如图),则此几何体是┅┅┅┅〖〗A.正三棱柱 B.三棱锥 C.圆锥 D.圆柱7、在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没把握,还可以动手试一试噢!)()8、下列图形中,不可能围成正方体的有()个A. 1B. 2C. 3D. 49、一个正方体锯掉一个角后,顶点的个数是()A、7个B、8个C、9个D、7个或8个或9个或10个10、如图,已知八边形ABCDEFGH, 对角线AE、BF、CG、DH交于点O, △OAB、△OCD、△OEF 和△OGH是四个全等的等边三角形,用这四个三角形围成一个四棱锥的侧面,用其余的四个三角形拼割出这个四棱锥的底面,则下面图形(实线为拼割后的图形)中恰为此四棱锥底面的是()A B C D二、填空题(共6题)1、如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为_____________.2、已知有一个立体图形由四个相同的小立方体组成。

如图(1)是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图(2)中的(把下图中正确的立体图形的序号都填在横线上)。

3、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.4、用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是________ cm2.5、圆柱的体积公式为;圆锥的体积公式为.6、如图,在中,是边上的中线,设向量,,如果用向量,表示向量,那么= .三、计算题(共2题)1、如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。

【最新3套】人教版初中数学七年级上册 第1章 《有理数》单元测试题(11)

人教版七年级数学上册单元试题:第1章有理数(含答案)一、单选题(本题共有10个小题,每题2分,共20分)1.比-7.1大,而比1小的整数的个数是( ).A .6B .7C .8D .92.室内温度是15 0C,室外温度是-3 0C,则室外温度比室内温度低( )(A) 12 0C (B) 18 0C (C) -12 0C (D) -18 0C3.两个非零有理数的和为零,则它们的商是( ) A .0 B . C .+1 D .不能确定4、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A.0B.-1 C .1 D.0或15、绝对值大于或等于1,而小于4的所有的正整数的和是( )A. 8B.7C. 6D.56.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( ).A .a >0B .b <0C .a >bD .a <b 7.下列各组数中,相等的是( ).A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)38、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………………………………………………( ) A 、B 、C 、D 、 9、不超过的最大整数是………………………………………( )A 、–4B –3C 、3D 、410、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28%二、填空题(本题共有9个小题,每小题2分,共18分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

12.在数轴上,与表示-5的点距离为4的点所表示的数是____________.13、某数的绝对值是5,那么这个数是 。

七年级数学(下)第八章《二元一次方程组》单元测试卷附答案

七年级数学(下)第八章《二元一次方程组》单元测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.方程2x ﹣3y=4,2x+y 3=4,2x-3y=4,2x+3y ﹣z=5,x 2﹣y=1中,是二元一次方程的有( )A .1个B .2个C .3个D .4个 2.如果a 3x b y与﹣a 2y b x+1是同类项,则( )A 、23x y =-⎧⎨=⎩ B. 23x y =⎧⎨=-⎩ C. 23x y =-⎧⎨=-⎩D. 23x y =⎧⎨=⎩3.x 与y 的值相等,则已知程方组54358x y mx y -=⎧⎨+=⎩中m 的值是( ).(A )1 (B )1- (C )1± (D )5±4.甲、乙两个车间工人人数不相等,若甲车间调10人到乙车间,则两车间人数相等;若乙车间调10人到甲车间,则甲车间的人数就是乙车间人数的2倍,求原来甲、乙两车间各有多少名工人?设原来甲车间有x 名工人,乙车间有y 名工人,列以下方程组正确的是( ) A.⎩⎨⎧-==-)10(210y x y x B.⎩⎨⎧-==-10210y x y x C.⎩⎨⎧-=++=-)10(2101010y x y x D.⎩⎨⎧-=++=-10)10(21010y x y x5.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为( )A .50180x y x y =-⎧⎨+=⎩ B .50180x y x y =+⎧⎨+=⎩ C . 5090x y x y =+⎧⎨+=⎩ D .5090x y x y =-⎧⎨+=⎩6.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩ B .3421x y x y +=⎧⎨=+⎩ C .3421x y x y +=⎧⎨=+⎩ D .23421x y x y +=⎧⎨=+⎩7.已知:21x y =⎧⎨=⎩是方程kx-y=3的解,则k 的值是( )A.2B.-2C.1D.-18.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-39.已知x 2y 1==⎧⎨⎩是方程组ax by 5bx ay 1+=+=⎧⎨⎩的解,则a ﹣b 的值是( )A.1-B.2C.3D.4 10.下列四组数值中,为方程组⎪⎩⎪⎨⎧=--=--=++231202z y x z y x z y x 的解是( )A 、⎪⎩⎪⎨⎧-===210z y xB 、⎪⎩⎪⎨⎧===101z y xC 、⎪⎩⎪⎨⎧=-==010z y xD 、⎪⎩⎪⎨⎧=-==321z y x二、填空题(共10小题,每题3分,共30分) 11.已知x 2y 1=⎧⎨=-⎩是方程ax 5y 15+=的一个解,则a = 。

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

七年级数学(下)第三单元自主学习达标检测A卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有______性.2.在△ABC中,AD是中线,则△ABD的面积______△ACD的面积.(填“>”,“<”或“=”)3.在△ABC中,若∠A=30°,∠B=60°,则这个三角形为三角形;若∠A:∠B:∠C=1:3:5,这个三角形为三角形.(按角的分类填写)4.一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有3cm、10cm、20cm三根木条,他可以选择长为cm的木条.5.如图所示的图形中x的值是__ ____.6.过n边形的一个顶点的对角线可以把n边形分成______个三角形.(用含n的式子表示)7边上的高是;(2)在△AEC中,AE边上的高是.8.如图,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= .9.如图,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是(填一个即可).10.若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是____ _ cm.11.图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= .第5题第14题A.B.C.D.12.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是 .13.如图所示,A 、B 在一水池的两侧,若BE =DE ,∠B =∠D =90°,CD =8 m ,则水池宽AB =m .14.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,若∠CBA =320,则∠FED = ,∠EFD = . 二、选择题(共4题,每题3分,共12分) 15.如图所示,其中三角形的个数是( )A.2个B.3个C.4个D.5个16.下列各组中的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10D.4,4,817.下列图形不具有稳定性的是( )18.一个三角形中直角的个数最多有( )A.3 B.1 C.2 D.0 三、解答题(共60分) 19.(5分)如图,(1)过点A 画高AD ; (2)过点B 画中线BE ;(3)过点C 画角平分线CF .第13题第11题第15题20.(5分)若四边形的两个内角是直角,另外两个内角中一个角比另一个角的2倍少30°,求这两个内角的度数.21.(5分)小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?22.(6分)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB.求∠ACD的度数.23.(6分)如图所示,∠BAC=90°,BF平分∠ABC交AC于点F,∠BFC=100°,求∠C的度数.24.(6分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.25(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.26.(7分)如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.27.(7分)已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,问AE与CF是否平行?为什么?28.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.七年级数学(下)第三单元自主学习达标检测B卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 .2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米. 7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 . 9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: .10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第6题30°30°30°A 第8题GEDCBA第5题DCBA第2题 第3题 第4题第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9 三、解答题(共60分) 19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?第9题 第12题 第13题EDC BA20.(4分)如图,已知四边形ABCD 中,∠A =∠D ,∠B =∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?C B A C B A25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A→C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A +∠B +∠C +∠D +∠E =180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.D C B A28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准 文案 七年级数学上册入学一单元测试题

: 班级 得分 (时间:100分钟 满分:120分 一、选择题(每小题3分,共30分) 1.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作 ( ) A.+0.02克 B.-0.02克 C.0克 D.+0.04克 2.在-4,2,-1,3这四个数中,比-2小的数是( ) A.-4 B.2 C.-1 D.3 3.计算-13-23的结果是( ) A.-13 B.13 C.-1 D.1 4.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是 ( ) A.-4 B.-2 C.0 D.4 5.下列计算不正确的是( ) A.-32+12=-2 B.(-13)2=19 C.|-3|=3 D.-(-2)=2 6.一个正常人的心跳平均每分钟70次,一天大约跳100800次,将100800用科学记数法表示为( ) A.0.1008×106 B.1.008×106 C.1.008×105 D.10.08×104 7.下列说确的是( ) A.近似数0.21与0.210的精确度相同 B.近似数1.3×104精确到十分位 C.数2.9951精确到百分位为3.00 D.小明的身高为161 cm中的数是准确数

8.下列计算:①0-(-5)=0+(-5)=-5;②5-3×4=5-12=-7;③4÷3×(-13)=4÷(-1)=-4;④-12-2×(-1)2=1+2=3.其中错误的有( ) A.1个 B.2个 C.3个 D.4个

9.有理数a,b在数轴上的位置如图,下列选项正确的是( ) 标准

文案 A.a+b>a-b B.ab>0 C.|b-1|<1 D.|a-b|>1 10.(2015·)下列图形都是由几个黑色和白色的形按一定规律组成,图①中有2个黑色形,图②中有5个黑色形,图③中有8个黑色形,图④中有11个黑色形……依此规律,图○10中黑色形的个数是( ) A.32 B.29 C.28 D.26 点拨:图○10中黑色形的个数是2+(10-1)×3=29 二、填空题(每小题3分,共24分) 11.-3的相反数是__ __,-3的倒数是__ _. 12.在数轴上表示数a的点到表示数1的点的距离为3,则a-3=__ __. 13.比较下列各组数的大小: (1)0__ __-|-0.01|; (2)-0.2__ _|0.02|; (3)-(-3.3)__ __|-103|. 14.计算:-3×2+(-2)2-5=__ _. 15.平方等于它本身的数是__ _;立方等于它本身的数是__ __;一个数的平方等

于它的立方,这个数是__ __. 16.若|a|=3,b=-2,且ab>0,则a+b=__ __. 17.若(a+1)2+|b-99|=0,则b-ab的值为__ __.

18.由图①中找规律,并按规律从图②中找出a,b,c的值,计算a+b+c的值是__ _. 三、解答题(共66分) 19.(16分)计算: (1)-5-(-4)+(-3)-[-(-2)]; 解:

(2)2×(-5)+23-3÷12; 标准

文案 解: (3)(14-59-13+712)÷(-136); 解: (4)-12-2×(-3)3-(-2)2+[313÷(-23)×15]4. 解:

20.(7分)x与y互为相反数,m与n互为倒数,|a|=1,求a2-(x+y)2017+(-mn)2016

的值. 解:

21.(7分)定义新运算:对任意有理数a,b,都有a⊗b=a2-b.例如,3⊗2=32-2=7,求2⊗1的值. 解

22.(8分)下表是小明记录的今年雨季流沙河一周的水位变化情况(上周末水位达到警戒水位记为0,“+”表示水位比前一天上升,“-”表示水位比前一天下降): 标准 文案 星期 一 二 三 四 五 六 日

水位变化(米) +0.20 +0.81 -0.35 +0.03 +0.28 -0.36 -0.01 (1)本周哪一天河流水位最高?哪一天河流的水位最低?它们分别位于警戒水位之上还是之下?与警戒水位的距离是多少米? (2)与上周末相比,本周末水位是上升了还是下降了?上升或下降多少米? 解:

23.(8分)如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2,根据程序列出算式并求出输出的结果.

解: 24.(8分)某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:

售出件数 7 6 3 5 4 5 售价/元 +3 +2 +1 0 -1 -2 问服装店老板在售完这30件连衣裙后,赚了多少钱? 标准 文案 解: 25.(12分)有规律排列的一列数:2,4,6,8,10,12,14,…,它的每一项可用式子2n(n是正整数)来表示.现有有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…. (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少? (3)2016是不是这列数中的数?如果是,是第几个数?如果不是,请说明理由. 解: 标准

文案 七年级数学上册入学二单元测试题 : 班级 得分 (时间:100分钟 满分:120分)

一、选择题(每小题3分,共30分) 1.用代数式表示“a的3倍与b的和”,正确的是( )

A.3a-b B.3a+b C.a-3b D.a+3b 2.下列说法不正确的是( ) A.多项式5x2+4x-2的项是5x2,4x,-2 B.5是单项式

C.2x3,a+b3,ab2,3aπ都是单项式 D.3-4a中,一次项的系数是-4 3.-[-(m-n)]去括号得( ) A.m-n B.-m-n C.-m+n D.m+n

4.关于单项式-52xyn8,下列说确的是( ) A.系数是5,次数是n B.系数是-58,次数是n+3 C.系数是-528,次数是n+1 D.系数是-5,次数是n+1 5.下列各组的两项是同类项的为( ) A.3m2n2与-m2n3 B.12xy与2yx C.53与a3 D.3x2y2与4x2z2 6.化简a-2(1-3a)的正确结果是( ) A.7a-2 B.-2-5a C.4a-2 D.2a-2 标准

文案 7.如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为( ) A.4x B.12x C.8x D.16x 8.某厂一月份的产量为a吨,二月份的产量比一月份增加了2倍,三月份的产量为二月份的2倍,则该厂第一季度的总产量为( ) A.5a吨 B.10a吨 C.7a吨 D.9a吨 9.如果在数轴上表示a,b两个数的点的位置如图所示,那么化简|a-b|+|a+b|的结果等于( ) A.2a B.-2a C.0 D.2b 10.用棋子摆出如图所示的一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子( ) A.4n枚 B.(4n-4)枚 C.(4n+4)枚 D.n2枚 二、填空题(每小题3分,共24分) 11.x-(y-z)的相反数是__ _.

12.若14xm+1y3与-2xyn是同类项,则m+n=__ __. 13.已知一个三位数的个位数字为x,十位数字为y,百位数字为z,那么这个三位数用代数式表示为__ _. 14.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为__ __. 15.若(a2-3a-1)+A=a2-a+4,则A=__ __. 16.一个只含字母x的二次三项式,它的二次项系数比一次项系数小1,一次项系数比

常数项又小1,常数项为-23,则这个多项式为__ _. 17.某城市为增强人们节水的意识,规定生活用水的基本价格是2元/m3,每户每月用水限定为7 m3,超过部分按3元/m3收费.已知小华家上个月用水a m3(超过7 m3),则小华家上个月应交水费__ _元.(用含a的式子表示) 标准 文案 18.一组按规律排列的式子:-a2,a52,-a83,a114,…(a≠0),则第n个式子是 _ a3n-1

n_ _(n是正整数).

三、解答题(共66分) 19.(16分)计算: (1)(2m2+4m-3)+(5m+2); (2)x-[y-2x-(x+y)]; 解:(1) (2) (3)2(x2-2x+5)-3(2x2-5); (4)3(x+y2)-11(y2+x)+5(x+y2)+2(x+y2). 解:(3) (4) 20.(10分)先化简,再求值: (1)(5a-3a2+1-4a3)-(-2a2-a3),其中a=-2; 解: (2)已知a-b=5,ab=1,求(2a+3b-2ab)-(a+4b+ab)-(3ab+2b-2a)的值. 解:

21.(6分)已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-B;(2)12A+2B. 解:

22.(8分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律? n→平方→-n→×2→-2n2→+2n-1→答案

(1)填写表空格:

输入 3 2 -2 13 … 标准 文案 输出答案 -1 -1 -1 -1 …

(2)你发现的规律是__ __; (3)用简要过程说明你发现的规律的正确性. 解:(

23.(8分)如图,一块形的铁皮,边长为x cm(x>4),如果一边截去宽4 cm的一块,相邻一边截去宽3 cm的一块. (1)求剩余部分(阴影)的面积; (2)若x=8,则阴影部分的面积是多少?

解:(1)剩余部分(阴影)的面积为

(2) 24.(8分)托运行的费用计算方法是:托运行总质量不超过30千克,每千克收费1元;超过部分每千克收费1.5元.某旅客托运行m千克(m为正整数). (1)请你用代数式表示托运m千克行的费用; (2)求当m=45时的托运费用. 解:(1) (2)

25.(10分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置: 排数 1 2 3 4 座位数 50 53 56 59 按这种方式排下去:

相关文档
最新文档