最新版初三中考数学模拟试卷易错题及答案2256507

合集下载

人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷及答案解析

人教版九年级数学中考模拟试卷考 生须知 1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c 在数轴上对应点的位置如图所示,则正确的结论是(A )2a >-(B )1b > (C )0a c +>(D )0abc >4.下列图案中,是中心对称图形的为(A ) (B ) (C ) (D )bca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点. 若AB = 4,∠APB = 45°,则CD 长的最大值为.EDCBA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.lA图1图2l21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1x x(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.DB参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17-22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分………………………………2分………………………………3分………………………………4分………………………………5分CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-.…………… 1分∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下:……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC .…………… 4分②10n -<≤或3n -≤.…………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1)(2)(3)3.3125.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示.…………… 1分 (2)证明:△ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.…………… 3分 DE BCAC ==, DG AC ∴=.AG CD ∴=.…………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠. ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时,125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。

2023年九年级中考数学易错题之图形的变化(含答案解析)

2023年九年级中考数学易错题之图形的变化(含答案解析)

2023年九年级中考数学易错题之图形的变化(含答案解析)一.选择题(共10小题)1.(2022•徐州二模)如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,∠B为()A.136°B.144°C.108°D.114°2.(2022•徐州二模)已知△ABC的一边BC=5,另两边长分别是3,4,若P是△ABC边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.4B.3C.2D.1 3.(2022•徐州一模)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(3,5),则点B与点C的坐标分别为()A.(﹣3,5),(﹣3,﹣5)B.(﹣5,3),(5,﹣3)C.(﹣5,3),(3,﹣5)D.(﹣5,3),(﹣3,﹣5)4.(2022•邳州市一模)如图,在四边形ABCD中,AD∥BC,S△ACDS△ABC =13,则OAOC的值为()A.13B.14C.23D.255.(2022•睢宁县模拟)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A.35√10B.65√10C.2√10D.46.(2022•邳州市一模)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.(2021•徐州模拟)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12cm,EF=16cm,则边AD的长是()A.12cm B.16cm C.20cm D.28cm 8.(2021•徐州模拟)如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,sin∠BAD的值是()A.817B.717C.4√213D.7√2269.(2022•睢宁县模拟)如图所示的几何体的俯视图是()A.B.C.D.10.(2022•鼓楼区校级三模)如图所示几何体的左视图是()A.B.C.D.二.填空题(共7小题)11.(2022•徐州二模)如图,在等边三角形ABC中,AB=2,点D,E,F分别是边BC,AB,AC边上的动点,则△DEF周长的最小值为.12.(2022•贾汪区二模)如图,四边形纸片ABCD中,∠C=∠D=90°,AD=3,BC=9,CD=8,点E在BC上,且AE⊥BC.将四边形纸片ABCD沿AE 折叠,点C、D分别落在点C'、D'处,C'D'与AB交于点F,则BF长为.13.(2022•泉山区校级三模)点P(﹣1,2022)关于x轴对称的点的坐标为.14.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是.15.(2022•鼓楼区校级二模)如图,在Rt△ABC中,∠ACB=90°,BC=4,BP的最小值CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,AP+12为.16.(2021•徐州模拟)如图,一艘船由A港沿北偏东65°方向航行30√2km至B 港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为km.17.(2022•徐州一模)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60海里的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是海里.三.解答题(共11小题)18.(2022•泉山区校级三模)某校开展艺术节,小明利用无人机对会场进行高空拍摄.如图,小明站在A处,操控无人机悬停在前上方高度为60m的B处,测得其仰角为60°;继续操控无人机沿水平方向向前飞行7s悬停在C处,测得其仰角为22°.求无人机的飞行速度.(结果精确到1m/s.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√3≈1.73)19.(2022•鼓楼区校级二模)如图,将长方形ABCD纸片沿MN折强,使A、C 两点重合.点D落在点E处,MN与AC交于点O.(1)求证:△AMN是等腰三角形;(2)若BM=4,∠BAM=30°.求MN的长.20.(2022•鼓楼区校级二模)越来越多太阳能路灯的使用,既点亮了城市的风景,也使节能环保的举措得以落实.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A、D与N在一条直线上),求电池板离地面的高度MN(结果精确到1米).参考数据:tan33°≈0.65,sin33°≈0.54,cos33°≈0.84.21.(2022•丰县二模)如图①,等边三角形纸片ABC中,AB=12,点D在BC 上,CD=4,过点D折叠该纸片,得点C'和折痕DE(点E不与点A、C重合).(1)当点C'落在AC上时,依题意补全图②,求证:DC'∥AB;(2)设△ABC'的面积为S,S是否存在最小值?若存在,求出S的最小值;若不存在,请说明理由;(3)当B,C',E三点共线时,EC的长为.22.(2022•贾汪区二模)如图,在某单位拐角处的一段道路上,有施工队正在修路并在点M处放置了施工提示牌,小李骑电动自行车从点P出发,沿着路线PQ以2m/s的速度匀速行驶,其视线被办公楼遮挡.已知PB=500m,∠QPB =20°,∠NBP=25°,行驶3分钟后,小李能否发现点M处的施工提示牌?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)23.(2022•徐州二模)如图是一防洪堤背水坡的横截面图,斜坡AB的长为18m,它的坡角为45°.为了提高该堤的防洪能力,现将背水坡改造成坡度为1:√3的斜坡AD,在CB方向距点B处9m处有一座房屋.(参考数据√6≈2.45;√2≈1.414)(1)求∠DAB的度数;(2)在背水坡改造的施工过程中,此处房屋是否需要拆除?24.(2022•睢宁县模拟)如图为某中学的学校门口“测温箱”截面示意图,身高1.77米的小聪在地面上的线段MN之间时能显示出额头温度.当他在地面M处时,额头在B处测得A的仰角为45°;当他在地面N处时,额头在C处测得A的仰角为60°.如果测温箱顶部A处距地面的高度AD为3.5米,求B、C两点的距离.(结果保留一位小数)(参考数据:√3≈1.73,√2≈1.41)25.(2022•邳州市一模)已知OM⊥ON,垂足为点O,点E、F分别在射线OM、ON上,连接EF,点A为EF的中点,ED∥ON,ED=DF,连接OA并延长交线段ED或DF于点G.(1)如图1所示,当点G在ED上,若OG=DE,则∠EDF=°;(2)当点G在FD.上,请在图2中画出图形并证明△DEF∽△AOF;(3)若DG=2,AG=4,求DF的长.26.(2022•鼓楼区校级二模)如图1,把等腰直角三角板AMN放在平面直角坐标系xOy中,点A坐标为(0,4),∠MAN=90°,AM=AN.三角板AMN 绕点A逆时针旋转,AM、AN与x轴分别交于点D、E,∠AOE、∠AOD的角平分线OG、OH分别交AN、AM于点B、C.点P为BC的中点.(1)求证:AB=AC;(2)如图2,若点D的坐标为(﹣3,0),求线段BC的长度;(3)在旋转过程中,若点D的坐标从(﹣8,0)变化到(﹣2,0),则点P 的运动路径长为(直接写出结果).27.(2022•徐州二模)如图,△ABC在坐标平面内,三个顶点的坐标分别为A (1,3),B(3,1),C(5,2)(正方形网格中,每个小正方形的边长为1),以点O为位似中心,把△ABC按相似比2:1放大,得到对应的△A′B′C′.(1)请在第一象限内画出△A′B′C′;(2)若以点A、B、C、D为顶点的四边形是平行四边形,请直接写出满足条件的点D的坐标.28.(2022•睢宁县模拟)如图,在Rt△ABC中,∠ACB=90°,点D是边AB 上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题)1.(2022•徐州二模)如图,将平行四边形ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,∠B为()A.136°B.144°C.108°D.114°【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∠1=22°,∴∠BAC=∠ACD=∠B′AC=12∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°.故选:D.2.(2022•徐州二模)已知△ABC的一边BC=5,另两边长分别是3,4,若P是△ABC边BC上异于B,C的一点,过点P作直线截△ABC,截得的三角形与原△ABC相似,满足这样条件的直线有()条.A.4B.3C.2D.1【解答】解:∵△ABC的一边BC=5,另两边长分别是3,4,∴32+42=52,∴∠BAC=90°,由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故选:B.3.(2022•徐州一模)已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(3,5),则点B与点C的坐标分别为()A.(﹣3,5),(﹣3,﹣5)B.(﹣5,3),(5,﹣3)C.(﹣5,3),(3,﹣5)D.(﹣5,3),(﹣3,﹣5)【解答】解:∵正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,且A点的坐标为(3,5),∴C点的坐标为(﹣3,﹣5),B点的坐标为(﹣5,3),故选:D.4.(2022•邳州市一模)如图,在四边形ABCD中,AD∥BC,S△ACDS△ABC =13,则OAOC的值为()A.13B.14C.23D.25【解答】解:∵AD∥BC,∴设AD与BC之间的距离为h,∴S△ACDS△ABC =12⋅AD⋅ℎ12⋅BC⋅ℎ=ADBC=13,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,∴△ADO∽△CBO,∴AOCO =ADBC=13,故选:A.5.(2022•睢宁县模拟)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A.35√10B.65√10C.2√10D.4【解答】解:过点D作DH⊥AF于点H,∵∠ABC=45°,AD⊥BC,∴AD=BD,∵tan∠ACB=ADCD=3,设CD=x,∴AD=3x,∴BC=3x+x=8,∴x=2,∴CD=2,AD=6,∴AC=√CD2+AD2=√22+62=2√10,∵将△ADC绕点D逆时针方向旋转得到△FDE,∴DC=DE,DA=DF=6,∠CDE=∠ADF,∴∠DCE=∠DAF,∴tan∠DAH=3,设AH=a,DH=3a,∵AH2+DH2=AD2,∴a2+(3a)2=62,∴a=3√10,5,∴AH=3√105∴AF=2AH=6√10.5故选:B.6.(2022•邳州市一模)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A.7.(2021•徐州模拟)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12cm,EF=16cm,则边AD的长是( )A .12cmB .16cmC .20cmD .28cm【解答】解:∵∠HEM =∠AEH ,∠BEF =∠FEM ,∴∠HEF =∠HEM +∠FEM =12×180°=90°,同理可得:∠EHG =∠HGF =∠EFG =90°,∴四边形EFGH 为矩形,∴GH ∥EF ,GH =EF ,∴∠GHN =∠EFM ,在△GHN 和△EFM 中,{∠GNH =∠EMF ∠NHG =∠MFE HG =EF,∴△GHN ≌△EFM (AAS ),∴HN =MF =HD ,∴AD =AH +HD =HM +MF =HF ,在Rt △EHF 中,HF =√EH 2+EF 2=√122+162=20,∴AD =20厘米.故选:C .8.(2021•徐州模拟)如图,已知A ,B 两点的坐标分别为(8,0),(0,8),点C ,F 分别是直线x =﹣5和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取得最小值时,sin ∠BAD 的值是( )A .817B .717C .4√213D .7√226【解答】解:如图,设直线x =﹣5交x 轴于K .由题意KD =12CF =5,∴点D 的运动轨迹是以K 为圆心,5为半径的圆,∴当直线AD 与⊙K 相切时,△ABE 的面积最小,∵AD 是切线,点D 是切点,∴AD ⊥KD ,∵AK =13,DK =5,∴AD =12,∵tan ∠EAO =OE OA =DK AD , ∴OE 8=512,∴OE =103,∴AE =√OE 2+OA 2=263,作EH ⊥AB 于H . ∵S △ABE =12•AB •EH =S △AOB ﹣S △AOE ,∴EH =7√23, ∴sin ∠BAD =EH AE =7√23263=7√226. 故选:D .9.(2022•睢宁县模拟)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上边看大正方形的左下角一个小正方形,故选:D.10.(2022•鼓楼区校级三模)如图所示几何体的左视图是()A.B.C.D.【解答】解:如图所示:.故选:A.二.填空题(共7小题)11.(2022•徐州二模)如图,在等边三角形ABC中,AB=2,点D,E,F分别是边BC,AB,AC边上的动点,则△DEF周长的最小值为3.【解答】解:如图,作点D 关于AB 的对称点G ,作点D 关于AC 的对称点H ,连接GH ,GA ,GE ,GB ,HA ,HF ,HC ,过点A 作AI ⊥BC 于I ,过点A 作AJ ⊥GH 于J .∴GE =DE ,HF =DF ,AG =AD ,AH =AD ,∠GAB =∠DAB ,∠HAC =∠DAC , ∴AG =AH ,C △DEF =DE +DF +EF =GE +HF +EF ,∴∠GAJ =∠HAJ =12∠GAH ,△DEF 周长的最小值是GH .∵三角形ABC 是等边三角形,∴∠BAC =∠ABC =60°∴∠DAB +∠DAC =60°,∴∠GAB +∠HAC =60°,∴∠GAH =∠GAB +∠DAB +∠DAC +∠HAC =120°,∴∠GAJ =∠HAJ =60°,∴GJ =AG ×sin ∠GAJ =√32AG =√32AD ,J =AH ×sin ∠HAJ =√32AH =√32AD , ∴GH =GJ +HJ =√3AD ,∴当AD 取得最小值时,GH 取得最小值,即△DEF 周长取得最小值. ∴当AD ⊥BC 时,即点D 与点Ⅰ重合时,ADEF 周长取得最小值为√3AI , ∵AB =2,∴AI =AB ×sin ∠ABC =√3,∴√3AI =3.∴△DEF 周长的最小值是3.故答案为:3.12.(2022•贾汪区二模)如图,四边形纸片ABCD中,∠C=∠D=90°,AD=3,BC=9,CD=8,点E在BC上,且AE⊥BC.将四边形纸片ABCD沿AE 折叠,点C、D分别落在点C'、D'处,C'D'与AB交于点F,则BF长为5.【解答】解:∵∠C=∠D=90°,AE⊥BC,∴四边形ADCE为矩形,∴AD=CE=3,CD=AE=8,由翻折可得CE=C'E=3,AD=AD'=3,∵BC=9,∴BE=BC﹣CE=6,BC'=BC﹣CE﹣C'E=3,∴AB=√AE2+BE2=10,∵∠D'=∠BC'F=90°,∠D'F A=∠BFC',AD'=BC'=3,∴△AFD'≌△BFC'(AAS),AB=5.∴BF=AF=12故答案为:5.13.(2022•泉山区校级三模)点P(﹣1,2022)关于x轴对称的点的坐标为(﹣1,﹣2022).【解答】解:点P(﹣1,2022)关于x轴对称的点的坐标为(﹣1,﹣2022),故答案为:(﹣1,﹣2022).14.(2022•睢宁县模拟)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是35.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB=√32+42=5,∴sin B=ACAB =35,故答案为:35.15.(2022•鼓楼区校级二模)如图,在Rt△ABC中,∠ACB=90°,BC=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,AP+12BP的最小值为√37.【解答】解:如图1,连接CP,在CB上取点D,使CD=1,则有CDCP =CPCB=12,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴PDBP =12,∴PD=12BP,∴AP+12BP=AP+PD.要使AP+12BP最小,只要AP+PD最小,当点A,P,D在同一条直线时,AP+PD最小,即:AP+12BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD=√AD2+CD2=√37,AP+12BP的最小值为√37.16.(2021•徐州模拟)如图,一艘船由A港沿北偏东65°方向航行30√2km至B 港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+10√3)km.【解答】解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30√2km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30√2km,∴AE =BE =√22AB =30(km ), 在Rt △CBE 中,∵∠ACB =60°,tan ∠ACB =BE CE ,∴CE =BE tan60°=√3=10√3(km ),∴AC =AE +CE =30+10√3(km ),∴A ,C 两港之间的距离为(30+10√3)km ,故答案为:(30+10√3).17.(2022•徐州一模)如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60海里的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是 (30+30√3) 海里.【解答】解:过C 作CD ⊥AB 于D 点,∴∠ACD =30°,∠BCD =45°,AC =60海里.在Rt △ACD 中,AD =12AC =30海里,cos ∠ACD =CD AC ,∴CD =AC •cos ∠ACD =60×√32=30√3(海里).在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30√3海里,∴AB=AD+BD=(30+30√3)海里.答:这时轮船B与小岛A的距离是(30+30√3)海里.故答案为:(30+30√3).三.解答题(共11小题)18.(2022•泉山区校级三模)某校开展艺术节,小明利用无人机对会场进行高空拍摄.如图,小明站在A处,操控无人机悬停在前上方高度为60m的B处,测得其仰角为60°;继续操控无人机沿水平方向向前飞行7s悬停在C处,测得其仰角为22°.求无人机的飞行速度.(结果精确到1m/s.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√3≈1.73)【解答】解:过点B作BE⊥AD,垂足为E,过点C作CF⊥AD,垂足为F,由题意得:BC=EF,BE=CF=60米,在Rt△ABE中,∠BAE=60°,∴AE=BEtan60°=√3=20√3≈34.6(米),在Rt△ACF中,∠CAF=22°,∴AF=CFtan22°≈600.4=150(米),∴BC=EF=AF﹣AE=150﹣34.6=115.4(米),∴115.4÷7≈16(米/秒),∴无人机的飞行速度约为16米/秒.19.(2022•鼓楼区校级二模)如图,将长方形ABCD纸片沿MN折强,使A、C 两点重合.点D落在点E处,MN与AC交于点O.(1)求证:△AMN是等腰三角形;(2)若BM=4,∠BAM=30°.求MN的长.【解答】(1)证明:∵长方形ABCD纸片折叠,使点C与点A重合,∴∠AMN=∠CMN,∵AD∥BC,∴∠CMN=∠ANM,∴∠ANM=∠AMN,∴AM=AN,∴△AMN是等腰三角形;(2)解:在Rt△ABM中,∠BAM=30°,BM=4,∴AM=2BM=8,∠AMB=60°,∴∠AMN=(180°﹣∠AMB)÷2=60°,由(2)知:△AMN是等腰三角形,∴△AMN是等边三角形,∴MN=AM=8.20.(2022•鼓楼区校级二模)越来越多太阳能路灯的使用,既点亮了城市的风景,也使节能环保的举措得以落实.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A、D与N在一条直线上),求电池板离地面的高度MN(结果精确到1米).参考数据:tan33°≈0.65,sin33°≈0.54,cos33°≈0.84.【解答】解:延长BC交MN于点F,则DE=AB=FN=1.6米,BE=AD=3.5米,∠MFB=90°,设MF=x米,在Rt△MFE中,∠MEF=45°,∴EF=MFtan45°=x(米),∴BF=BE+EF=(x+3.5)米,在Rt△BFM中,∠MBF=33°,∴tan33°=MFBF =xx+3.5≈0.65,解得:x=6.5,经检验:x=6.5是原方程的根,∴MF=6.5米,∴MN=MF+FN=6.5+1.6≈8(米),∴电池板离地面的高度MN约为8米.21.(2022•丰县二模)如图①,等边三角形纸片ABC中,AB=12,点D在BC 上,CD=4,过点D折叠该纸片,得点C'和折痕DE(点E不与点A、C重合).(1)当点C'落在AC上时,依题意补全图②,求证:DC'∥AB;(2)设△ABC'的面积为S,S是否存在最小值?若存在,求出S的最小值;若不存在,请说明理由;(3)当B,C',E三点共线时,EC的长为2√13−2.【解答】(1)证明:补全图形,如图②所示,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵过点D折叠该纸片,得点C'和折痕DE,∴∠DC′C=∠C=60°,∴∠DC′C=∠A=60°,∴DC'∥AB;(2)解:S存在最小值,如图③,过点D作DF⊥AB于F,∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =12,又∵CD =4,∴BD =8,由折叠可知,DC ′=DC =4,∴点C ′在以D 为圆心,4为半径的圆上,∴当点C ′在DF 上时,点C ′到AB 的距离最小,S △ABC 最小,∵Rt △BDF 中,DF =DB •sin ∠ABD =8•sin60°=8×√32=4√3,∴S 最小=12×12×(4√3−4)=24√3−24;(3)解:EC =2√13−2,理由如下:如图④,连接BC ′,过点D 作DG ⊥C ′E 于点G ,过点E 作EH ⊥BC 于点H ,则∠DGC ′=∠EHC =90°,设CE =x ,由翻折得:DC ′=DC =4,C ′E =CE =x ,∠DC ′E =∠DCE =60°,C ′G =DC ′•cos ∠DC ′E =4cos60°=2,DG =DC ′•sin ∠DC ′E =4sin60°=2√3,CH =CE •cos ∠DCE =x •cos60°=12x ,EH =CE •sin ∠DCE =x •sin60°=√32x , ∴BH =BC ﹣CH =12−12x ,∵B,C',E三点共线,∴∠DBG=∠EBH,BG=BE﹣C′E+C′G=BE﹣x+2,∴△BDG∽△BEH,∴BDBE =BGBH=DGEH,即:8BE =BE−x+212−12x=√3√32x∴BE=2x,∴82x =2x−x+212−12x,∵x>0,∴x=2√13−2,∴EC的长为2√13−2,故答案为:2√13−2.22.(2022•贾汪区二模)如图,在某单位拐角处的一段道路上,有施工队正在修路并在点M处放置了施工提示牌,小李骑电动自行车从点P出发,沿着路线PQ以2m/s的速度匀速行驶,其视线被办公楼遮挡.已知PB=500m,∠QPB =20°,∠NBP=25°,行驶3分钟后,小李能否发现点M处的施工提示牌?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)【解答】解:如图,过点B作BA⊥PQ于点A,∵PB=500m,∠QPB=20°,∠NBP=25°,∴∠BNA=∠QPB+∠NBP=45°,∴AN=AB,在Rt△P AB中,AB=PB•sin∠QPB=500×sin20°≈500x0.34=170m,AP=PB•cos∠QPB≈500×0.94=470m,∴PN=AP﹣AN=470﹣170=300m,∵300÷2=150秒=2.5分钟<3分钟,∴行驶3分钟后,小李能发现点M处的施工提示牌.23.(2022•徐州二模)如图是一防洪堤背水坡的横截面图,斜坡AB的长为18m,它的坡角为45°.为了提高该堤的防洪能力,现将背水坡改造成坡度为1:√3的斜坡AD,在CB方向距点B处9m处有一座房屋.(参考数据√6≈2.45;√2≈1.414)(1)求∠DAB的度数;(2)在背水坡改造的施工过程中,此处房屋是否需要拆除?【解答】解:(1)∵坡度为1:√3的斜坡AD,∴tan∠ADC=ACDC =√3=√33,∴∠ADC=30°,∴∠DAC=60°,∵AB的坡角为45°,∴∠BAC=∠ABC=45°,∴∠DAB=60°﹣45°=15°;(2)∵AB=18m,∠BAC=∠ABC=45°,∴BC=AC=√22×18=9√2(m),∴tan30°=ACDC =9√2DC=√33,解得:DC=9√6,故DB=DC﹣BC=9√6−9√2≈9.324(米),∵9.324>9,∴在背水坡改造的施工过程中,此处房屋需要拆除.24.(2022•睢宁县模拟)如图为某中学的学校门口“测温箱”截面示意图,身高1.77米的小聪在地面上的线段MN之间时能显示出额头温度.当他在地面M处时,额头在B处测得A的仰角为45°;当他在地面N处时,额头在C处测得A的仰角为60°.如果测温箱顶部A处距地面的高度AD为3.5米,求B、C两点的距离.(结果保留一位小数)(参考数据:√3≈1.73,√2≈1.41)【解答】解:延长BC交AD于点E,则DE=NC=1.77米,∠AEC=90°,∵AD=3.5米,∴AE=AD﹣DE=3.5﹣1.77=1.73(米),在Rt△ABE中,∠ABE=45°,∴BE=AEtan45°=1.731=1.73(米),在Rt△AEC中,∠ACE=60°,∴EC=AEtan60°=√3≈1(米),∴BC=BE﹣EC=1.73﹣1≈0.7(米),∴B、C两点的距离约为0.7米.25.(2022•邳州市一模)已知OM⊥ON,垂足为点O,点E、F分别在射线OM、ON上,连接EF,点A为EF的中点,ED∥ON,ED=DF,连接OA并延长交线段ED或DF于点G.(1)如图1所示,当点G在ED上,若OG=DE,则∠EDF=60°;(2)当点G在FD.上,请在图2中画出图形并证明△DEF∽△AOF;(3)若DG=2,AG=4,求DF的长.【解答】(1)解:如图1中,∵OM ⊥ON ,∴∠EOF =90°,∵AE =AF ,∴OA =AE =AF ,∵ED ∥ON ,∴∠AGE =∠AOF ,在△AGE 和△AOF 中,{∠AGE =∠AOF∠EAG =∠FAO AE =AF,∴△AGE ≌△AOF (AAS ),∴AG =OA ,∴EF =OF ,∵DE =DF ,OG =EF ,∴DE =DF =EF ,∴△DEF 是等边三角形,∴∠EDF=60°.故答案为:60;(2)解:图形如图2所示.理由:∵∠EOF=90°,AE=AF,∴OA=AF=AE,∴∠AOF=∠AFO,∴DE∥OF,∴∠AFO=∠DEF,∵DE=DF,∴∠DEF=∠DFE,∴∠AOF=∠AFO=∠DEF=∠DFE,∴△DEF∽△AOF;(3)解:如图2﹣1中,当点G在DF上时,设DF=DE=x,AE=AF=OA =AT=y.过点A作AK⊥FG于点K,AH⊥OF于点H.∵△DEF∽△AOF,∴DEOA =EFOF,∴xy =2yOF,∴OF=2y 2x,∵∠AFO=∠AFG,AH⊥OF,AK⊥FG,∴AH=AK,∴S△AOFS△AFG =OAAG=12⋅OF⋅AH12⋅FG⋅AK=OFFG,∴y4=2y2xx+2,∴x2+2x=8y,∵DT∥OF,∴GTTO =DGDF,∴4−y2y =2x,∴y=4xx+4,∴x2+2x=32xx+4,解得x=﹣3+√33或﹣3−√33或0,经检验x=﹣3+√33是分式方程的解,且符合题意.∴DF=﹣3+√33.如图3中,当点G在DE上时,由题意AE=AF=AO=AG=4,设DF=DE=y.由△DEF∽△AOF可得DEAO =EEOF,∴y4=8y−2,∴y2﹣2y﹣32=0,∴y=1+√33或1−√33,经检验y=1+√33是分式方程的解,且符合题意,∴DF=1+√33,综上所述,满足条件的DF的值为:﹣3+√33或1+√33.26.(2022•鼓楼区校级二模)如图1,把等腰直角三角板AMN放在平面直角坐标系xOy中,点A坐标为(0,4),∠MAN=90°,AM=AN.三角板AMN 绕点A逆时针旋转,AM、AN与x轴分别交于点D、E,∠AOE、∠AOD的角平分线OG、OH分别交AN、AM于点B、C.点P为BC的中点.(1)求证:AB =AC ;(2)如图2,若点D 的坐标为(﹣3,0),求线段BC 的长度;(3)在旋转过程中,若点D 的坐标从(﹣8,0)变化到(﹣2,0),则点P 的运动路径长为43(直接写出结果).【解答】(1)解:过点A 作AF ⊥OH 于点F ,AT ⊥OG 于点T ,∵OG ,OH 分别平分∠AOE ,∠AOD ,∴∠COA =∠BOA =45°,∴AF =AT ,∵∠CAB =∠COB =90°,∴∠ACO +∠ABO =180°,∵∠ACO +∠ACF =180°,∴∠ACF =∠ABO ,在Rt △ACF 和Rt △ABT 中,{∠ACF =∠ABT∠AFC =∠ATB AF =AT,∴△AFC ≌△ATB (AAS ),∴AC =AB ;(2)解:由题意知,l OH :y =﹣x ,l OG :y =x ,设l AD :y =kx +b ,∵D (﹣3,0),A (0,4),∴{b =4−3k +b =0, 解得:{b =4k =43,∴l AD :y =43x +4,∵AN ⊥AM ,∴l AN :y =−34x +4,联立方程得:{y =43x +4y =−x, 解得:{x =−127y =127, ∴点C 的坐标为(−127,127),同理可得:点B 的坐标为(167,167),∴BC =√(167+127)2+(167−127)2=20√27; (3)解:设直线AM 的表达式为:y =mx +4,则AN 的表达式为:y =−1m x +4,联立方程得:{y =−x y =mx +4,解得:{x =−4m+1y =4m+1, ∴点C 的坐标为:(−4m+1,4m+1),同理可得:点B 的坐标为(4m m+1,4m m+1),设点P 的坐标为(x P ,y P ),∵P 为BC 的中点,∴{x P =4m m+1−4m+12=2m−2m+1y P =4m+1+4m m+12=2,∴点P的坐标为:(2m−2m+1,2),即点P始终在直线y=2上运动,由此可知P点的运动路径长度为起始横坐标之差,当D的坐标为(﹣8,0)时,代入y=mx+4中,得:m=12,此时点P的坐标为(−23,2),当点D的坐标为(﹣2,0)时,代入y=mx+4,得:m=2,此时点P的坐标为(23,2),∴点P的运动路径长为:23−(−23)=43.故答案为:43.27.(2022•徐州二模)如图,△ABC在坐标平面内,三个顶点的坐标分别为A (1,3),B(3,1),C(5,2)(正方形网格中,每个小正方形的边长为1),以点O为位似中心,把△ABC按相似比2:1放大,得到对应的△A′B′C′.(1)请在第一象限内画出△A′B′C′;(2)若以点A、B、C、D为顶点的四边形是平行四边形,请直接写出满足条件的点D的坐标.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,满足条件的点D的坐标为(3,4)或(﹣1,2)或(7,0).28.(2022•睢宁县模拟)如图,在Rt△ABC中,∠ACB=90°,点D是边AB 上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.【解答】(1)证明:如图,连接OE,∵BF=BD,∴∠F=∠BDF,∵OE=OD,∴∠OED=∠BDF,∴∠OED=∠BFD,∴OE∥BF,∵∠ACB=90°,∴∠AEO=90°,∴OE⊥AC,∵OE为半径,∴AC为⊙O的切线;(2)解:如图,连接BE,∵tan∠EDB=2,∠EDB=∠F ∴tan F=CECF=2,∵CF=1,∴CE=2,∴EF=√CF2+CE2=√5,∵BD是直径,∴∠BED=90°,∴∠BEF=90°,又∵∠ECF=90°,∠F=∠F,∴△ECF∽△BEF,∴EFBF =CFEF,∴√5BF =√5,∴BF=5,∴⊙O的半径=12BD=12BF=52.。

2024-2025学年浙教版中考数学模拟试卷及答案

2024-2025学年浙教版中考数学模拟试卷及答案

2024-2025学年浙教版中考数学模拟试卷一、单选题(每题3分)1. 题目: 解方程组:1.(2x +3y =12)2.(x −y =1)答案:(x =3,y =2)2. 题目: 解二次方程:(x 2−5x +6=0)答案:(x =2)或(x =3)3. 题目: 解方程组:1.(3x −4y =16)2.(2x +y =10)答案:(x =5611),(y =−211)4. 题目: 解二次方程:(4x 2−9=0)答案:(x =−32)或(x =32)5. 题目: 解三次方程:(x 3−2x 2−x +2=0)答案:(x =−1),(x =1), 或(x =2)二、多选题(每题4分)题目1 (4分):下列哪些选项是代数式的正确表述?(A)3x + 4y - z (B) 5 * 6 + 2 / x (C) 2x^2 - 3x + 4 (D) a / b + c答案: (A), (C)题目2 (4分):下面哪一组线性方程有唯一解?(A)x + y = 3; x - y = 1 (B) 2x + 3y = 5; 4x + 6y = 10 (C) x + y = 2; 2x + 2y = 4 (D) 3x - 2y = 1;6x - 4y = 2答案: (A)题目3 (4分):在等腰三角形ABC中,AB=AC,角B和角C的度数可能是什么?(A)50°和 50° (B) 45°和 45° (C) 60°和 60° (D) 70°和 70°答案: (A), (B), (C), (D)题目4 (4分):抛掷一枚公平的骰子两次,得到两个点数之和为7的概率是多少?(A)1/6 (B) 1/9 (C) 1/12 (D) 1/18答案: (A)题目5 (4分):下列哪些变换可以保持图形的形状和大小不变?(A) 平移 (B) 旋转 (C) 缩放 (D) 反射答案: (A), (B), (D)请仔细审题并作答,祝你考试顺利!三、填空题(每题3分)1. 计算:((23)2−4×6),答案:402. 解方程:(2x +3=7),求 x 的值,答案:23. 若 a:b = 3:4,且 b = 12,求 a 的值,答案:94. 一个正方形的周长是 20 厘米,求它的面积,答案:25 平方厘米5. 在直角三角形中,一条直角边长为 3 厘米,另一条直角边长为 4 厘米,求斜边长,答案:5 厘米四、解答题(每题8分)题目1已知函数(f (x )=2x 2−3x +4),求函数的最小值及对应的(x )值。

2024年最新人教版九年级数学(上册)模拟试卷及答案(各版本)

2024年最新人教版九年级数学(上册)模拟试卷及答案(各版本)

2024年最新人教版九年级数学(上册)模拟试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数的平方根是()。

A. ±4B. ±2C. ±1D. ±1/22. 已知二次函数y=ax²+bx+c(a≠0)的图像开口向上,且顶点坐标为(1,3),则该函数的对称轴是()。

A. x=1B. x=1C. y=3D. y=33. 下列函数中,是反比例函数的是()。

A. y=x²B. y=3/xC. y=x³D. y=2x+14. 已知等差数列{an}中,a1=5,d=3,则前5项的和S5=()。

A. 35B. 40C. 45D. 505. 在平面直角坐标系中,点A(2,3)关于x轴的对称点是()。

A. (2,3)B. (2,3)C. (2,3)D. (2,3)6. 若一个三角形的内角和为180°,则它的外角和是()。

A. 180°B. 360°C. 540°D. 720°7. 下列图形中,是中心对称图形的是()。

A. 矩形B. 正方形C. 等腰三角形D. 等边三角形8. 已知平行四边形的对角线互相平分,则这个平行四边形是()。

A. 矩形B. 菱形C. 正方形D. 梯形9. 在等腰三角形ABC中,若AB=AC=6cm,BC=8cm,则三角形ABC 的周长是()。

A. 14cmB. 16cmC. 18cmD. 20cm10. 已知圆的半径为5cm,则圆的周长是()。

A. 10πcmB. 15πcmC. 20πcmD. 25πcm二、填空题(每题3分,共30分)11. 已知x²3x+2=0,则x1+x2=______,x1x2=______。

12. 若一个数的平方根是±3,则这个数是______。

13. 已知等差数列{an}中,a1=2,d=4,则an=______。

2024年广东省九年级中考数学模拟试卷(含答案及部分题解析)

2024年广东省九年级中考数学模拟试卷(含答案及部分题解析)

2023—2024学年度九年级数学模拟试卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A.156×106 B.1.56×107 C.1.56×108 D.1.6×1082.将点A(-4,6)向右平移2个单位,向上平移3个单位得到点B,则点B 的坐标是( ) A.(-2,4) B.(-2,9) C.(-1,4) D.(-2,3)3.下列运算正确的是( )A.(-a³)²=a6 B.(a2)3=a5C.2a2•a=a D.2﹣=334.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=1965.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.456.下列图形中是中心对称图形的是( )A. B.C. D.7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.598.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab 2﹣2a = .12.已知反比例函数y =﹣的图象经过点(12,a ),则a 的值为 .13.实数-9的相反数数等于 .14.如图,在△ABC 中,AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为 .15.如图是二次函数y=ax²+bx+c 的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;③ab c ﹥0;④16a+5b+2c ﹥0,其中正确的是 .三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .17.先化简,再求值:x +1x 2−2x +1÷(2x−1+1),其中x=3+1.18.如图,AD 是△ABC 的角平分线,过点D 分别作AC 、AB 的平行线,交AB 于点E ,交AC 于点F(1)求证:四边形AEDF 是菱形(2)若AF=13,AD=24.求四边形AEDF 的面积四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A 组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.21.某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C .(1) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;2023—2024学年度九年级数学模拟试卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.156000000用科学记数法表示为( )A .156×106B .1.56×107C .1.56×108D .1.6×108【答案】C2.将点A (-4,6)向右平移2个单位,向上平移3个单位得到点B ,则点B 的坐标是( )A .(-2,4)B .(-2,9)C .(-1,4)D .(-2,3)【答案】B3.下列运算正确的是( )A .(-a³)²=a 6B .(a 2)3=a 5C .2a 2•a =aD .2﹣=33【答案】A4.某种商品原来每件售价为230元,经过连续两次降价后,该种商品每件售价为196元,设平均每次降价的4y x =+212y x bx c =-++MC MB +AB OP AB PD OD百分率为x,根据题意,所列方程正确的是( )A.230(1﹣x2)=196 B.230(1﹣x)=196 C.230(1﹣2x)=196 D.230(1﹣x)2=196【答案】D5.分别标有数字π,,-2,0,-4的五张卡片中,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A.25B.15C.35 D.45【答案】C6.下列图形中是中心对称图形的是( )A. B.C. D.【答案】C7.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是( )A.29B.C.79 D.59【答案】A8.若菱形中两个相邻内角的度数比是2:3,那其中较大的角的度数是( )A.72°B.108° C.120° D.135°【答案】B9.一个多边形的内角和为1080°,则这个多边形是( )A.七边形B.八边形 C.九边形 D.十边形【答案】B10.如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB=( )cm.A.3B.3 C.3 D.25 【答案】A【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2ab2﹣2a= .【答案】2a(b+1)(b-1)12.已知反比例函数y=﹣的图象经过点(12,a),则a的值为.【答案】-1213.实数-9的相反数数等于 .【答案】914.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为 .【答案】215.如图是二次函数y=ax²+bx+c的图像,对称轴是直线x=2,则下列说法:①a-b+c-0;②4a+b=0;﹥0;④16a+5b+2c﹥0,其中正确的是 .③abc【答案】①②③【详解】由图象知,抛物线过点(5,0),对称轴为直线x =2,∴抛物线过点(-1,0)∴a-b+c=0故①正确;抛物线的对称轴为直线 x =2,∴-b2a=2,∴4a+b=0,故②正确;由图象知,抛物线开口向上,∴a >0,∵4a+b= 0,∴b<0,而抛物线与y轴的交点在y轴的负半轴上,∴c﹤0,故③正确;∵4a+b= 0,∴b=-4a,∵a-b+c=0,∴c=-5a,∴16a+5b+2c=16a-20a-10a=-14a <0,故④错误三、解答题(一)(本大题共3小题,每小题7分,共21分)16. 解不等式组 .【答案】2<x≤3【详解】解:,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3.17.先化简,再求值:x+1x2−2x+1÷(2x−1+1),其中x=3+1.【答案】3318.如图,AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F(1)求证:四边形AEDF是菱形(2)若AF=13,AD=24.求四边形AEDF的面积【答案】(1)证明:∵AB//DF,AC//DE∴四边形AEDF 是平行四边形∵AD 是△ABC 的角平分线∴∠BAD=∠DAC又∵AC//DE,∴∠ADE=∠DAC∴∠ADE=∠BAD∴EA=ED∴四边形AEDP 是菱形(2)连接EF 交AD 于点O∵四边形AEDF 是菱形∴EF=2FO∴AO=12AD = 12.∵AD ⊥EF.在Rt △AOF 中,由勾股定理得OF=AF 2−AO 2=132−122=5∴OE=OF=5∴四边形AEDF 的面积=12AD ×OF+12AD ×OE=12×24×5+12×24×5=120四、解答题(二)(本大题共3小题,每小题10分,共30分)19. 如图,在▱ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE =CF .(1)求证:四边形EBFD 是平行四边形;(2)若∠BAC =∠DAC ,求证:四边形EBFD 是菱形.【答案】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴▱ABCD是菱形∴DB⊥AC,即DB⊥EF,又∵四边形EBFD是平行四边形∴四边形EBFD是菱形20.为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t(单位:分钟).按照完成时间分成五组:A组“t≤45”,B组“45<t≤60”,C组“60<t≤75”,D组“75<t≤90”,E组“t>90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是 ,请补全条形统计图;(2)在扇形统计图中,A组的圆心角是 度,本次调查数据的中位数落在 组内;(3)若该校有1900名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】解:(1)这次调查的样本容量是:25÷25%=100,D组的人数为:100﹣10﹣20﹣25﹣5=40,补全的条形统计图如下图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:360°×10100=36°,∵本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组, 故答案为:36,C ;(3)1900×=1805(人),答:估计该校每天完成书面作业不超过90分钟的学生有1805人.21. 某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE 与支架CB 所在直线相交于点O ,且;支架BC 与水平线AD 垂直.,,,另一支架AB 与水平线夹角,求OB 的长度(结果精确到1cm ;温馨提示:,,)【答案】.【详解】设,∴,∵ ,∴,∴,∵,OB OE =40cm AC =30ADE ∠=︒190cm DE =65BAD ∠=︒sin650.91︒≈cos650.42︒≈tan65 2.14︒≈OB 19cm ≈OE OB 2x ==OD DE OE 1902x =+=+ADE 30∠=︒1OC OD 95x 2==+BC OC OB 95x 2x 95x =-=+-=-BC tan BAD AC∠=∴,解得:,∴.8≈19 cm五.解答题(三)(本大题共2小题,每小题12分,共24分)22.【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,E 是BC 的中点,AE ⊥EP ,EP 与正方形的外角∠DCG 的平分线交于P 点.试猜想AE 与EP 的数量关系,并加以证明;【思考尝试】:(1)同学们发现,取AB 的中点F ,连接EF 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.【实践探究】:(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD 中,E 为BC边上一动点(点E ,B 不重合),△AEP 是等腰直角三角形,∠AEP =90°,连接CP ,可以求出∠DCP 的大小,请你思考并解答这个问题.【答案】解:(1)AE =EP ,理由如下:取AB 的中点F ,连接EF ,∵F 、E 分别为AB 、BC 的中点,∴AF =BF =BE =CE ,∴∠BFE =45°,∴∠AFE =135°,∵CP 平分∠DCG ,∴∠DCP =45°,∴∠ECP =135°,95x 2.1440-=x=9.4OB 2x 18==∴∠AFE =∠ECP ,∵AE ⊥PE ,∴∠AEP =90°,∴∠AEB +∠PEC =90°,∵∠AEB +∠BAE =90°,∴∠PEC =∠BAE ,∴△AFE ≌△ECP (ASA ),∴AE =EP ;(2)在AB 上取AF =EC ,连接EF ,由(1)同理可得∠CEP =∠FAE ,∵AF =EC ,AE =EP ,∴△FAE ≌△CEP (SAS ),∴∠ECP =∠AFE ,∵AF =EC ,AB =BC ,∴BF =BE ,∴∠BEF =∠BFE =45°,∴∠AFE =135°,∴∠ECP =135°,∴∠DCP =45°,23.如图1,在平面直角坐标系中,直线与抛物线交于A 、B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.4y x =+212y x bx c =-++(2) 求该抛物线的解析式;(2) 若点M 是抛物线对称轴上的一个动点,当的值最小时,求点M 的坐标;(3) P 是抛物线上一动点(不与点A 、B 重合),如图2,若点P 在直线上方,连接交于点D ,求的最大值;【答案】(1) (2) (3)【详解】(1)解: 直线与坐标轴交于A 、B 两点,当时,,当时,,,,将A 、B 代入抛物线,得 ,解得 ,抛物线的解析式为:.(2)∵抛物线的解析式为:.∴当时,解得,∴,∴抛物线的对称轴为,∵点关于对称,连接交对称轴于点M ,MC MB +AB OP AB PD OD2142y x x =--+()1,3M -124y x =+0x =4y =0y =4x =-(40A ∴-,)()0,4B 212y x bx c =-++()210=4424b c c ⎧-⨯--+⎪⎨⎪=⎩14b c =-⎧⎨=⎩∴2142y x x =--+2142y x x =--+0y =124,2=-=x x ()()4,0,2,0A C -4212x -+==-()()4,0,2,0A C -=1x -AB∴,此时取得最小值,∴当时,,∴;(3)过点P 作交直线于点E ,则,设点 , ,,, 代数式,当时有最大值 ,的最大值为.MB MC MB MA AB +=+=MC MB +=1x -143y =-+=()1,3M -PE OB ∥AB PDE ODB ∽PD PE DO OB∴=21(,4)(40)2P m m m m --+-<<(,4)E m m ∴+221144222PE m m m m m ∴=--+--=--21224m m PD DO --∴= 2122m m --22122m -=-=-⎛⎫⨯- ⎪⎝⎭PD DO ∴()()212221242-⨯--⨯-=。

2023年江苏省九年级中考数学模拟试卷(五)含答案

2023年江苏省九年级中考数学模拟试卷(五)含答案

江苏省九年级中考数学模拟试卷(五)(考试时间:120分钟总分:130分)一、选择题(本题共10小题;第1~8题每小题3分,第9~10题每小题4分,共32分)下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的.1.下列计算正确的是( )A.2-2=-4 B.2-2=4 C.2-2=14D.2-2=-142.把多项式x2-4x+4分解因式的结果是()A.(x+2)2 B.(x-2)2 C.x(x-4)+4 D.(x+2)(x-2)3.观察统计图(见图1),下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较4.函数y=kx+b(k≠0)与y=kx(k≠0)在同一坐标系中的图像可能是( )5.某城市计划经过两年的时间,将城市绿地面积从现在的144万m2提高到225万m2,则每年平均增长( )A.15% B.20% C.25% D.30%6.下面四个几何体中,俯视图为四边形的是( )7.100名学生进行20s跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足( )A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>708.不等式组213351xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是( )9.如图2所示,△ABC ≌△ADE 且∠ABC =∠ADE ,∠ACB =∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC =DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有 ( )A .1个B .2个C .3个D .4个10.如图3所示,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D(5,4),AD =2.若动点E 、F 同时从点O 出发,E 点沿折线OA →AD →DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点时停止,它们运动的速度都是1个单位长度/s .设E运动x s 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图像大致为 ( )二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.11.用四舍五入法,精确到0.1,对5.649取近似值的结果是_______.12.当x =-2时,代数式2531x x --的值是_______.13.如图4所示,在△ABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B =120°,则∠ANM =_______.14.如图5所示,A 是硬币圆周上一点,硬币与数轴相切于原点(A 与原点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A'重合,则点A'对应的实数是_______.15.如图6所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是_______.16.直线y =ax (a>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则4x 1y 2-3x 2y 1=_______. 17.如图所示,在梯形ABCD 中,AD ∥BC ,∠C =90°,BE 平分∠ABC 且交CD 于E ,E 为CD 的中点,EF ∥BC 交AB 于F ,EG ∥AB交BC 于G ,当AD =2,BC =12时,四边形BGEF 的周长为_______.18.对于二次函数y =x 2-2mx -3,有下列说法:①它的图像与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m =1;③如果将它的图像向左平移3个单位后过原点,则m =-1;④如果当x =4时的函数值与当x =时的函数值相等,则当x =时的函数值为-3. 其中正确的说法是_______.(把你认为正确说法的序号都填上)三、解答题(本题共11小题;共76分,解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:()03tan603π-︒--. 20.(本小题5分)解不等式组()213215x x +⎧<⎪⎨⎪-≤⎩,并把解集在数轴上表示出来.21.(本小题5分)已知a =2-1,b =2+1,求代数式a 3b +ab 3的值.22.(本小题6分)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?23.(本小题6分)如图所示,在△ABC 中,AB =AC =10,BC =8.用尺规法作出BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.24.(本小题8分)如图所示,曲线C 是函数y =6x在第一象限内的图像,抛物线是函数y =-x 2-2x +4的图像.点P n (x ,y)(n =1,2,…)在曲线C 上,且x 、y 都是整数.(1)求出所有的点P n (x ,y).(2)在P n 中任取两点作直线,求所有不同直线的条数.(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率. (24题)(25题)25.(本小题6分)如图所示,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D .飞机在A 处时,测得山头C 、D 在飞机的前方,俯角分别为60°和30°.飞机飞行了6 km 到B 处时,往后测得山头C 的俯角为30°,而山头D 恰好在飞机的正下方.求山头C 、D 之间的距离.26.(本小题8分)如图所示,一次函数y =kx +b 的图像与x 、y轴分别交于点A(2,0)、B(0,4).(1)求该函数的解析式.(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.27.(本小题8分)如图所示,已知等边△ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点D作DF_l AC,垂足为点F.(1)判断DF与⊙O的位置关系,并证明你的结论.(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求FH的长.(结果保留根号)28.(本小题9分)某市政府为落实保障性住房政策,已投入3亿元资金用于保障性住房建设,并规划投入资金逐年增加,到202X年底,将累计投入10.5亿元资金用于保障性住房建设.(1)求到202X年底,这两年中投入资金的平均年增长率(只需列出方程).(2)设(1)中方程的两根分别为x1、x2,且mx21-4m2x1x2+mx22的值为12,求m的值.29.(本小题10分)如图所示,在平面直角坐标系Oxy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=45.(1)求过A、C、D三点的抛物线的解析式.(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围.(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.参考答案一、选择题1.C 2.B 3.D 4.A 5.C 6.D 7.B 8.C 9.D 10.C 二、填空题11.5.6 12.5 13.60°14.π15.15416.-3 17.28 18.①④三、解答题19.-120.-32≤x<1解集在数轴上的表示如答图所示:21.622.甲、乙工程队单独完成任务分别需要4天、6天.23.22124.(1)P1(1,6)、P2(2,3)、P3(3,2)、P4(6,1).(2)6条.(3)1 325.山头C、D21.26.(1).y=-2x+4.(2)P的坐标为(0,1) 27.(1)相切(2)FH33 28.(1)10.5.(2)m=-6或m=129.(1)y=-23x2+23x+4(2)当y1 <y2时,-2<x<5.(3)34312教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。

(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。

2024年上海中考数学模拟练习卷一及参考答案

上海市2024年中考数学模拟练习卷1一、单选题+A.1.425sinα+C.1.425tanα中,6.如图,锐角ABC∠与∠点E,使得ADEA .甲正确乙错误B .甲错误乙正确C .甲、乙皆正确D .甲、乙皆错误二、填空题12.如图,在ABC 中,ACB ∠么ACD 与CBD △的相似比k 13.已知点A 在抛物线y 果点A 的横坐标是1-,那么点14.如图,抛物线y x =-15.已知点P 为等边三角形角形的边长为2,那么PD 16.如图,在边长为1的正方形网格中,点上,连结AB 、CD 相交于于.17.ABC 中,点D 在边19BDE BDF ABC S S S ==△△△,如果18.如图,矩形ABCD 中,边AD 上一点,将ABP 沿三、解答题19.计算:24sin 30cos30︒-(1)求BD 的长;(2)小明继续作图,如图③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,连接PQ ,分别交BD 、OD 于点E 、F .如果BC 的长.(1)求证:ABD ECD ∽ ;(2)如果90ACB ∠=︒,求证:(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线①连接AM 、CM ,如果AME ∠(1)求证:DBA DEC ∽△△;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图②)①如果2AC AF =,且DEC 是以DC 为腰的等腰三角形,求tan FDC ∠②如果52DE CD =,3EM =,:5:3FM DM =,求AF 的长.参考答案:∵点P是线段AB的黄金分割点,且则有四边形CDEB 是矩形,∴ 1.4CD BE ==米,DE 在Rt ADE △中,tan α=∴25tan AE α=,∴甲正确;乙:如图,∵取AC 中点交AC 于点E ,∴,AD DC AE EB ==,∴,A ACD A ∠=∠∠=∠∴A ACD ABE ∠=∠=∠∴乙正确;故选:C【点睛】本题考查了线段的垂直平分线的性质,基本作图,四点共圆,圆的内接四边形的性质,等腰三角形的性质,正确的理解题意是解题的关键.7.72故答案为:3 3.16.55/15 5【分析】本题考查了勾股定理逆定理、求余弦值、平行四边形的判定及性质,由题意得由勾故答案为:4.18.22102<<-AP【分析】本题考矩形的折叠问题,相似三角形的性质,勾股定理;根据翻折的性质、直角三角形的边角关系以及相似三角形的性质,分别求得最大值,当BP AE⊥时,AP∴∠+∠=︒,90ABP BAF四边形ABCD是矩形,由题意可知,AP A P '=,在Rt BCE 中,9BC =,22310BE BC EC ∴=+=由翻折可知6AB A B '==,在Rt BCH △中,sin 7.2cm BH ∴=,CH =在Rt BEH △中,BEH ∠ cot 530.757.2HE HE BH ∴︒==≈∵=90ACD ∠︒,∴12DG CG AD ==,∴GDC GCD ∠=∠,∴1802DGC ADC ∠=︒-∠∵BDE ADC ∠=∠,(3,0)A - ,(0,3)C -,(1,2)E --,22(31)222AE ∴=-++=,∠3,=90 OA OC==AOC∴∠=∠=︒,45OAC OCA∴∠=︒,AEM45直线AC垂直平分MN,∴=,AEM AEN ME NE∠=∠∴∠=︒.NEM90∵点E的纵坐标为2-,∴点N的纵坐标为2-,2232∴+-=-,x x2210+-=,x x由(1)知:BD DE AD CD =, 52DE CD =,。

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024的倒数是()A.2024B.C.D.2.如图是一个正方体的展开图,则与“承”字相对的是()A.华B.文C.中D.化3.下列函数中,其图象一定不经过第二象限的是()A. B.C. D.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为、,则点D的坐标为()A.B.C.D.5.在比小的数中,最大的整数是()A. B.0 C.1 D.26.下列运算错误的是()A. B.C. D.7.如图,矩形ABCD中以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.8.如图,四边形ABCD内接于,连接若,,则的度数是()A.B.C.D.9.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度:的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为,广告牌顶部E的仰角为小辉的身高忽略不计,已知广告牌米,则该主楼AD的高度约为结果精确到整数,参考数据:,,A.80mB.85mC.89mD.90m10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为小时,两车之间的距离为千米,图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二、填空题:本题共5小题,每小题3分,共15分。

11.农业生产保持稳中有进,粮食产量连续9年保持在万亿斤以上,将数据“万亿”用科学记数法表示为______.12.若分式的值为0,则______.13.方程的根为______.14.现有4张完全相同的卡片分别写着数字,1,3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线与x轴有交点的概率为______.15.如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的是______.三、解答题:本题共8小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷及答案解析 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 题号 一 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人 得分 一、选择题

1.数90,91,92,93的标准差是( ) A.2 B.54 C.54 D.52

2.计算:2532的值为( )

A.322 B.328 C.368 D.86

3. 已知多项式22xbxc分解因式为2(3)(1)xx,则b,c的值为( ) A.3b,1c B.6b,2c C.6b,4c D.4b,6c 4.若AD是△ABC的中线,则下列结论中,错误的是( ) A.AD平分∠BAC B.BD =DC C.AD平分BC D.BC =2DC 5.如图,宽为 50 cm的矩形图案由 10个全等的小长方形拼成,若小长方形的长、宽分别设为 x、y,则可得方程组( )

A. 250xyxy B. 350xyxy C. 450xyxy D. 550xyxy



6.在多项式222xy,22xy,22xy,22xy中,能用平方差公式分解的是( ) A.1个 B.2个 C.3个 D.4个 7.如图,由∠2=∠3,可以得出的结论是( ) A .FG∥BC B.FG∥CE C.AD∥CE D.AD∥BC

8.等腰三角形的一边长是8,周长是l8,则它的腰长是( ) A.8 B.5 C.2 D.8或5 9.在全等三角形的判定方法中,一般三角形不具有,而直角三形形具有的判定方法是 ( ) A.SSS B.SAS C.ASA D.HL 10.已知在△ABC和△DFE中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( ) A.AB=DE,AC=DF B.AC=EF,BC=DF C.AB=DE,BC=FE D.∠C=∠F,BC=FE 11.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么2PP等于( ) A.9 B.12 C.15 D.l8

12.方程组5210xyxy ,由②①,得正确的方程是( ) A. 310x B. 5x C. 35x D. 5x 13.如图是由五个大小相同的正方体搭成的几何体,则关于它的视图,下列说法正确的是( ) A.正视图的面积最小 B.左视图的面积最小 C.俯视图的面积最小 D.三个视图的面积一样大

14.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是( ) A.AD>1 B.AD<5 C.1<AD<5 D.2<AD<10 15.在下列抽样调查中,样本缺乏代表性的个数有 ( ) ①在沿海地区的农村调查我国农民的年收入情况;. ②在某一城市的一所小学抽查100名学生,调查我国小学生的营养情况; ③在公园时监测城市的空气质量情况; ④任选l0所本省中学调查本省中学生的视力情况. A.1个 B.2个 C.3个 D.4个 16.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需

① ②

要知道小明这5次数学成绩的( )

A.平均数或中位数 B.方差或标准差 C.众数或平均数 D.众数或中位数 17.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是( ) A. 60分 B. 70分 C.75分 D. 80分 18.由xy得到axay的条件是( ) A.0a B.0a C.0a D.0a

19.一次函数y=kx+b中,k<0,b>0.那么它的图像不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 20.已知点A(0,-l),M(1,2),N(-3,0),则射线AM和射线AN组成的角度数( ) A.一定大于90° B.一定小于90° C.一定等于90° D.以上三种情况都有可能 21.函数y=3x-6的图象是( ) A.过点(0,-6),(0,-2)的直线 B.过点(0,2),(1,-3)的直线 C.过点(2,O),(1,3)的直线 D.过点(2,0),(0,-6)的直线 22.如图是某镇中学七年级(3)班60名同学参加兴趣活动小组的扇形统计图.其中.S1、S2、S3、S4分别表示四个扇形的面积,如果S1:S2:S3:S4=4:3:2:1,那么参加数学活动小组的同学有( ) A.24人 B.18人 C.12人 D.6人

23.根据右边流程图中的程序,当输入数值x为2时,输出数值y为( ) A.4 B.6 C.8 D.10 24.60cos的值等于( ) A.21 B.22 C.23 D.1 25. 下列化简中错误的是( ) A.555939



B.0.0l0.490.0l0.490.10.70.07

C.22114777

D.1111111494977

90 85 80 75 70 65 60 55

分数

测验1 测验2 测验3 测验4 测验5 测验6

26.我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )

A.等腰三角形顶角的平分线所在的直线是它的对称轴 B. 等腰三角形底边上的中线所在的直线是它的对称轴 C. 等腰三角形底边上的高线所在的直线是它的对称轴 D.以上都对 27. 某个体商贩在一次买卖中同时卖出两件上衣,售价都是 135 元,若按成本计算,其中一件盈利 25%,另一件亏损 25%,则在这次买卖中他( ) A. 赚 18 元 B.赚 36 元 C. 赔 18 元 D. 不赚不赔 28.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a、b对应的密文为2a-b、2a+b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( ) A.-1,1 B.2,3 C. 3,1 D.1,l 29.某校组织学生进行社会调查,并对学生的调查报告进行评比,将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图如图.已知从左到右4个小组的频数分别是3,9,21,18,则这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)听占的比例为( )

A.10% B.20% C.30% D.45% 30. a、b、c均是不为 0 的有理数,则||||||abcabc的值有( ) A. 2 个 B.3 个 C.4 个 D.无数个 31.下列各式正确的是( )

A.255 B.255 C.2(5)5 D.2(5)5

32.若x 表示一个两位数,y 也表示一个两位数,小明想用 x、 y来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A.yx B.x+y C.100x+y D.100y+x 33.下列等式是由 5x-1 =4x 根据等式性质变形得到的,其中正确的有( )

①5x-4x=1;②4x-5x=1;③51222xx;④6x-1=3x

A.0 个 B.1 个 C.2 个 D.3 个

34.已知当1a,2b时,代数式10abbcca,则c的值为( ) A. 12 B. 6 C.-6 D. -12

35.如果x的相反数比13的倒数大4,由此可列出方程( )

A.1()43x B.1()43x C.(3)4x D.(3}4x

36.如图所示,直线l、线段a以及射线OA,能相交的图形是 ( )

A.①③④ B.①④⑥ C.①④⑤ D.②③⑥ 37.一个角的补角是( ) A.锐角 B.直角 C.钝角 D.以上三种都有可能 38.下列运算中,正确的是( )

A.2222(53)106acbcbcac

B.232()(1)()()abababba

C.()(1)()()bcaxyxbcayabcabc D.2(2)(11b2)(2)(3)5(2)abaababba

39.如图,在长方体中,与棱AB平行的棱有( ) A.1条 B.2条 C.3条 D.4条

40.某学习小组7个男同学的身高(单位:米)为:l.66,1.65,1.72.1.58.1.64,1.66.1.70.那么这组数据的众数是( ) A.1.65米 B.1.66米 C. 1.67米 D.1.70米 41.16的平方根为( ) A. 2 B.±2 C. 4 D.±4

42.已知26xy,则4)2(3)2(22yxyx的值是( )

相关文档
最新文档