模态分析试验报告-
模态分析实验报告一

实验一用不测力模态分析法测量简支梁的模态参数、实验目的(1)学习不测力实验模态分析方法的原理(2)掌握用不测力模态分析法测量结构固有频率、模态振型、模态阻尼比的方法、实验系统框图三、实验原理所谓不测力法就是在试验过程中不需要测量激励力的方法。
工程中的的大量结构和机器都是很难人工施加激励力的。
其结构的响应主要由环境激励引起的,而这些环境激励是既不可控又难以测量的。
不测力法只能利用系统的响应数据对固有频率、模态振型、模态阻尼或阻尼比这几个模态参数进行估计,而这几个模态参数已经能够满足绝大多数工程中结果动力特性分析的要求。
不测力法模态软件利用测量得到相应的自功率谱、互功率谱、传递率和相干函数进行模态参数估计。
前述的运行模态分析法(OMA属于不测力模态分析法。
不测力法也可分为解析法和图解法两种类型。
使用范围与测力法一致。
图解法也可选用自互功率谱综合法或传递函数法,解析法可选用随机子空间法(SSI)。
四、实验步骤简支梁的几何尺寸为:长(x向)625mm宽(y向)50mm使用不测力法做其z方向的的振动模态,实验过程如下。
1. 测点的确定可以将简支梁分出八等分,即九个结点,去掉两端的两个节点以及2号节点,共选取6个测点,如图所示。
实验时,将传感器放置于每一个等分点处。
2. 连接仪器将两个测量用的加速度传感器分别接入采集器的的通道1和通道23. 测量设置打开仪器电源,启动分析软件,选择频谱分析模式。
新建4个窗口,分别显示通道1和通道2的时间波形以及通道1和通道2的平均谱,平衡清零后,即可开始采样。
4. 参数设置(1)系统参数设置:采样频率:2kH z;采样方式:连续;触发方式:自由采集;平均方式:线性平均;平均次数:100次;时域点数:2048点;窗类型:海宁窗•(2)通道参数设置:参考通道:通道1。
工程单位和灵敏度:参考实验十。
本实验中,两个传感器的灵敏度必须设置正确。
模态参数:编写测点号和方向。
实验时,将其中一个传感器放置在参考点处,并在整个测试过程中该传感器位置不变,其通道的“几何参数(模态参数)”栏中“参考标识”打“V”,其余通道的“参考标识”打“X”;移动另外一个传感器进行测量,在每一批次的测试过程结束之后,都要对通道2的测点编号进行设置,具体做法与测力模态分法相似。
钻床试验模态分析实验报告

钻床试验模态分析实验报告摘要:为对钻床进行试验模态分析,本实验采用锤击法采集数据并利用DASP软件进行分析获得钻床振动的各阶频率、阻尼比和振型,然后通过对钻床各阶模态振型的观察,找到钻床结构的薄弱环节,并对其进行优化设计。
关键词:钻床模态分析各阶振型优化设计引言:众所周知钻床工作时会产生振动,振动不仅会影响钻床的动态精度和被加工零件的质量,而且还会降低生产效率和刀具的耐用度,振动剧烈时甚至会降低钻床的使用性能,伴随振动所发出的噪音会影响钻床工人的健康。
随着我国钻床工业的飞速发展,钻床的振动问题也越来越引起人们的重视,如何找到钻床振动的薄弱环节并进行改进尤为重要。
1.钻床模态分析方法1.1模态测试与分析系统流程号图1本次试验采用多点敲击,单点测量的锤击法,这种测试方法的力频谱较宽,速度快,测试设备简单,灵活性大,特别适合于现场实验。
具体操作是: 在被测构件上布置一些点,在这些点上依次施加激振力( 每点激振3次),测量固定测点的响应,激励信号和响应信号分别经过放大器放大后,通过测振仪输入数据处理和分析系统进行分析处理,得到反映该两点间激振力和响应的传递函数,进一步进行参数识别得到钻床振动的各阶频率、阻尼比和振型。
1.2模态分析原理模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别。
从而大大地简化了系统的数学运算。
通过实验测得实际响应来给出响应的模型,使其成为实际结构的最佳描述。
将一个连续体离散化处理,其结构特性可由N 阶矩阵微分方程描述:(t)Mx Cx Kx f ++=(t)f 为N 维激振力向量;x 、x 、x 分别为N 维位移、速度和加速度响应向量;M 、K 、C 分别为结构的质量、刚度和阻尼矩阵,为对称矩阵。
设系统的初始状态为零,拉氏变换可得:2()()Ms Cs K X s F s ⎡⎤++=⎣⎦阻抗:2()Z s Ms Cs K ⎡⎤=++⎣⎦导纳:112()()H s Z s Ms Cs K --⎡⎤==++⎣⎦ 可得:()()()X s H s F s =令s j ω=,得到:()()()X H F ωωω=在频域中,2()Z K M j C ωωω=-+,利用实对称矩阵的加权正交性(φ为振型矩阵)T r M m φφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦T r K k φφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦T r C c φφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦代入()Z ω表达式可得:1()T r Z z ωφφ--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2=k r r r r z m j c ωω-+) 因此1()()T r H Z z ωωφφ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦ 2221()()=()22N ri rj i r r ij r r r j r r r r r r r X k c H F m m m j φφωωωξωωωωξωω====⎡⎤-+⎣⎦∑ 为了确定全部模态参数r r r ωξφ,只需测量频响矩阵的一列(对应一点激振,各点测量)或一行(对应依次各点激振,一点测量)就可以,本实验采取后者。
模态分析报告

汽车挡风玻璃模态试验报告(模态分析理论与试验第三小组)姓名:张朋小组:三组学号:目录1 试验目的 (3)2 试验仪器 (3)3 试验对象 (3)4 试验测量和分析系统 (4)5 实验原理 (5)5.1 传递函数 (5)5.2 相干函数 (5)5.3 误差控制 (6)6 模态分析方法和测试过程 (7)6.1 激励方法 (7)6 .2 结构安装方式 (7)7、实验步骤 (8)7.1测点的确定 (8)7.2 仪器连接 (9)7.3 结构生成及约束 (9)7.4 参数设置与采样 (9)7.5实验数据分析处理 (10)8、实验结果和分析 (13)8.1 模态频率和阻尼 (13)8.2 试验与仿真对比 (18)8.3 分析结论 (21)1 试验目的1.学习模态分析原理和模态测试方法;2.试验分析得到汽车挡风玻璃的前15阶模态的模态参数;3.试验分析汽车挡风玻璃的动态振动特性;4.为汽车挡风玻璃的有限元分析计算模型的修改提供可靠依据。
2 试验仪器试验仪器如表1所示:表1 试验仪器列表3 试验对象试验对象:POLO三厢车前挡风玻璃。
实验对象附件描述见表2表2 实验对象描述4 试验测量和分析系统试验测量分析系统由三大部分组成:试验试验激振系统,响应采集系统,模态分析和处理系统。
其中,(1) 试验激振系统包括:江苏联能LC系列力锤;(2) 响应采集系统包括加速度传感器、和DASP信号采集系统;(3) 模态分析和处理系统主要是DASP和Matlab软件。
具体的组成方式如图1和图2所示。
图1模态试验测量分析系统模型示意图图2模态试验测量分析系统—电荷放大器图3模态试验测量分析系统—INV 306U DASP数采系统5 实验原理5.1 传递函数试验模态分析是基于系统响应和激振力的动态测试,即通过振动测试,经信号处理和参数识别确定系统的模态参数,建立以模态参数表示的运动方程。
从模态分析理论可知,这些参数可以通过传递函数或频响函数曲线进行分析求得。
Abaqus模态分析报告实验报告材料

Abaqus模态分析报告实验报告材料一、引言模态分析是结构动力学中的重要分析方法,它用于确定结构的固有频率和振型。
Abaqus 作为一款功能强大的有限元分析软件,为模态分析提供了高效、准确的解决方案。
本报告将详细介绍使用 Abaqus 进行模态分析的实验过程、结果以及相关分析。
二、实验目的本次实验的主要目的是通过 Abaqus 软件对给定的结构进行模态分析,获取其固有频率和振型,评估结构的动态特性,并为后续的结构设计和优化提供依据。
三、实验模型实验所分析的结构为一个简单的悬臂梁,其几何尺寸为长1000mm,宽 100mm,高 50mm。
材料属性为弹性模量 E = 21×10^11 Pa,泊松比ν = 03,密度ρ = 7800 kg/m³。
四、实验步骤1、模型建立在Abaqus/CAE 中创建部件,使用草图工具绘制悬臂梁的截面形状,然后通过拉伸操作生成三维实体模型。
定义材料属性,将弹性模量、泊松比和密度等参数输入到材料定义中。
划分网格,采用合适的网格类型和尺寸,以保证计算精度和效率。
2、边界条件设置在悬臂梁的固定端设置完全固定约束,即限制所有自由度。
3、分析步设置创建模态分析步,指定分析的模态阶数。
4、求解提交作业进行求解计算。
五、实验结果1、固有频率求解完成后,得到了悬臂梁的前 5 阶固有频率,分别为:一阶固有频率:f1 = 5234 Hz二阶固有频率:f2 = 31567 Hz三阶固有频率:f3 = 78912 Hz四阶固有频率:f4 = 125678 Hz五阶固有频率:f5 = 187534 Hz2、振型各阶固有频率对应的振型如下:一阶振型:悬臂梁在垂直方向上的弯曲振动,固定端振幅为 0,自由端振幅最大。
二阶振型:悬臂梁在水平方向上的弯曲振动,固定端振幅为 0,自由端振幅最大。
三阶振型:悬臂梁的扭转振动,固定端扭转角为 0,自由端扭转角最大。
四阶振型:悬臂梁在垂直和水平方向上的复合弯曲振动,振幅分布较为复杂。
齿轮箱有限元模态分析及试验研究报告

齿轮箱有限元模态分析及试验研究报告齿轮箱是现代机械设备中重要的组成部分,它广泛用于各种机械传动系统中,如车辆、工程机械等。
因此研究齿轮箱的动力学特性对于机械传动系统的设计、优化和性能提升具有重要意义。
本文通过有限元模态分析和试验研究,对齿轮箱的动力学特性进行了分析和研究。
首先进行有限元模态分析,使用ANSYS软件建立了三维齿轮箱模型,并对其进行了固有频率和模态分析。
在分析过程中,设定了模型的约束和加载条件,确保模型模拟的真实性与可靠性。
通过模态分析,得到了齿轮箱的固有频率和模态形态,并且确定出了前几个重要频率的数值。
结果表明,齿轮箱的固有频率主要集中在数百Hz的高频段。
为了验证有限元模态分析结果的准确性,本文设计了试验验证方案。
首先,使用激光精密测量仪对齿轮箱的位移进行测量,并将测试数据存储为动态位移序列。
然后,基于FFT算法对动态位移序列进行频谱分析,得到齿轮箱的频响函数。
最后,通过对比有限元模态分析结果与试验结果,验证模型的准确性和可靠性。
试验结果表明,模型的预测结果与试验结果相符,二者的误差在可接受范围内。
综上所述,本文采用有限元模态分析和试验验证两种方法,对齿轮箱的动力学特性进行了研究。
结果表明,齿轮箱具有较高的固有频率,且主要分布在数百Hz的高频段。
通过试验验证,证明了有限元模态分析方法的准确性和可靠性。
这些结果对于齿轮箱的优化设计、结构改进和性能提升具有重要参考价值。
齿轮箱的有限元模态分析和试验研究,采用了多项相关数据。
在本文中,我们主要关注以下数据:1. 齿轮箱模型的材料性质2. 模型的约束和加载条件3. 模型的固有频率和模态形态4. 齿轮箱的位移测试数据5. 齿轮箱的频响函数6. 模型预测结果与试验结果的误差对于第一项数据,齿轮箱的材料性质是有限元模型分析的关键。
正确的材料参数可以确保分析结果的准确性和可靠性。
在本文中,我们将齿轮箱的材料定义为铸铁,其杨氏模量为169 GPa,泊松比为0.27。
结构模态实验报告doc

结构模态实验报告篇一:模态分析实验报告模态分析实验报告姓名:学号:任课教师:实验时间:指导老师:实验地点:实验1传递函数的测量一、实验内容用锤击激振法测量传递函数。
二、实验目的1) 掌握锤击激振法测量传递函数的方法;2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函数;4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响;三、实验仪器和测试系统 1、实验仪器主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。
仪器名称型号序列号 3164灵敏度2.25 mV/N 100 mV/g备注比利时丹麦 B&K数据采集和分析系统 LMS-SCADAS Ⅲ2302-10 力锤加速度传感器表1-1 实验仪器2 、测试系统利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。
然后利用参数识别方法得到系统的模态参数。
测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。
测量分析系统的框图如图1-1所示。
测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。
力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP 型传感器,需要SCADAS采集前端对其供电。
SCADAS采集相应的信号和进行信号处理(如抗混滤波,A/D转换等),所测信号通过电缆与电脑完成数据通讯。
图1-1 测试分析系统框图四、实验数据采集 1、振动测试实验台架实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。
模态分析实验报告二
实验二圆板各阶固有频率及主振型的测量一、实验目的(1)学会用敲击法测量圆板横向振动的低阶固有频率和阻尼比。
(2)掌握用模态分析法测量圆板振动的各阶振型。
二、实验系统框图三、实验原理参考简支梁模态试验原理,采用单点响应,多点激励的方法。
四、实验步骤1.连接仪器将力锤信号接入采集器通道1,位移传感器(或小型加速度传感器)信号接入通道2。
2.建模建立圆盘的几何模型,将圆盘径向2等分,周向6等分,内圈固支,布置测量点,编写测点号。
3.参数设置打开动态采集分析仪电源,启动分析软件,选择分析/频响函数分析,点击右键,信号选择/频响函数。
(1)分析参数设置.采样率:2kHz;触发方式:信号触发;延迟点数:-100;平均方式:线性平均;平均次数:5;频域点数:800;预览平均:√;窗函数:力信号,力窗;响应信号,指数窗。
(2)系统参数设置:参考通道:通道1。
灵敏度:将两个传感器输入相应的通道灵敏度设置栏内。
量程范围:调整量程范围,使实验数据达到较好的信噪比。
模态参数:编写测点号和方向。
采用多点激励单点响应法时,如果测量1号点的频响函数数据,在通道1(力锤信号)的模态信息/节点栏内输入1,测量方向输入+Z,响应通道(位移传感器信号)内输入传感器放置的测点号,方向为+Z。
4.频响函数测量新建四个显示窗口,分别显示频响函数数据、相干函数及通道1和通道2的时间波形。
编写测点号和方向,再平衡清零之后开始采样。
采样后,观测力信号有无连击或过载,相干函数质量如何,在确保测量的频响函数无误后保存数据,然后移动敲击点进行其他测点的测量。
注意当力锤移动到其他点进行敲击时,必须相应地修改力锤通道的模态信息/节点栏内的测点编号,且每次移动力锤后都要新建文件。
5.模态分析所有测点的数据采集完成后,打开模态软件,建立圆盘的几何模型,输入测点编号;导入测量数据,注意选择单点响应,多点激励测量方式。
利用软件提供的几种方法分别进行参数识别。
6.振型观察识别得到的模态参数可动画显示在几何模型上。
模态分析报告
模态分析报告一、引言模态分析是研究结构动力特性的一种方法,通过对结构进行模态分析,可以了解结构的固有频率、振型等重要参数,为结构的设计、优化和故障诊断提供重要的依据。
本次模态分析的对象是一个机械结构,旨在评估其在不同工况下的动态性能。
二、模态分析的理论基础模态分析基于结构动力学的原理,假设结构在自由振动时的响应可以表示为一系列固有模态的线性组合。
每个固有模态具有特定的固有频率和振型,固有频率反映了结构的振动特性,振型则描述了结构在该频率下的振动形态。
三、实验设备与方法1、实验设备本次实验使用了加速度传感器、数据采集系统和模态分析软件。
加速度传感器用于测量结构在振动时的加速度响应,数据采集系统将传感器采集到的数据传输到计算机,模态分析软件则对数据进行处理和分析。
2、实验方法首先,在结构的关键位置安装加速度传感器,并对传感器进行校准。
然后,对结构施加激励,激励方式可以是锤击法或激振器法。
在激励过程中,同时采集传感器的数据。
最后,将采集到的数据导入模态分析软件进行处理和分析。
四、实验结果与分析1、固有频率通过模态分析,得到了结构的前若干阶固有频率。
固有频率的分布情况反映了结构的刚度特性。
较低的固有频率通常与结构的整体振动相关,而较高的固有频率则与局部结构的振动有关。
2、振型振型是结构在特定固有频率下的振动形态。
通过观察振型,可以了解结构在振动时的变形模式。
例如,某些振型可能表现为弯曲变形,而另一些振型可能表现为扭转变形。
3、模态参与因子模态参与因子反映了每个模态对结构总体响应的贡献程度。
通过分析模态参与因子,可以确定哪些模态对结构的动态性能影响较大。
五、结果讨论1、结构刚度评估根据固有频率的大小,可以对结构的刚度进行评估。
如果固有频率较低,可能表明结构的刚度不足,需要进行加强或改进。
2、共振风险分析当结构的工作频率接近其固有频率时,可能会发生共振现象,导致结构的振动加剧,甚至损坏。
通过模态分析,可以确定结构的共振频率范围,从而采取相应的措施避免共振的发生。
实验模态分析与参数识别报告
2022年春季学期讨论生课程考核(读书报告、讨论报告)考核科目:试验模态分析同学所在院(系):同学所在学科:学生姓名:学号:学生类别:考核结果阅卷人试验模态分析与参数识别报告模态分析可分为试验模态分析与工作模态分析等。
模态分析的最终目标是识别出系统的模态参数,为结构系统的振动分析、振动故障诊断和预报、结构动力特性的优化设计供应依据。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
1、模态分析原理模态分析的过程是将线性时不变系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,坐标变换的变换矩阵为振型矩阵,其每列即为各阶振型。
[M]{X}÷[C]{X}+[K]{X}={F(∕)}⑴其中:[M]—质量矩阵,[K]一刚度矩阵,[C]一粘性阻尼矩阵,{尸⑺}一激励力的列阵。
振动模态是弹性结构固有的、整体的特性。
假如通过模态分析方法搞清晰了结构物在某一易受影响的频率范围内,各阶主要模态的特性,就可能预知结构在此频段内,在外部或内部各种振源作用下实际振动响应,而且一旦通过模态分析知道模态参数并赐予验证,就可以把这些参数用于设计过程,优化系统动态特性,或者讨论把该结构连接到其他结构上时所产生的影响。
方程(1)经傅氏变换,可得频域内的振动方程:(-√ [ M] + j∖∖[q +[ ∕C]) {X(ιv)} = {F(w)}(2)对应于固有频率叼的固有振型或模态向量以幅值最大点为参考点的表达式为:M={X(叫)}∕X(叫)厘。
它们亦即简谐自由振动的主振型,满意以下关系式:([K]^[M])[∣ }z=O(3)此代数方程组的系数行列式等于零,即为特征方程式:[M], [K]为实数对称矩阵,[M] 正定,[K]为非负定,其特征值域和对应的特征向量为实数。
模态分析报告
模态分析报告1. 引言模态分析是一种用于研究结构动力学行为的重要方法。
通过模态分析,可以获取结构的固有频率、振型及阻尼等信息,为工程设计、结构优化提供依据。
本报告将对某结构进行模态分析,并总结分析结果。
2. 背景本次模态分析的对象是一座桥梁结构。
该桥梁位于城市A,是一座重要的交通枢纽。
为了确保桥梁的安全性和可靠性,需要进行模态分析,以评估结构在自然频率下的振动特性。
3. 数据分析在进行模态分析之前,需要收集一定的测试数据。
通过对桥梁进行激振测试,得到了结构的加速度响应数据。
这些数据经过处理后,可以用于模态分析。
3.1 数据处理在数据处理阶段,首先需要对原始数据进行滤波处理,以去除杂散噪声。
然后使用相关算法,计算出结构的加速度频谱。
最后,基于频谱数据,通过傅里叶变换等数学方法,得到结构的振型和固有频率。
3.2 模态分析结果根据模态分析得到的结果,可以得出结构的固有频率、振型和阻尼比等重要信息。
以下是部分分析结果的总结:模态序号固有频率(Hz)振型阻尼比1 2.34 振型1 0.022 3.78 振型2 0.033 5.12 振型3 0.03……………………从上表中可以看出,桥梁的固有频率主要分布在2 Hz 到 6 Hz之间,且随着模态序号的增加,固有频率逐渐增大。
振型图显示了每个模态下的结构振动特性,可以帮助我们理解结构的模态形态。
4. 结果分析与讨论在模态分析的结果中,固有频率是衡量结构动力学特性的重要指标。
通过对固有频率的分析,可以评估结构的刚度和质量分布情况。
此外,振型图也提供了进一步的分析依据,比如寻找结构的薄弱点、问题区域等。
根据分析结果,可以确定桥梁的主要振动频率范围和对应的模态形态。
进一步分析这些模态对结构的影响,可以辅助工程师进行结构改进设计,提高结构的动力学性能。
5. 结论通过本次模态分析,我们得到了桥梁结构的固有频率、振型和阻尼比等重要信息。
这些分析结果对于评估结构的动力学性能,发现结构的薄弱点以及进行工程优化设计都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《建筑结构的模态分析试验》 实验报告
专业 土木工程 班级 学号 姓名 教师
建工实验中心 2010年3月
振动测试与模态分析实验报告 一、实验人员 3组: 二、试验目的 1.培养学生采用实验与理论相结合的方法来处理工程中的振动
问题。 2.通过实验使学生掌握振动测试系统的基本组成、了解振动测试的常用测量方法以及模态分析技术。模态分析技术已发展成为解决工程振动问题的重要手段。 3.了解模态分析软件的使用方法。 三、试验内容 1、学习模态分析原理;
2、学习模态测试及分析方法。 通过对框架模型的模态试验分析,测定出基础模型的模态参数:固有频率、阻尼比、振型图,并通过实验观察了解框架结构的动力参数,从而掌握模态分析的基本原理及分析方法。 四、试验的基本要求 (1)掌握振动测试系统的构成及操作。
(2)了解振动测试的常用测量方法。激振、锤击 (3)了解数据采集系统的操作步骤。 (4)了解对已采集到的数据进行模态分析的方法与步骤。 五、试验仪器(表1) 单轴加速度传感器、力锤、动态信号分析仪LMS和计算机等
力锤用于激励实验对象。
力传感器用于拾取激励信号并转换成为电荷信号。 加速度计用于拾取响应信号并转换成为电荷信号。 AZ804-A四通道电荷电压放大信号调理仪,用于将电荷信号放大成为适合测量的电压信号。 AZ208数据采集箱信号采集分析系统包括抗混滤波器、A/D变换器、结构动态分析软件、计算机、打印机。 用安装有力传感器的力锤敲击实验对象上的若干个点。力传感器拾取激励力的信号,安装在实验对象的某测点上的加速度计拾取响应信号.经电荷放大器放大后输入信号采集系统。实验仪器框图如图1所示。
力信号接入信号采集器的第1通道,响应信号依次接入信号采集器的其他通道。
表1 试验仪器的硬件及软件 力锤传感器 厂家 型号 量程 频率范围 灵敏度 美国PCB公司 086D20 加速度传感器 厂家 型号 量程 频率范围 灵敏度vm/g 美国PCB公司 333B40 50g 美国PCB公司 333B40 50g 美国PCB公司 333B40 50g 美国PCB公司 333B40 50g 动态信号分析仪 厂家 型号 比利时LMS国际公司 LMS SCADASIII 数据采集及模态分析软件 厂家 名称 比利时LMS国际公司 LMS Test 9A
六、试验步骤
模态试验基本过程
二十年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程: 1.动态数据的采集及频响函数或脉冲响应函数分析。 (1) 激励方法:试验模态分析是在试验室内人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)、多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。 (2) 数据采集:SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据。SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本极高。 (3) 时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型。根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数的依据,目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时域建模。根据阻尼特性及频率耦合程度分为实模态或复模态模型等。 3.参数识别。按识别域的不同可分为频域法、时域法和混合域法,后者是指在时域识别复特征值,再回到频域中识别振型。激励方式不同(SISO、SIMO、MIMO)相应的参数识别方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,即使用较简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,则识别的结果一定不会理想。 4.振形动画。参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振形。由于结构复杂,由许多自由度组成的振形的数组难以引起对振动直观的想象。必须采用活动振动的方法,将放大了的振形叠加到原始的几何形状上。 以上四个步骤是模态试验及分析的主要过程,而支持这个过程的除了激振装置、双通道FFT分析仪、桌面式或便携式计算机等硬件外还要有一个完善的模态分析软件包。通用的模态分析软件包必须适合各种结构物的几何特征,设置多种坐标系、划分为多个子结构,具有多种拟合方法并能将结构的模态振动在屏幕上三维实时动画。 随机信号与振动分析系统CRAS 工作流程及功能 MACRAS流程图 几何建模 1、 根据结构的特点,离散化为若干节点代替连续系统。 2、 复杂结构可以划分为若干部件。每一个部件应选用直角坐标系、柱坐标系或球坐标 系三种之一。 3、 送入各结点的部件坐标、连线序列(结点对)。标准结构或轴对称部件可以自动生成, 子结构可以拼装。 4、 结构的三维透视图形可以通过旋转、平移、缩放获得最佳视觉效果。 测量设置 1、 根据结构振动特点,确定一维分析或三维分析。 2、 送入测量信息:某一结点的某一方向是否测量,测量正方向还是负方向。 3、 送入约束方程。对于某些不易测量的结点可以通过约束方程获得其模态振形。
模态测量 通过双通道FFT分析仪或CRAS数据采集及FFT系统,根据测量设置产生的索引文件,自动进行一系列频响函数的测量。采用锤击法或随机激励法获得力信号及响应信号,经过FFT得到频响函数,以数据文件存于计算机的硬盘内。 频响函数集总平均 将所有测量频响函数的幅频数据进行集总平均,目的是为了得到参数识别的初始估计频率,也可以从整体上判别模态测量的质量。
参数识别 1、 选择数据模型:实模态或复模态(通常为实模态)。 2、 选择拟和方法:单测量、自动拟和、整体拟和(通常用整体拟和)。 3、 参与拟和的频响数据选取方法:光标线或光标带(通常用光标线)。 4、 进行参数识别,结果存盘。 5、 对比各结点上试验的与拟和的频响函数曲线,判断拟和的效果。 模态综合 1、 测量方向处理。 2、 处理约束方程,填满残数矩阵。 3、 留数矩阵归一化为振形矩阵。
振形动画 根据结构的几何设置以及参数识别的结果,进行三维动画式振形显示。具有旋转、平移、缩放功能,可以在同一屏幕上显示两阶振形。振动大小、速度可以调节。 七.软件操作 硬件安装 (1)AZ系统采集箱安装方法 ·在断电情况下,将专用通讯电缆一端与AZ系列采集箱连接,另一端与PC机(台式或笔记本式)的并行口(打印机口)连接。 ·先开PC机进入Windows后再打开AZ系列采集箱的电源。 (2)试运行 为了判断硬件连接及软件安装是否成功,请用户正式使用前先作一个测试。利用AZ208仪器提供的测试信号(200Hz,2000mV)或用一个发生器输出连接到采集卡或采集箱的第1通道。打开数据采集与处理软件AdCras,选择1通道作业,给定适当采样频率(例如5120Hz),在“示波”菜单下观察到一个规则的正弦波则表明硬件软件已经正确安装成功。建议在每一次重大试验之前也这么测试一下,以避免传感器、导线等故障。 (3)运行程序 在PC桌面上或CRAS文件夹中点击CRAS后进入程序引导总界面。
用鼠标点击需要运行的软件包或选件程序即可进入该程序的运行。 如果用户希望将所配置的某个软件程序放置在自己选定某个文件夹内运行,还必须注意将CRAS文件夹中有关库文件一起复制进来。 如果在运行采集或示波时,发生计算机死锁的情况,退出应用程序的办法是: 同时按Ctrl + Alt + Del一次或多次。极个别情况,需关闭电源。 半圆环模型的模态试验 (1) 建立新作业或继续老作业 · 采集新的数据 建立作业:送入作业名(含路径)及选择通道,如送入的作业在指定路径内已存在,应特别注意存盘时会将老数据覆盖。 如在指定路径内找不到此作业则有系统提醒:“指定目录数据文件找不到,新作业”。 · 观察老数据 选择作业:送入需要观察分析的作业名和路径。 (2) 几何模型生成 选择几何模型菜单中自动生成简单几何图形的圆柱面,设置如下:
(3) 模态测量 在模态测量菜单下选择测量参数设置,相关选项设置如下: 1、平均次数
2、时间窗处理函数