高考的学子们必须知晓的函数不动点知识
不动点定理及其应用(高考)

摘要本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式. 其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用.关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性.AbstractThis article firstly introduced the Fixpoint Theorem in Banach space, the one-dimensional extended form of the Fixpoint Theorem in other linear topological space and the extended form in general complete metric space. Then, we summarized the problem on sequence of number using Fixpoint Theorem, analyzing the characteristics of tests emerged on math papers of all parts of our country recent years, including the problem of general term and boundedness of a sequence of number. At last, attractive fix point and rejection fix point in Fixpoint Theorem were introduced which can solve the problem about the monotonicity and astringency of sequence of number.Keywords:Banach fixed point theorem,Sequence, Boundedness, Monotonicity Convergence.目录第1章绪论 (3)1.1导论 (3)1.1.1 选题背景 (3)1.1.2 选题意义 (2)1.1.3 课题研究内容 (4)1.2 研究现状 (2)1.3本章小结 (3)第2章不动点定理 (4)2.1 有关概念 (4)2.2 不动点定理和几种推广形式 (4)2.3 本章小结 (7)第3章不动点定理在数列中的应用 (8)3.1 求数列的通项公式 (8)3.2 数列的有界性 (9)3.3 数列的单调性及收敛性 (11)3.3.1数列的单调性、收敛性的重要结论 (11)3.3.2数列的单调性、收敛性的证明 (14)3.4 本章小结 (17)第6章结束语 (18)参考文献 (19)第1章绪论1.1导论不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].不动点理论一个发展方向是只限于欧氏空间多面体[5]上的映射,不动点理论的另一个发展方向是不限于欧氏空间中多面体上的映射,而考察一般的距离空间或线性拓扑空间上的不动点问题.最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、积分方程、隐函数理论等中的许多存在性与唯一性问题均可以归结为此定理的推论.1.1.1 选题背景不动点定理在微分方程、函数方程、动力系统理论等中有极为广泛的应用.函数的"不动点"理论虽然不是中学教材的必修内容,但是它的存在确实使一些数学问题在无法想象中得到了解决.已知递推公式求其数列通项,数列有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.因此,它就自然成为各类数学竞赛和选择性考试必选的内容之一,尤其在近年的高考中对该定理的应用越来越频繁.1.1.2 选题意义利用“不动点”法巧解高考题,递推公式求数列的通项,证明数列的有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此本文对函数“不动点”问题的研究结果,来简化求数列的通项公式、数列的有界性、数列的单调性及收敛性等问题具有指导意义和理论意义.1.1.3 课题研究内容本文通过介绍不动点定理的证明,不动点定理的迭代思想和不动点定理的推论,研究了以下的内容:①利用不动点定理的迭代思想,简化求递推数列的通项问题.②以不动点定理为指导思想,证明数列的有界性.③利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.1.2研究现状不动点理论一直是一个既比较古老的问题,又比较有新生命力的领域,它的历史悠久,却又是近现代一个发展较快的理论定理.自不动点理论问世以来,特别是最近的二三十年来,由于学术上的不断发展和数学工作者的不懈努力,这门学科的理论及应用的研究已经取得了重要的进展,不断有新的不动点理论研究成果涌现,并日臻完善.不动点的有关理论是泛函分析中最重要的原理之一,它依据于著名的巴拿赫(Banach )压缩映射定理,如今已广泛应用于数学分析的各个方面.许多著名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()f x ()f x 把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x ∈,使00()f x x =.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题.近年来,有不少人研究中学数学中所涉及到的不动点问题,将拓扑学不动点定理的一些基本思想,采用通俗易懂的语言和形象生动的例子运用到初等数学中去,扩大中学生的知识领域,加深中学生对数学基础知识的掌握.在中学中,不动点有关知识常常用来解决一些初等数学中的问题,例如以“不动点”为载体、将函数、数列、不等式、方程以及解析几何等知识有机地交汇在一起的数学问题,从而体现了用不动点有关知识来求解这些问题有时是非常简单和巧妙的.1.3 本章小结本章介绍了选题的背景和意义,并对课题的要求和研究内容作了分析,对不动点定理的现况作了概要性的说明,是不动点定理及其应用的前期研究基础.第2章 不动点定理2.1 有关概念函数的不动点,在数学中是指被这个函数映射到其自身的一个点,即函数()f x 的取值过程中,如果有0x ,使0()f x x =.就称0x 为()f x 的一个不动点.对此定义,有两方面的理解:⑴代数意义:若方程00()f x x =有实数根0x ,则00)(x x f =有不动点0x .⑵几何意义:若函数)(x f y =与x y =有交点),(00y x ,则0x 为()y f x =的不动点. 为了介绍不动点的一般概念,本文先介绍以下相关概念.定义1[7] 度量空间: 设X 是一个集合,R X X →⨯:ρ.如果对于任何X z y x ∈,,,有⑴(正定性)(,)0x y ρ≥,并且(,)0x y ρ=当且仅当y x =;⑵(对称性)(,)(,)x y y x ρρ=;⑶(三角不等式)(,)(,)(,)x z x y y z ρρρ≤+,则称ρ是集合X 的一个度量,偶对()ρ,X 是一个度量空间.定义2[7] 压缩映射:给定()ρ,X 如果对于映射T :X X →存在常数K ,10<<K 使得(,)(,)Tx Ty K x y ρρ≤,(,)x y X ∀∈则称T 是一个压缩映射.定义3[7] Cauchy 列 :给定(,)X ρ,{}n x X ⊂,若对任取的0>ε,有自然数N 使对εN n m >∀,,都成立(,)m n x x ρε<则称序列{}n x 是Cauchy 列.定义4[7] 完备度量空间:给定(,)X ρ,若X 中任一Cauchy 列都收敛,则称它是完备的.定义5[8] 不动点:给定度量空间(,)T ρ及X X → 的映射T 如果存在X x ∈*使**x Tx = 则称*x 为映射T 的不动点.定义6[9] 凸集:设X 是维欧式空间的一点集,若任意的两点X x X x ∈∈21,的连线上的所有的点)10(,)1(21≤∂≤∈∂-+∂X x x ;则称X 为凸集.2.2 不动点定理和几种推广形式不动点理论是关于方程的一种一般理论.数学里到处要解方程,诸如代数方程、微分方程、函数方程等,种类繁多,形式各异,但是它们常能改写成()f x x =的形状这里的x 是某个适当的空间X 中的点,f 是X 到X 的一个映射,把每个x 移到()f x .方程()f x x =的解恰好就是在f 这个映射下被留在原地不动的点,故称不动点,于是解方程的问题就是化成了找不动点的这个几何问题,不动点理论就是研究不动点的有无、个数性质与方法.首先,本文介绍Banach 不动点定理的证明定理l (Banach 不动点定理 ——压缩映射原理[10])设(,)X ρ是一个完备的度量空间T 是(,)X ρ到其自身的一个压缩映射,则T 在X 中存在惟一的不动点.证明 首先,证明T 存在不动点取定X x ∈0以递推形式n n Tx x =+1 确定一序列{}n x 是Cauchy 列.事实上,由1111221210(,)(,)(,)(,)(,)(,)m m m m m m m m m m m x x Tx Tx K x x K Tx Tx K x x K x x ρρρρρρ+------=≤=≤≤≤任取自然数n m ,,不妨设n m <那么 1111101010(,)(,)(,)()(,)1()(,)(,)11m m n m n m m n n n m mm x x x x x x K K K x x K K K x x x x K Kρρρρρρ-----≤++≤+++-=≤-- 从而知{}n x 是一Canchy 列,故存在X x ∈*使*x x n →且*x 是T 的不动点,因为******1(,)(,)(,)(,)(,)()n n n n x Tx x x x Tx x x K x x n ρρρρρ-≤+=+→→∞故**(,)0x Tx ρ=,即**x Tx =,所以*x 是T 的不动点.其次,下证不动点的惟一性设T 有两个不动点*1*,x x ,那么由**x Tx =及*1*1x Tx =有******111(,)(,)(,)x x Tx Tx K x x ρρρ=≤设*1*x x ≠,则**1(,)0x x ρ>,得到矛盾,从而*1*x x =,唯一性证毕. 作为Brouwer 不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder 不动点定理I :定理2 设E 是Banach 空间,X 为E 中非空紧凸集,X X f →:是连续自映射,则f 在X 中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意X x ∈,()x f 是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集,有下面定理,我们称其为Schauder 不动点定理II :定理3 设E 是Banach 空间,X 为E 中非空凸集,X X f →:是紧的连续自映射,则f 在X 中必有不动点.定义6 设E 是线性拓扑空间,如果E 中存在由凸集组成的零邻域基,则称E 是局部凸的线性拓扑空间,简称局部凸空间.1935年,Tyehonoff 进一步将Sehauder 不动点定理I 推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff 不动点定理:定理4 设E 是局部凸线性拓扑空间,X 是其中的非空紧凸集,X X f →:是连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.1950年,Hukuhara 将Schauder 不动点定理II 与Tyehonoff 不动点定理结合起来得到下面的定理,我们称其为Sehauder--Tychonoff 不动点定理:定理5 设E 是局部凸线性拓扑空间,X 是其中的非空凸集,X X f →:是紧连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.从20世纪30年代起,人们开始关注集值映射的不动点问题.所谓集值映射的不动点,定义如下:定义7 设X 是拓扑空间,XX T 2:→是集值映射,其中X 2表示X 的所有非空子集的集合.若存在X x ∈0,使00()x T x ∈,则称0x 是T 的不动点.1941年,kllcIltani 把Bmuwer 不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani 不动点定理:定理6 设m R X →是凸紧集,且X X T 2:→是具闭凸值的上半连续集值映射,则T 必有不动点.1950年,Botmenblust ,Karlin 把Sehauder 不动点定理I 推广到集值映射的情形:定理7 设E 是Banach 空间,X 是E 中的非空紧凸集,X X T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1952年,Fan ,Glicksberg 分别把Tyehonoff 不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg 不动点定理或K-F —G 不动点定理.即:定理8 设E 是局部凸的Hausdorff 线性拓扑空间,X 是E 中的非空紧凸集,XX T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1968年,Browder 又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder 不动点定理:定理9 设X 是Hausdorff 线性拓扑空间E 中的非空凸紧子集,集值映射X X S 2:→满足:(1)对任意X x ∈,()S x 是X 中的非空凸集(2)对任意{}1,():()y X S y x X y S x -∈=∈∈是Z 中的开集则存在X x ∈0,使00()x S x ∈.本章小结本章详细介绍了Banach 不动点定理及其证明,概况了对不动点定理的几种推广形式. 第3章 不动点定理在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子以全国卷I 为例,2007年,2008年、2010年高考的压轴题都是可以用“不动点”的方法比较容易地去解决.用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.3.1求数列的通项公式定理10 已知数列{}n x 满足()()dcx b ax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列.证明 因为p 是()x f 唯一的不动点,所以p 是方程dcx b ax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得 ap cp pd b cd a p -=--=2,2 所以 ()()()()d cx p x pc a dcx ap cp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()p x cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把 cd a p 2-=代入上式,得: px d a c p x n n -++=--1121 令 d a c k +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1 若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式. 解 根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p , 根据定理 可知2,1,1,0=-===d c b a ,则111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为 ()()n n a n -=--+-=-21112111 解得nn a n 2123--= 又11-=a 也满足上式.所以{}n a 的通项公式为nn a n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()d cx b ax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c +2的等差数列. 推论 已知数列{}n x 满足()()b ax x f x f x n n +==-,1 ,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2 若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解 根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论 可知3,2==b a ,则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列, 则当2≥n 时,有nn a 23=+,故32-=n n a 又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.3.2 数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3(2008年全国II )函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析 函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明 当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;假设k n =时有11<<+k k a a ,因为()x f 是增函数()1,0∈x ,所以()()()111=<<+f a f a f k k ,即121<<++k k a a ,当1+=k n 时结论也成立.故原不等式成立这类问题可以以各种类型的函数与数列为载体.考查导数、单调性、方程的根等问题.对学生综合能力有较高的要求,在2010年的高考中此类问题进一步拓展,又有了一些新变化:利用数列的有界性求含参数列中参数的取值范围.例4(2010年全国I )已知数列{}n a 中,nn a c a a 1,111-==+,求使不等式31<<+n n a a 成立的c 的取值范围.解:该数列应该是向其某个不动点收敛.不妨设该不动点为0x ,则有310≤<x ,即方程()x x f =在(]3,1有一个实根.我们继续用不动点的思路方法解决该问题.因为31<<+n n a a 对任意自然数都成立,所以首先应有321<<a a ,可得42<<c .设()xc x f 1-=,则()x f 是增函数,()+∞∈,0x . 令()x x f =,即01,12=+-=-cx x x xc .当2>c 时,该方程有2个不等的实数根.设为2121,,x x x x <,由韦达定理121=x x ,可知211x x <<只要让32≤x 即可.令()()31003,12≤⇒≥+-=c g cx x x g . 即当310≤c 时,()x f 在(]3,1上存在不动点0x (0x 就是2x )所以c 的取取范围是⎥⎦⎤⎝⎛310,2.再用数学归纳法证明结论的正确性:因为310≤<x 且()xc x f 1-=在()+∞,0是增函数,所以当3102≤<c 时,有()()002111x f x f a a =<=<=.假设k n =时,有301≤<<+x a a k k .因为()x f 是增函数,故()()()01x f a f a f k k <<+,即021x a a k k <<++,当1+=k n 时结论也成立,所以当c 的取值范围是⎥⎦⎤⎝⎛310,2时,()xc x f 1-=有在区间(]3,1内的不动点0x ,数列{}n a 单调递增向该不动点收敛. 3.3 数列的单调性及收敛性近几年一些地区高考试题对利用不动点解决递推数列的问题比较青睐,如求数列的通项公式,利用不动点研究数列的单调性等等.下文利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.3.3.1 关于数列单调性、收敛性的重要结论定义8 设R I f →:,其中I 是R 的一个区间,数列{}n x 由a a =1和递推关系()n n x f x =+1来定义.则数列{}n x 称为递推数列.()x f 称为数列{}n x 的特征函数,()x f x =称为数列{}n x 的特征方程,a x =1称为初始值.若设f 是连续的,若{}n x 收敛而且有极限0x ,()()010lim lim x f x f x x n n ===+.因此问题就变为寻找方程 ()x f x =解(即f 的不动点),并验证数列是不是收敛于数 0x .定理 11设f 是定义在I 上的一个压缩映射,则由任何初始值[]b a x ,1∈和递推数列()n n x f x =+1,*N n ∈生成的数列{}n x 收敛.证明:由于f 是[]b a ,上的一个压缩映射,故[]()[]b a b a f ,,⊂,则[]b a x n ,∈,且()1,0∈∃k ,使得*,N p n ∈∀,有()().1112221111b a k x x k x x k x x k x f x f x x n p n p n n p n n p n n p n n -≤-≤≤-≤-≤-=-+--+--+--+-+ 于是,0>∀ε(不妨设 a b -<ε),只要取*,,ln /ln N p n k ab N ∈∀⎥⎦⎤⎢⎣⎡-=ε,都有ε<-+p n n x x 根据Cauchy 收敛准则,{}n x 收敛.[证毕]定义9 在不动点0x 处,若()10'<x f ,则称0x 为()x f y =的吸引不动点;若()10'>x f ,则称0x 为()x f y =的排斥不动点.定理12 若()x f y =是定义在I 上的连续可导函数,0x 是吸引不动点,则存在0x 的邻域区间U ,对一切 U x ∈,都有()1'<x f 且0lim ()n n f x x →∞=.这里的记号1`()(())n n f x f f x -=.证明:因为()x f 连续可导,又()10'<x f ,则这样的区间 显然存在. 对任意一点U x ∈,在0,x x 为端点的闭区间上,由拉格朗日中值定理得()()()()00'00x x x x f x f x f x x f -<-=-=-ξ所以,()U x f ∈ 由定理1可得数列(){}x fn收敛,且0lim ()nn fx x →∞=.[证毕]定理表明吸引不动点在迭代过程中,可以吸引周边的点.下面研究数列{}n x 将以何种方式收敛于0x .定理13 若()x f y =是定义在I 上的连续可导函数,只有一个不动点 0x ,且为吸引不动点,初始值01x x ≠,递推数列()*1,N n x f x n n ∈=+,则(1)当f 在I 上递增时,则数列{}n x 单调且收敛于0x ;(2)当f 在I 上递减时,则{}n x 的两个子列的{}12-k x 和{}k x 2一递增一递减,且收敛于0x .证明:(1)当f 在I 上递增时,若()121x x x f >=,则由数学归纳法可证明()()n n n n x x f x f x =>=-+11,{}n x 递增;若()121x x x f <=,则由数学归纳法可证明()()n n n n x x f x f x =<=-+11,{}n x 递减.(2)当f 在I 上递减时,此时复合函数()[]x f f 递增,而子数列{}12-k x 和{}k x 2中有一个递增,另一个递减.若13x x >,用数学归纳法可证明{}12-k x 单调递增.事实上,若 1212+-<k k x x ,则()()2212122++-=>=k k k k x x f x f x ,()()3222212+++=<=k k k k x x f x f x ,由此可得{}k x 2单调递减;若13x x <,证明类似.[证毕]定理14 若()x f y =是定义在I 上的连续可导函数,有且只有两个不动点()βαβα<,且()()1,1''≠≠βαf f ,异于βα,的初始值1x ,递推数列()*1,N n x f x n n ∈=+.则两个不动点βα,至多只有一个吸引不动点.证明:设函数()()x x f x g -=,则()()1''-=x f x g .假设两个不动点βα,同为吸引不动点,则()()1,1''<<βαf f 从而()()0,0''<<βαg g .又()()0==βαg g ,可得()εαε,,00+∃>∀U ,使得()0'<x g ,则()()()0,,0=<∈∃+αεαg a g U a ,同理 ()βεβ,-∈∃b ,使得()0>b g .由()x g 连续及零点存在定理,得()x g 在区间()b a ,上必有一个零点.这与()x g 仅有两个零点矛盾.因此假设不成立,则两个不动点βα, ,至多一个为吸引不动点.[证毕]定理15 若()x f y =是定义在I 上的连续可导的凸函数,有且只有两个不动点()βαβα<,,且βα,,中有一个吸引不动点,()()1,1''≠≠βαf f.异于βα,的初始值1x ,递推数列()*1,N n x f x n n ∈=+,则α为吸引不动点,β为排斥不动点,且当α<1x <O 时,{}n x 单调递增且收敛于α;当βα<<1x 时,{}n x 单调递减且收敛于α;当 β>1x 时,{}n x 单调递增且不收敛;证明:由()x f y =为凸函数,可得()x f '为增函数.由βα<且中有一个吸引不动点及定理4得()()βα''1f f<<,即α为吸引不动点,β为排斥不动点.构造函数()()x x f x g -=,则()()1''-=x f x g 为增函数且()()0,0''><βαg g .于是()βα,∈∃x ,使得()0'=x g ,于是()x g 在()x ,∞-上递减,在()β,x 上递增.下面分四种情况进行说明:(1)当α<1x 时,()()01=>αg x g 即()11x x f >,所以12x x >,结合数学归纳法易证{}n x 单调递增且收敛于α;(2)当x x <<1α时,()()01=≤αg x g 即()11x x f <,所以12x x <,结合数学归纳法易证{}n x 单调递减且收敛于α;(3)当β<<1x x 时,()()01=<βg x g 即()11x x f <所以12x x <,结合数学归纳法易证{}n x 单调递减且收敛于α;(4)当β>1x 时,()()01=>βg x g 即()11x x f >,所以12x x >,结合数学归纳法易证{}n x 单调递增且不收敛.综上,当β>1x 时,{}n x 单调递增且不收敛;当βα<<1x 时,{}n x 单调递减且收敛于α;当α<1x 时,{}n x 单调递增且收敛于α [证毕]定理表明初始值也将影响数列{}n x 收敛与否、以何种方式收敛于α. 3.3.2 数列的单调性、收敛性的证明当初始值与特征函数都确定的情况下,主要判断特征函数的单调性,及不动点是否为吸引不动点,借助定理13可以解决.例 5 (2007广东理)已知函数()12-+=x x x f ,βα,是方程()0=x f 的两个根(βα>) ,()x f '是()x f 的导数.设()()),2,1(,1'11 =-==+n a f a f a a a n n n n .(1)求βα,的值;(2)证明:对任意的正整数n ,都有α>n a ;(3)略.解:(1)易得.251,251--=+-=βα (2)()12'+=x x f ,则121121221++=+-+-=+n n n n n n n a a a a a a a ,特征函数()1212++=x x x g ,特征方程 1212++=x x x , 即012=-+x x ,于是不动点251,251--=+-=βα,()()()()()222'1221222+=+-+=x x f x x x x g ,()()()()()()0122,01222'2'=+==+=βββαααf g f g ,可得βα, 均为吸引不动点.又()132,1121<==>=a g a a α,当 ()()0,,'>+∞∈x g x α,由定理13可得数列{}n a 单调递减,且α>=+∞→n n n a a a ,lim .本题的背景是牛顿切线法求方程()0=x f 的近似解.本题特征函数()1212++=x x x g 在定义域上不连续,有两个吸引不动点.由于初始值α>=11a 且不动点的导数值恰为0,使得()+∞∈,αx 时恒有()0'>x g ,使问题简单化.例6(2009陕西22)已知数列{}n x 满足,*11,11,21N n x x x nn ∈+==+. ⑴猜想数列{}n x 的单调性,并证明你的结论;(2)略.解:由 n n x x +=+111得特征函数()xx f +=11,在()1,-∞-、()+∞-,1上分别单调递减.由特征方程x x +=11得不动点251,251--=+-=βα .由于()()2'11x x f +-=,则()()15142'>-=αf ,()()15142'<+=βf ,可得 α为排斥不动点,β为吸引不动点.由()xx f +=11在()+∞-,1上单调递减,又211=x 且2122121111111112112111111111213>++--=+--+=-++=-++=-+=-x x x x x x x x x x x x x x x x由定理13得数列{}n x 的两个子列{}12-k x 单调递增,{}k x 2单调递减. 由于特征函数()xx f +=11在()+∞-,1上单调递减,结合定理13,可得如下结论: 当()α,11-∈x 时,可得13x x >,数列{}12-k x 单调递增,{}k x 2单调递减;当α=1x 时,数列{}n x 为常数列;当()+∞∈,1αx 时,可得13x x <,数列{}12-k x 单调递减,{}k x 2单调递增.当初始值或特征函数中出现未知量或参数时,难度有所增加,考虑降低难度要求的需要,高考题给出的特征函数一般为凹或凸函数,此时主要结合定理15进行判断即可.例7(2009安徽21)首项为正数的数列{}n a 满足()*21,341N n a a n n ∈+=+ . (I )略;(II )若对一切n ∈N ,都有n n a a >+1,求1a 的取值范围.解:(II )记()()3412+=x x f ,则()x x f 21'=,()21''=x f ,于是()x f 为凸函数.令()3412+=x x 得不动点3,1==βα.由对一切*N n ∈,都有n n a a >+1,得数列{}n a 为递增,根据定理15得,α<1a 或β>1a ,又01>a ,所以1a 的取值范围101<<a 或31>a本题已知数列的单调性,求首项的取值范围,利用不动点定理可以证明数列的单调性及收敛性,所以此题是对数列单调性及收敛性的逆向考查,是高考中的难题,继续采用不动点定理的思想,根据定理15可以很简单快捷地求出首项的取值范围,有别出心裁的效果.3.4 本章小结本章详细研究了利用不动点定理解决求数列通项,数列有界性,数列的单调性及收敛性问题,对这类问题的解决方法做了简单的概括.第6章 结束语本次的毕业论文创作过程是对大学四年学习的一个总结.在历时将近半年的时间里,我通过到图书馆翻阅资料,上网,质询指导老师,收集了足够的质料,按照指导老师提供的要求按时完成了我的论文.通过撰写毕业论文,对不动点定理有了自己的认识和进一步的理解.不动点定理虽然是拓扑学中的一个著名的定理,但它在初等数学中也有极其广泛的运用,运用不动点定理可以简单快捷地解决初等数学中的一些问题,例如本文中提到的求数列通项、数列的有界性问题,数列的单调性及收敛性方面的问题;当然本文所涉及的不动点定理的应用不是很全面,还有很多方面的内容没有涉及.本次毕业论文,我按照老师的要求完成了大部分论文的内容.不动点定理,我论文中有了详细的说明,不动点定理在数列中的应用文中也作了详细的分析.这次毕业论文让我在数学理论知识应用上成熟了很多,是大学四年学习的总结,也是今后工作的宝贵经验和财富.随着全国教育体系的逐步完善,我相信数学的学习深度将进一步提高,我希望本论文对读者了解不动点定理及其在数列中的应用有所帮助.参考文献[1] CLARKSON J A.Uniformly Convex Spaces[J].Trans.Amer.Math.Soc.,1936,40(3):396~414.[2] CLARKSON J A.1nhe von Neumann Constants for Lebesgue Space[J].Ann of Math,1937,38(1):114~115.[3] JAMES R C.Uniformly Non—square Spaces0].Ann of Math,1964,80(3):542~550.[4] KIILXAAFixed Point Theorem for Mappings Which Do Not IncreaseDistances[J].Amer.Math.Monthly,1965,72(9):1004~1006.[5] AKSOY A G,KHAMSI M A.Nonstandard Methods in Fixed Point Theory[M].Heidelberg:Springer-Verlag,1990:11~13.[6] 江秉华.隐函数存在定理及隐函数组定理的一个证明方法[J].湖北师范学院学报(自然科学版),2005,25(1):87~89.[7] 龚怀云.应用泛函分析[M].第1版.西安:西安交通大学出版社,1985.[8] 谭长明.龙丽.不动点定理在方程解方面的应用[J].吉林师范大学学报(自然科学版),2007,28(1):84~86.[9] 张学山.刘裕维.高等数学辅导与测试[M].北京:高等教育出版社,2004.[10] 刘炳初.泛函分析[M].北京:科学出版社,1998 .11] 裴礼文.数学分析中的典型问题与方法[M]. 北京:高等教育出版社,1993[12] 林武忠,等. 常微分方程[M]. 北京:科学出版社,2003 .`[13] 李思华. 积分方程[M]. 天津:天津大学出版社,1993 .14] 张恭庆,等.泛函分析讲义[M].北京:北京大学出版社,1990 .[15] 程其襄.数学分析[M](第二版).北京:高等师范出版社,1991.56~58.[16] 华东师范大学教学系.数学分析上册[M].北京:高等师范教育出版社.2000.56~58.[17] [不动点定理的方法与应用[J].德州师范学院报,2005,10(2):5~7.[18] 李德本.微分中值定理的新证法[J].四平师范学院学报,1982,1(4);32~34.[19] 刘炳初.泛函分析[M].北京:科学出版社,1998 .[20] 裴礼文.数学分析中的典型问题与方法[M]. 北京:高等教育出版社.1993.[21] 林武忠,等. 常微分方程[M]. 北京:科学出版社,2003 .[22 ] 李思华. 积分方程[M]. 天津:天津大学出版社,1993.。
高一数学函数不等式知识点

高一数学函数不等式知识点在高一数学课程中,函数不等式是一个重要的知识点。
函数不等式主要涉及到函数的不等关系及其在数轴上的图像表示。
以下是关于高一数学函数不等式的一些基本知识点:一、函数的不等关系函数的不等关系是指函数值之间的大小关系。
在数学中,有几种常见的不等关系,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)等。
二、一次函数不等式一次函数不等式是指函数中只包含一次项的不等式。
对于一个一次函数f(x) = ax + b,可以利用其函数图像以及不等式的性质来求解不等式。
三、二次函数不等式二次函数不等式是指函数中含有二次项(x²)的不等式。
对于一个二次函数f(x) = ax² + bx + c,可以通过求解二次方程来确定函数的零点,并利用零点将函数的图像分为不同的区间进行讨论。
四、绝对值不等式绝对值不等式是指函数中含有绝对值符号(|x|)的不等式。
对于一个绝对值不等式|f(x)| < a(或> a),可以通过拆分成两个不等式进行求解,包括当f(x) > 0或f(x) < 0时的情况。
五、函数不等式的解集表示当求解函数不等式时,我们通常需要表示其解集。
解集可以通过数轴上的图像表示,或使用区间表示。
在数轴上,解集可以用开区间、闭区间、半开半闭区间等形式表示。
六、函数不等式的解法对于不同类型的函数不等式,我们可以采用不同的解法。
常用的解法包括代入法、分析法、图像法等。
通过选择合适的解法,能够更快速地求解函数不等式问题。
总结:高一数学函数不等式是数学课程中的一个重要知识点,涉及到函数的不等关系、一次函数不等式、二次函数不等式、绝对值不等式等内容。
通过掌握函数不等式的基本知识,我们能够更好地理解和解决相关的数学问题。
在实际应用中,函数不等式也经常被用于解决各种实际问题,对培养学生的逻辑思维和问题解决能力有着重要的作用。
高考数列不动点法解题方法整理版

利用“不动点"法巧解高考题由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究.笔者在长期的教学实践中,不断总结探究反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助.1 不动点的定义一般的,设()f x 的定义域为D ,若存在0x D ∈,使f x x ()00=成立,则称x 0为f x ()的 不动点,或称00(,)x x 为f x ()图像的不动点。
2 求线性递推数列的通项定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 满足递推关系1()n n a f a -=,2,3,n =,证明{}a x n -0是公比为a 的等比数列。
证:∵x 0是f x ()的不动点,所以ax b x 00+=,所以b x ax -=-00,所以a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列.例1(2010上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n 。
证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即15166n n a a -=+(2)n ≥,记51()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:151(1)(2)6n n a a n --=-≥,又a 1-1= -15 ≠0,所以数列{a n -1}是等比数列。
不动点和稳定点

不动点和稳定点
今天说⼀道创新题.
分析:对于创新题、新定义题,⾸先要理解新定义表达的是什么意思.
本题中的不动点可以这样理解:⾃变量经过对应关系f处理⼀次,得到的函数值等于这个⾃变量,则此⾃变量称为函数的不动点.
类似地,稳定点可以这样理解:⾃变量经过对应关系f处理⼆次,得到的函数值等于这个⾃变量,则此⾃变量称为函数的稳定点.
本题中函数f(x)的稳定点和不动点是刚好相同,要求参数a的范围.
翻译成数学语⾔,就是这样的:
⾸先分析不动点需要满⾜的条件.
为保证上述⽅程有根,则判别式必须⾮负.
再来分析稳定点需要满⾜的条件.
对⽅程(1)的处理就是本题的技巧所在.
这个⽅程展开之后,有x的四次,有x的两次,还有x的⼀次,以我们⽬前的知识储备,是⽆法解根的.⽽且也没有所谓的判别式.
肿么办涅?
抓住本题的特点:不动点和稳定点是完全相同的.(题中⽤的是“恰好”⼆字)
这个结论为我们处理⽅程(1)提供了⽅法.即,⽅程(1)如果因式分解的话,必然会分解出因式(x2-x+a)出来.
于是我们把式⼦(x2-x+a)拼凑出来.
观察上式,因式(x2-x+a)已经出现.
因为稳定点和不定点完全⼀样,所以⽅程x2+x+a+1=0应该⽆解,或者⽅程x2+x+a+1=0的根与⽅程x2-x+a=0的根⼀样.
若⽅程x2+x+a+1=0⽆解,可求出a的范围.
若⽅程x2+x+a+1=0的根与⽅程x2-x+a=0的根⼀样,可求出a的值.
两种情况(1)(2)取并集,再与前⾯范围取交集,求出最后结果.。
专题1:函数的零点、不动点、稳定点

奥数专题1:函数的零点、不动点、稳定点一、基本知识1. 满足f(x)=0的x 的值叫做函数f(x)的零点2. 满足f(x)=x 的x 的值叫做函数f(x)的不动点3. 满足f(f(x))=x 的x 的值叫做函数f(x)的稳定点4. 若函数f(x)=ax+b(a ≠1)的不动点为x 0=b 1−a ,则函数f(x)可写成f(x)=a (x −b 1−a )+b 1−a ,f (2)(x )=a 2(x −b 1−a )+b 1−a ,⋯f (n )(x )=a n (x −b 1−a )+b 1−a ,此定理即:若x 0是f(x)的不动点,则x 0也是f (n )(x)的不动点二、例题选讲1.设{}{}R x x x f f x B R x x f x x A R c b c bx x x f ∈==∈==∈++=,))((,),(),,()(2,如果A 中只含有一个元素,则有 ( )A AB ⊂ B A B ⊂C B A =D φ=B A2.设c bx x x f ++=2)(,若方程x x f =)(无实根,则方程x x f f =))((( )A.有四个相异实根B.有两个相异实根C.有一个实根D.无实根3.已知c bx ax x f ++=2)(满足c b a f >>=,0)1(。
(1)求cb a b ac ,,的取值范围;(2)证明方程0)(=x f 有两个不等实根;(3))(x f 图像与x 轴交于A 、B 两点,求AB 。
4.已知)()(2c b a c bx ax x f >>++=的图像上有两个点))(,()),(,(R f R B r f r A 满足0)1(,0)()()]()([2==+++f R f r f a R f r f a .(1)求证:0≥b ;(2)求方程0)(=x f 的另一根的取值范围;(3)求证:)3(),3(++R f r f 中至少有一个为正数.5.对于函数)(x f ,若x x f =)(,则称x 为)(x f 的不动点;若x x f f =))((,则称x 为)(x f 的稳定点;函数)(x f 的不动点和稳定点的集合分别是A 、B ,即{}{}x x f f x B x x f x A ====))((,)(。
函数不动点、数学迭代法、求数值平方根算法的数学原理

浅论函数不动点与数学迭代法在求数值平方根中的运用By vista3344摘要:函数不动点具有比较特殊的性质,特别是迭代趋近或者发散的现象,使得该部分成为数学中一个极为有意思的内容(这部分内容甚至已经渗入高考数年之久)。
本文从函数不动点的定义出发,从数形结合的角度,着重而形象地分析迭代法求平方根的算法。
一、首先,给出牛顿迭代法求平方根的公式。
这是一个迭代公式,赋予x k一个初始值,之后通过迭代运算,使x不断逼近n的开方。
求n开方值的c语言代码如下[1]:#include<math.h>#include <stdio.h>void main( ){double x, y, y0 ;printf( "输入一个正数:") ;do{scanf("%lf", &x );//格式lf}while( x<0 );y = 1;do{y0 = y;y = 1.0/2*( y + x / y ); //1.0变浮点数}while ( fabs( y - y0 ) / y > 0.00001);printf("Square root of %lf is%lf\n", x, y ); //格式lf}二、数学角度的算法分析为了便于表述,这里我们设n=7。
(1)、首先介绍函数不动点的收敛性。
取f(x)=0.5(x+7/x),同时取x0如图,为几何画板生成的函数图像:不动点即y=x与函数的交点,如图:解算方程:x=0.5(x+7\x)可知,方程的解正是根号7。
同理,如果是n的话,其解也会是根号n,这就达到了通过不动点的转换求取无理数值的目的。
那么,这个交点的求法如何?(2)、关于函数不动点的收敛性。
如图所示,取x0=10后,得出f(10)。
通过y=x的转换,得到x=f(10),在此将f(10)投影到f(x)上,则得到了f(f(10))。
第五章 第8节 不动点法与特征根法求通项-解析版
第8节 不动点法与特征根法求通项知识与方法1.不动点的概念:对于函数()y f x =,我们称方程()f x x =的根为函数()f x 的不动点.2.不动点法:当我们遇到()1n n a f a +=,且()n f a 是一个关于n a 的多项式(或分式多项式)这种类型的递推公式时,可以采用不动点法来求n a ,常见的题型有2类:1n n a Aa B +=+型,1n n n pa qa ma t++=+型.(1)1n n a Aa B +=+型:(例题请参考例1)第一步,构造函数()f x Ax B =+,并令()f x x =,求出()f x 的不动点;第二步,在递推公式1n n a Aa B +=+两端同时减去0x ,化简使得左右两侧结构一致;第三步,构造数列求通项.(2)1n n n pa qa ma t++=+型:(三种情况的例题分别为后续的例2、例3、例4)第一步,构造函数()px qf x mx t+=+,并令()f x x =,求出()f x 的不动点; 第二步,若()f x 有2个不动点,则用1n n n pa qa ma t++=+两端分别减去两个不动点,得到两个式子,两式相除可以产生优良结构,进而构造数列求通项;若()f x 只有1个不动点,则用1n n n pa qa ma t++=+两端减去该不动点,再取倒数,化简可以产生优良结构,进而构造数列求通项;若()f x 没有不动点,则在考题中,{}n a 往往是周期较小的周期数列,直接根据首项和递推公式1n n n pa qa ma t++=+求出前几项找规律即可.3.特征根法:当我们遇到21n n n a pa qa ++=+这种类型的二阶线性递推公式时,可以用特征根法来求通项.(两种情况的例题请参考后续的例5和例6)第一步,构造特征方程2x px q =+,并求出特征方程的根;第二步,若上一步的特征方程有2个不同的实根α和β,则n n n a A B αβ=+,再利用1a 和2a 来求出系数A 和B ;若上一步的特征方程有2个相同的实根α,则()n n a An B α=+,再利用1a 和2a 来求出系数A 和B .典型例题【例1】已知数列{}n a 满足11a =,122n n a a +=+()*n ∈N ,则n a =_______.【解析】第一步,求不动点,设()22f x x =+,令()f x x =得:22x x +=,所以2x =-;第二步,减不动点,()()12222n n a a +--=+--,所以()1222n n a a ++=+,此时发现左右两侧结构一致了; 第三步,构造数列求通项,因为123a +=,所以{}2n a +是首项为3,公比为2的等比数列,从而1232n n a -+=⨯,故1322n n a -=⨯-.【答案】1322n -⨯-【例2】已知数列{}n a 满足12a =,1212n n n a a a ++=+,则n a =_______. 【解析】第一步,求不动点,设()212x f x x +=+,令()f x x =得:212x x x +=+,解得:1x =±, 第二步,减不动点,121112n n n a a a ++-=-+,化简得:1112nn n a a a +--=+①, ()()121112n n n a a a ++--=--+,化简得:()13112n n n a a a +++=+②,用式①除以式②可得()1111211311312n n n nn n n n a a a a a a a a ++--+-==⋅++++, 又111113a a -=+,所以111111333n nnn a a --⎛⎫⎛⎫=⨯= ⎪ ⎪+⎝⎭⎝⎭,故3131n n n a +=- 【答案】3131n n +-【例3】已知数列{}n a 满足12a =,1214n n n a a a +-=+,则n a =_______. 【解析】第一步,求不动点,设()214x f x x -=+,令()f x x =得:214x x x -=+,解得:1x =-; 第二步,减不动点,()()121114n n n a a a +---=--+,化简得,()13114n n n a a a +++=+,所以()141131nn n a a a ++=++,从而()()11311113131n n n n a a a a +++==++++,故1111113n n a a +-=++,又11113a =+,所以11n a ⎧⎫⎨⎬+⎩⎭是首项和公差均为13的等差数列,从而()11111333n n n a =+-⨯=+,故31n a n =-. 【答案】31n- 【例4】已知数列{}n a 满足12a =,112n n n a a a +-=+,则2023a =_______. 【解析】第一步,求不动点,设()12x f x x -=+,令()f x x =得:12x x x -=+,化简得:210x x ++=,显然该方程无解,这种情况下{}n a 一般是周期不大的周期数列,我们只需算出前几项,找出规律即可,由题意,12a =,所以1211124a a a -==+,2321123a a a -==-+,3431425a a a -==-+,4541322a a a -==-+,565152a a a -==-+,6716122a a a a -===+,从而{}n a 是以6为周期的周期数列,故20233376112a a a ⨯+===. 【答案】2【例5】已知数列{}n a 中,12a =,24a =,且2123n n n a a a ++=+()*n ∈N ,则n a =_______. 【解析】特征方程为223x x =+,解得:1x =-或3,所以可设()13nn n a A B =⋅-+⋅, 因为12a =,24a =,所以3294A B A B -+=⎧⎨+=⎩,解得:12B =,12A =-,从而()()311113222nnnn n a --=-⨯-+⨯=.【反思】特征根法的原理是怎么样的,为什么可以这样做?去看看视频吧.【答案】()312nn --【例6】已知数列{}n a 中,12a =,24a =,且2144n n n a a a ++=-()*n ∈N ,则n a =_______. 【解析】特征方程为244x x =-,解得:2x =,所以可设()2n n a An B =+⋅,因为12a =,24a =,所以()()22424A B A B ⎧+=⎪⎨+=⎪⎩,解得:0A =,1B =,从而2n n a =.【答案】2n强化训练1.(★★★)已知数列{}n a 满足11a =,11n n a a +=-+()*n ∈N ,则n a =_______. 【解析】第一步,求不动点,设()1f x x =-+,令()f x x =得:1x x -+=,所以12x =; 第二步,减不动点111122n n a a +-=-+-,所以11122n n a a +⎛⎫-=-- ⎪⎝⎭;第三步,构造数列求通项,因为11122a -=,所以12n a ⎧⎫-⎨⎬⎩⎭是首项为12,公比为1-的等比数列,从而()111122n n a --=⨯-,故()111122n n a -=⨯-+.【答案】()111122n -⨯-+2.(2012·大纲卷(节选第2问)·★★★★)函数()223f x x x =--,定义数列{}n x 如下:12x =,1n x +是过两点()4,5P 、()(),n n n Q x f x 的直线n PQ 与x 轴交点的横坐标,求数列{}n x 的通项公式. 【解析】由题意,直线n PQ 的斜率为()25235244n n n n n n f x x x x x x ----==+--,所以n PQ 的方程为()()524n y x x -=+-,令0y =得:435422nn n x x x x +=-=++,由题意,1432n n n x x x ++=+,设()432x g x x +=+,令()g x x =可得:432x x x +=+,解得:3x =或1-, 从而143332n n n x x x ++-=-+,整理得:1332nn n x x x +--=+①, 143112n n n x x x +++=++,整理得:()15112n n n x x x +++=+②, 用式①除以式②可得:11331151n n n n x x x x ++--=⋅++,又113113x x -=-+,所以31n n x x ⎧⎫-⎨⎬+⎩⎭是首项为13-,公比为15的等比数列,从而1311135n nn x x --⎛⎫=-⨯ ⎪+⎝⎭,故143351n n x -=-⨯+. 3.(★★★★)已知数列{}n a 满足12a =,1381n n n a a a ++=+,则n a =______.【解析】第一步,求不动点,设()381x f x x +=+,令()f x x =得:381x x x +=+,解得:4x =或2-; 第二步,减不动点,因为1381n n n a a a ++=+,所以138441n n n a a a ++-=-+,化简得:1441nn n a a a +--=-+①,()()138221n n n a a a ++--=--+,化简得:()15221n n n a a a +++=+②,用式①除以式②可得:11441252n nn n a a a a ++--=-⋅++,又114122a a -=-+,所以42n n a a ⎧⎫-⎨⎬+⎩⎭是首项为12-,公比为15-的等比数列,故1411225n n n a a --⎛⎫=-⨯- ⎪+⎝⎭从而1122125n n a -=-⎛⎫+- ⎪⎝⎭. 【答案】1122125n --⎛⎫+- ⎪⎝⎭4.(★★★★)已知数列{}n a 满足12a =,112n n a a +=-+,则n a =______.【解析】第一步,求不动点,设()12f x x =-+,令()f x x =得:12x x -=+,解得:1x =-; 第二步,减不动点,()()11112n n a a +--=---+,化简得:1112nn n a a a +++=+, 所以12111111111n n n n n n a a a a a a ++++===+++++,从而111111n n a a +-=++,又11113a =+,所以11n a ⎧⎫⎨⎬+⎩⎭是首项为13,公差为1的等差数列, 故()11211133n n n a =+-⨯=-+,所以5332n na n -=-. 【答案】5332nn -- 5.(★★★)设数列{}n a 满足112a =,且111n n n a a a ++=-()*n ∈N ,则20a =______.【解析】设()11x f x x +=-,令()f x x =得:11xx x+=-,化简得:210x +=,无解, 这种情况下{}n a 一般是周期不大的周期数列,我们来算一下前几项看规律,由题意,112a =,121131a a a +==-,232121a a a +==--,3431113a a a +==--,45141112a a a a +===-, 所以{}n a 是周期为4的周期数列,故20413a a ==-.【答案】13-6.(★★★★)已知数列{}n a 中,11a =,22a =,且212n n n a a a ++=-+()*n ∈N ,则n a =______.【解析】特征方程为22x x =-+,解得:2x =-或1,所以可设()2nn a A B =⋅-+,因为11a =,22a =,所以2142A B A B -+=⎧⎨+=⎩,解得:16A =,43B =,故()14263nn a =⨯-+.【答案】()14263n⨯-+7.(★★★★)已知数列{}n a 中,11a =-,22a =,且2114n n n a a a ++=-()*n ∈N ,则n a =______.【解析】特征方程为214x x =-,解得:12x =,所以可设()12nn a An B ⎛⎫=+⋅ ⎪⎝⎭,因为11a =-,22a =,所以12224A BA B +⎧=-⎪⎪⎨+⎪=⎪⎩,解得:10A =,12B =-,故()110122nn a n ⎛⎫=-⨯ ⎪⎝⎭.【答案】()110122nn ⎛⎫-⨯ ⎪⎝⎭。
高中数学常用方法---利用函数的不动点求数列的通项公式
高中数学常用方法—利用函数的不动点求数列的通项公式1. 函数的不动点:给出函数()y f x =,满足方程0()f x x =的解0x ,称为函数()y f x =的一个不动点。
例 求函数()24f x x =-的不动点。
解:令24x x -=,解出4x =,即4是函数()24f x x =-的一个不动点。
2. 用函数的不动点求数列的通项公式:如果给出的数列的递推式中不含有自变量n 的函数()f n ,那么就可以考虑用函数的不动点法:首先求出函数的不动点,然后把递推式的两边都减去不动点,最后把递推式的两边都化为相同的形式去求数列的通项公式。
例 已知数列{}n a 中,11a =,121n n a a +=+求数列的通项公式na 。
解:因为121n na a +=+,所以211x x x =+⇒=-,两边都减去不动点1-得11211n n a a ++=++,所以可以得到112(1)n n a a ++=+,设1n na b +=,所以12n n b b +=,数列{}n a 为等比数列,故1122n n n b b -=⋅=,所以121nn na b =-=-。
例 已知数列{}na 中,11a =,1112n n aa +=+求数列的通项公式na 。
解:因为1112n n aa +=+,所以1122x x x =+⇒=,两边都减去不动点2得12212n n aa +-=+-,所以可以得到112(2)2n n aa +-=-,设2nna b -=,所以112n nb b +=,故111122n nn b b --⎛⎫=⋅=- ⎪⎝⎭,所以1222nnn ab -=+=-。
3.定理1:若函数(),01f x ax b a a =+≠≠且,p 是函数()f x ax b=+的一个不动点,即()f p p =,如果数列{}nx 满足递推关系1(),1nn x f x n -=>,则1()nn x p a x p --=-。
高考数学函数知识点精华总结
高考数学函数知识点精华总结函数是高考数学中的重点和难点,贯穿了整个高中数学的学习。
理解和掌握函数的相关知识对于提高数学成绩至关重要。
以下是对高考数学中函数知识点的详细总结。
一、函数的定义函数是一种特殊的对应关系,给定一个非空数集 A,对 A 中的任意一个数 x,按照某种确定的对应关系 f,在另一个非空数集 B 中都有唯一确定的数 y 与之对应,则称 f 为从集合 A 到集合 B 的一个函数,记作 y = f(x),x∈A。
其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。
二、函数的三要素1、定义域函数的定义域是使函数有意义的自变量的取值范围。
常见的函数定义域有:(1)分式函数中分母不为零;(2)偶次根式函数中被开方数非负;(3)对数函数中真数大于零;(4)正切函数中自变量不等于π/2 +kπ(k∈Z)。
2、值域求函数值域的方法多种多样,常见的有:(1)观察法:通过对函数解析式的简单分析,结合函数的定义域,得出函数的值域。
(2)配方法:对于二次函数,可以通过配方将其化为形如 y = a(x h)²+ k 的形式,从而确定其值域。
(3)换元法:通过引入新的变量,将复杂的函数转化为简单的函数,从而求出值域。
(4)判别式法:对于形如 y =(ax²+ bx + c)/(dx²+ ex + f)的函数,可以将其化为关于 x 的二次方程,利用判别式大于等于零来求值域。
3、对应法则函数的对应法则是函数的核心,它决定了自变量与函数值之间的关系。
三、函数的性质1、单调性(1)定义:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
数列问题不动点法的运用
数列问题不动点法的运用
有一位名叫ZeroToss的网友给我提出下列的数列问题,问我如何解决?
其实,本题可用“不动点法”求数列的通项公式。
首先,我们要知道,什么叫做函数的“不动点”?
对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”。
巧用“不动点”法求数列的通项公式,是高考中的一种比较特殊的方法。
为了让同学们好好理解并掌握这一方法。
下面我们以典型例题来加以说明(由于篇幅的关系,我们只讲步骤和方法,至于详细的证明,同学们可以在相关的《高中数学竞赛教程中》找到)。
当函数有两个“不动点”时,请同学们看下面的几个例题,即可掌握方法。
从上面的方法中,大家可以概括总结出函数“不动点”法求数列通项公式的基本方法了吗?
其实,第二种题型,相应的函数有两个不动点的,一般是形如
a(n+1)=(pan+m)/(qan+u)这样的数列求通项.这样的数列相应的函数的不动点为f(x)=(px+m)/(qx+u)=x的解x1=u,x2=v,最后一般都化归为:数列{(an-u)/(an-v)}是等比数列来求通项的问题。
我们现在再来看网友ZeroToss提出的数列问题的解答:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考的学子们必须知晓的函数不动点知识
函数的不动点,在数学中是指被这个函数映射到其自身一个点。
例如,定义在实数上的函数,
f(x) = x2 − 3x + 4,则2是函数f的一个不动点,因为f(2) = 2。
函数的不动点在函数研究与应用中(如在函数迭代研究和应用于求数列通项),占有重要地位.
下面我们以一道例题来分析:
小伙伴先自己分析该题的思路
第一问直接根据不定点的定义直接转换为一元二次方程,求解该方程根即可
第二问就转换为求一元二次方程根的情况,讨论字母的取值范围这题稍微转换一下是不是很熟悉的解题思路,在圆锥曲线中我们采用的哟,小伙伴拿去慢慢消化吧
注:函数的不动点有两方面的理解:
①代数意义:函数f(x)的不动点x0是方程f(x)=x的实数根;
②几何意义:函数f(x)的不动点x0是函数y=f(x)与直线y=x交点的横坐标.
每天进步一点点,祝各位学业有成。