初中数学_定义与命题教学设计学情分析教材分析课后反思

合集下载

初中数学教学课例《定义与命题》教学设计及总结反思

初中数学教学课例《定义与命题》教学设计及总结反思
2.学生通过本节课内容的学习,使学生经历定义的
产生过程,感受定义的必要性。同时对命题的含义有初
步的体验。体验区分命题的条件和结论的重要性和必要
性。
3.通过与学生的交流互动,营造愉快、和谐的课堂
氛围,积极鼓励学生参与和活动,使学生感受到学习数
学的快乐,培养学生主动探索数学知识的积极态度。
(分析学生在本课中所需学习方法的掌握情况、学
(B)2+3=5 (C)a*+2 2a-2--2a (D)1-3=5t 选〈),原因如下: (设计说明:通过这个活动,培养学生自学的能力, 让学生经历缩名词下定义的 过程。为了真正做到有效的合作学习,在活动中考 虑了以下问题:a.把活动的设计成左右的对比模式,让 学生有意识地根据学习材料进行类比的思考;b.让学生 在进行讨论之前先进行独立思考,有了自己的想法,然 后再与别人交换意见,产生思维的碰撞,以真正达到讨 论的目的。) (三)了解命题的含义并学会判断句子是否是命题 定义作为判别标准,可以产生很多判断。 如:“=1 是方程”“正方形四边相等”等等。 (设计说明:体会定义的必要性,也作为从定义到命 题的过渡 o) (第二关:争分夺秒) 抢管:判断下列句子是否对事情进行了判断: (2)画一个角等于已知角。 (1)对顶角相等。
(3)两直线平行,同位角相等。 (4)动物是鸟。 (5)MBC 是等边三角形吗 (6)若 a*-4,求 a 的值。 (7)若 a-b,则 a-b。 发现(2)(5)(6)没有对事情进行判断,我们把 (1)(3)(4)(7)归为一类,叫做命题。按照刚刚学习的下 定义的方法,请给命题下一个定义。 命题:一般地,对某-件事情作出正确或不正确的判 断的句子叫做命题。 根据命题的定义判断一些错误的句子(刚刚给出的 4.7)是否是命题。 小结:判断是不是命题在于是否作出判断, 与正确与否无关。. 例如:(7)虽然是错误的,但依然是命题。 (设计说明:根据刚学习的下定义方法,马上对“命 题”这个名词加以使用,一方面,让学生觉得“学以致 用",获得成钛感的同时激发他们的学习兴趣与信心,另 一方面,也进一步巩固了对定义的理解。) 〈四)探究命题的结构 两直线平行,同位角相等。 问题-:如果需要把这个命题划分为两部分,那么怎

北师大版数学八年级上册《认识定义与命题》教学设计2

北师大版数学八年级上册《认识定义与命题》教学设计2

北师大版数学八年级上册《认识定义与命题》教学设计2一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章内容。

这一章主要让学生理解定义与命题的概念,学会如何阅读和理解数学定义和命题,并能够运用它们解决实际问题。

本章内容是学生学习更高级数学知识的基础,因此,对这部分内容的理解和掌握十分重要。

二. 学情分析八年级的学生已经有一定的数学基础,他们对数学概念和运算规则有一定的了解。

但是,对于抽象的数学定义和命题,他们的理解可能还不够深入。

此外,学生可能对数学阅读和理解存在一定的恐惧感,因此,教师需要通过生动有趣的例子和实际问题,激发学生的学习兴趣,帮助他们克服这种恐惧感。

三. 教学目标1.让学生理解定义与命题的概念,知道它们的区别和联系。

2.培养学生阅读和理解数学定义和命题的能力。

3.培养学生运用定义和命题解决实际问题的能力。

四. 教学重难点1.重点:让学生理解定义与命题的概念,知道它们的区别和联系。

2.难点:培养学生阅读和理解数学定义和命题的能力,以及运用定义和命题解决实际问题的能力。

五. 教学方法1.采用问题驱动的教学方法,通过生动有趣的例子和实际问题,引导学生理解和掌握定义与命题的概念。

2.使用小组合作学习的方式,让学生在讨论中加深对定义与命题的理解。

3.采用循序渐进的教学方式,从简单的定义和命题开始,逐步引导学生理解和掌握更复杂的概念。

六. 教学准备1.准备相关的教学PPT,包括定义与命题的概念、例子和实际问题。

2.准备小组讨论的素材,包括一些相关的数学题目和问题。

3.准备一些练习题,用于巩固学生对定义与命题的理解。

七. 教学过程1.导入(5分钟)使用一个生动有趣的例子,引出定义与命题的概念。

例如,可以讲一个关于“平行线”的笑话,让学生思考:为什么两条直线平行时,它们的斜率相等?这个问题的答案就是一个命题。

通过这个例子,激发学生的学习兴趣,引导学生思考定义与命题的关系。

2.呈现(10分钟)讲解定义与命题的概念,给出它们的定义和例子。

湘教版数学八年级上册2.2《定义与命题》说课稿1

湘教版数学八年级上册2.2《定义与命题》说课稿1

湘教版数学八年级上册2.2《定义与命题》说课稿1一. 教材分析《定义与命题》是湘教版数学八年级上册第二章第二节的内容。

本节内容主要介绍定义与命题的概念,通过对定义与命题的探讨,让学生理解数学概念的形成过程,培养学生提出问题、分析问题、解决问题的能力。

教材从实际例子出发,引导学生认识定义与命题的意义,通过教师的引导和学生的探究,使学生掌握定义与命题的基本方法。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对数学概念有一定的认识。

但在学习过程中,部分学生可能对抽象的定义与命题理解起来比较困难,需要教师耐心引导。

此外,学生之间在学习习惯、知识基础等方面存在差异,教师应关注学生的个体差异,因材施教。

三. 说教学目标1.知识与技能:使学生理解定义与命题的概念,学会如何阅读和理解数学定义与命题,能够运用定义与命题解决简单问题。

2.过程与方法:通过教师的引导和学生的探究,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、严谨求实的科学态度。

四. 说教学重难点1.教学重点:定义与命题的概念及其运用。

2.教学难点:对抽象定义与命题的理解,以及如何运用定义与命题解决问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、探究式教学法和小组合作学习法。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,以及网络资源、数学软件等现代教育技术手段。

六. 说教学过程1.导入新课:通过一个实际例子,引导学生思考定义与命题的意义。

2.探究定义与命题:教师引导学生分组讨论,总结定义与命题的概念,让学生在探究过程中理解定义与命题的重要性。

3.讲解与示范:教师详细讲解定义与命题的阅读方法,并通过示例让学生熟悉如何运用定义与命题解决问题。

4.练习与反馈:学生进行课堂练习,教师及时给予反馈,帮助学生巩固所学知识。

5.拓展与应用:教师设计一些拓展问题,引导学生运用定义与命题解决实际问题,提高学生的应用能力。

浙教版数学八年级上册1.2《定义与命题》教学设计2

浙教版数学八年级上册1.2《定义与命题》教学设计2

浙教版数学八年级上册1.2《定义与命题》教学设计2一. 教材分析《定义与命题》是浙教版数学八年级上册第1章第2节的内容,本节内容是在学生已经掌握了实数、不等式、函数等知识的基础上,引入定义与命题的概念,让学生了解数学语言的基本表达方式,为后续的定理、公式、证明等知识的学习打下基础。

本节内容的重要性在于,它不仅帮助学生理解数学概念,而且培养了学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,能够理解和掌握实数、不等式、函数等知识。

但学生在学习过程中,可能对抽象的定义与命题理解存在一定的困难,需要教师耐心引导,让学生逐步理解并掌握定义与命题的概念。

三. 教学目标1.了解定义与命题的概念,理解命题的构成要素,能够正确书写简单命题。

2.培养学生的逻辑思维能力,提高学生运用数学语言表达数学概念的能力。

3.通过对定义与命题的学习,激发学生对数学的兴趣,提高学生的数学素养。

四. 教学重难点1.重点:理解定义与命题的概念,掌握命题的构成要素。

2.难点:对抽象的定义与命题的理解,以及如何运用定义与命题进行数学推理。

五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的概念。

2.运用案例分析法,通过具体例子让学生理解定义与命题的应用。

3.采用讨论交流法,让学生在课堂上充分表达自己的观点,提高学生的逻辑思维能力。

六. 教学准备1.准备相关案例,用于讲解定义与命题的概念。

2.准备课堂练习题,用于巩固学生对定义与命题的理解。

3.准备课件,用于辅助教学。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾已学过的实数、不等式、函数等知识,为新课的学习做好铺垫。

呈现(10分钟)教师通过课件或板书,给出定义与命题的定义,让学生初步了解定义与命题的概念。

同时,教师可以通过举例,让学生理解命题的构成要素。

操练(15分钟)教师给出一些简单的定义与命题,让学生进行判断,巩固对定义与命题的理解。

巩固(10分钟)教师通过课堂练习题,让学生运用定义与命题进行数学推理,检验学生对知识的掌握程度。

北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的内容。

本节课主要让学生了解数学中的定义与命题的概念,学会如何正确理解和运用定义与命题。

教材通过生活中的实例,引导学生理解定义与命题的含义,培养学生的逻辑思维能力。

二. 学情分析学生在七年级时已经接触过一些简单的定义与命题,对这部分内容有初步的了解。

但大部分学生对这些概念的理解不够深入,容易混淆。

此外,学生对于如何运用定义与命题来解决问题还比较陌生。

因此,在教学过程中,需要注重引导学生深入理解概念,并学会运用。

三. 教学目标1.理解定义与命题的概念,掌握它们的书写格式。

2.学会如何正确理解和运用定义与命题。

3.培养学生的逻辑思维能力。

四. 教学重难点1.重点:理解定义与命题的概念,学会正确书写格式。

2.难点:如何运用定义与命题解决问题,培养学生逻辑思维能力。

五. 教学方法1.情境教学法:通过生活实例引入定义与命题,让学生在实际情境中理解概念。

2.互动教学法:引导学生通过小组讨论、交流,共同探讨定义与命题的含义和运用。

3.案例教学法:分析典型例题,让学生学会如何运用定义与命题解决问题。

六. 教学准备1.准备相关的生活实例和典型例题。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个生活实例,如“等腰三角形”的定义,引导学生思考:如何用数学语言来描述这个概念?从而引出定义与命题的概念。

2.呈现(10分钟)呈现教材中的相关定义与命题,如“平行线”、“全等三角形”等,让学生初步了解这些概念。

同时,引导学生注意定义与命题的书写格式。

3.操练(10分钟)让学生分组讨论,每组选择一个定义与命题,试着用自己的语言来表达,并互相交流。

教师在这个过程中给予适当的引导和反馈。

4.巩固(10分钟)通过一些练习题,让学生运用所学的定义与命题来解决问题。

教师在这个过程中注意引导学生运用定义与命题的正确方法。

青岛版数学八年级上册5.1《定义与命题》说课稿

青岛版数学八年级上册5.1《定义与命题》说课稿

青岛版数学八年级上册5.1《定义与命题》说课稿一. 教材分析青岛版数学八年级上册5.1《定义与命题》是学生在掌握了初中数学一些基本概念和定理的基础上进行学习的内容。

这一节主要介绍了定义与命题的概念,以及如何正确理解和运用它们。

教材通过具体的例子,引导学生理解定义与命题的含义,并学会如何判断一个命题的真假。

这一节内容是学生学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析在八年级的学生中,他们已经具备了一定的数学基础,对于一些基本概念和定理已经有了初步的了解。

但是,他们在理解和运用定义与命题方面还存在一些困难。

首先,学生对于抽象的概念理解起来比较困难,需要通过具体的例子来进行引导。

其次,学生对于命题的真假判断还不够熟练,需要通过大量的练习来进行巩固。

因此,在教学过程中,需要针对学生的这些特点进行针对性的教学。

三. 说教学目标1.知识与技能目标:学生能够理解定义与命题的概念,并能够正确运用它们。

2.过程与方法目标:通过具体的例子,学生能够理解定义与命题的含义,并学会如何判断一个命题的真假。

3.情感态度与价值观目标:学生能够培养对数学的兴趣,提高逻辑思维能力,培养解决问题的能力。

四. 说教学重难点1.教学重点:学生能够理解定义与命题的概念,并能够正确运用它们。

2.教学难点:学生对于命题的真假判断还不够熟练,需要通过大量的练习来进行巩固。

五.说教学方法与手段在教学过程中,我将采用讲授法、讨论法和案例分析法等教学方法,通过具体的例子和练习题,引导学生理解和运用定义与命题。

同时,我将利用多媒体教学手段,如PPT等,通过生动的动画和图示,帮助学生更好地理解抽象的概念。

六.说教学过程1.导入:通过一个具体的例子,引出定义与命题的概念,激发学生的兴趣。

2.讲解:通过PPT等多媒体教学手段,讲解定义与命题的概念,并通过具体的例子进行解释。

3.练习:通过一些练习题,让学生运用所学的定义与命题进行判断,巩固所学知识。

北师大版数学八年级上册2《定义与命题》教学设计2

北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。

本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。

教材通过具体的例子,让学生初步认识定义与命题,并学会如何区分它们。

同时,教材还引导学生思考定义与命题在数学中的应用,培养学生的逻辑思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和定理有一定的认识。

但学生在理解和运用定义与命题方面可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握定义与命题的概念和运用。

三. 教学目标1.理解定义与命题的概念,掌握它们的区别与联系。

2.学会如何正确理解和运用定义与命题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.重点:定义与命题的概念及其区别与联系。

2.难点:如何正确理解和运用定义与命题。

五. 教学方法1.情境教学法:通过具体的例子,引导学生理解和掌握定义与命题。

2.启发式教学法:引导学生主动思考,发现定义与命题的规律。

3.小组合作学习:鼓励学生互相讨论,共同解决问题。

六. 教学准备1.教学PPT:制作涵盖定义与命题的例子、练习题等内容的PPT。

2.学习素材:准备一些与定义与命题相关的阅读材料,以便学生在课后进行拓展学习。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“直线的定义”,引导学生思考定义与命题的概念,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT呈现定义与命题的相关概念,让学生初步认识它们。

同时,教师可以通过讲解、举例等方式,让学生了解定义与命题的区别与联系。

3.操练(10分钟)教师布置一些练习题,让学生区分给出的数学语句是定义还是命题。

学生独立完成后,教师选取部分答案进行讲解和分析。

4.巩固(10分钟)教师继续呈现一些定义与命题的例子,让学生判断并解释它们的含义。

在此过程中,教师要注意引导学生运用已学的知识,加深对定义与命题的理解。

北师大版数学八年级上册2《定义与命题》教学设计1

北师大版数学八年级上册2《定义与命题》教学设计1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。

本节课主要让学生理解命题的概念,学会用数学语言表述命题,并了解命题的逆命题、反命题等基本知识。

教材通过引入现实生活中的例子,激发学生的学习兴趣,让学生体会数学与生活的紧密联系。

二. 学情分析学生在七年级时已经接触过简单的命题与定理,对命题的概念有初步的了解。

但部分学生对命题的理解仍停留在表面,不能准确运用数学语言表述命题。

此外,学生在之前的数学学习过程中,接触到的大部分是具体的运算问题,对于抽象的数学概念和逻辑推理较为陌生。

三. 教学目标1.理解命题的概念,学会用数学语言表述命题。

2.了解命题的逆命题、反命题等基本知识。

3.培养学生逻辑思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.重点:理解命题的概念,学会用数学语言表述命题。

2.难点:命题的逆命题、反命题的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究命题的内涵与外延。

2.利用现实生活中的例子,让学生感受数学与生活的联系,提高学习兴趣。

3.通过小组讨论、师生互动等方式,培养学生的合作交流能力。

4.运用逻辑推理方法,引导学生理解命题的逆命题、反命题。

六. 教学准备1.准备相关的生活例子,用于引导学生理解命题。

2.准备课件,展示命题的定义、逆命题、反命题等内容。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活例子,如“如果一个人是学生,那么他每天要上学。

”引导学生思考:这是一个什么概念?让学生初步感知命题的概念。

2.呈现(10分钟)通过课件展示命题的定义,让学生明确命题的概念。

同时,呈现命题的逆命题、反命题的定义,让学生初步了解这些基本知识。

3.操练(10分钟)让学生分组讨论,举例说明命题、逆命题、反命题的关系。

教师选取部分学生的例子,进行讲解和分析。

4.巩固(10分钟)让学生独立完成教材中的练习题,检验学生对命题、逆命题、反命题的理解。

浙教版数学八年级上册1.2《定义与命题》说课稿

浙教版数学八年级上册1.2《定义与命题》说课稿一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。

本节内容是在学生已经掌握了实数、不等式等基础知识的基础上进行讲授的,是学生学习数学语言和逻辑推理的重要基础。

本节课的主要内容是让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、不等式等概念有一定的了解。

但是,学生对于抽象的数学概念的理解还存在一定的困难,需要通过具体的例子和实际操作来帮助学生理解和掌握。

此外,学生的逻辑思维能力和判断能力还在发展中,需要通过教师的引导和培养。

三. 说教学目标1.知识与技能目标:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。

2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的逻辑思维能力和判断能力。

3.情感态度与价值观目标:让学生体验到数学的乐趣,培养学生对数学的兴趣和自信心。

四. 说教学重难点1.教学重点:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题。

2.教学难点:让学生能够判断一个命题是真命题还是假命题。

五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。

同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个具体的例子,引出定义和命题的概念,激发学生的兴趣。

2.自主学习:让学生自主阅读教材,理解定义和命题的概念,并尝试判断一些简单的命题的真假。

3.合作交流:让学生分组讨论,分享自己的理解和判断,互相学习和交流。

4.教师引导:教师通过讲解和示范,引导学生理解和掌握定义和命题的概念,并教会学生如何判断一个命题是真命题还是假命题。

5.练习巩固:让学生进行一些相关的练习,巩固所学知识。

北师大版数学八年级上册《认识定义与命题》教学设计1

北师大版数学八年级上册《认识定义与命题》教学设计1一. 教材分析《认识定义与命题》是北师大版数学八年级上册的一章内容。

这一章节的主要目的是让学生理解定义与命题的概念,并学会运用它们来分析和解决问题。

在这一章节中,学生将学习到定义的内涵和特点,以及命题的构成和分类。

教材通过丰富的实例和练习题,帮助学生深入理解定义与命题的应用。

二. 学情分析学生在进入八年级之前,已经接触过一些基本的数学概念和运算规则。

他们对数学知识有一定的积累,但可能对定义与命题的概念理解和应用能力较弱。

因此,在教学过程中,需要关注学生的认知水平,通过引导和启发,帮助他们建立清晰的概念和逻辑思维能力。

三. 教学目标1.知识与技能:使学生理解定义与命题的概念,掌握它们的内涵和特点,并能够运用它们来分析和解决问题。

2.过程与方法:通过实例和练习题,培养学生的逻辑思维和分析问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极的学习态度和团队合作精神。

四. 教学重难点1.重点:定义与命题的概念和特点。

2.难点:运用定义与命题来分析和解决问题。

五. 教学方法1.引导法:通过问题和实例,引导学生思考和探索定义与命题的概念。

2.互动式教学:鼓励学生参与讨论和分享,增强团队合作和沟通能力。

3.实践操作:通过练习题和实际问题,让学生运用定义与命题进行分析和解题。

六. 教学准备1.教材和教辅材料:准备北师大版数学八年级上册教材和相关教辅材料。

2.教学PPT:制作相关的教学PPT,包括实例和练习题。

3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过引入一些实际问题,激发学生的兴趣,并提出问题引导学生思考。

例如,可以提出一些问题,如“什么是三角形?”,“如何判断一个四边形是矩形?”等,让学生初步接触到定义与命题的概念。

2.呈现(10分钟)介绍定义与命题的概念和内涵。

通过PPT展示相关的定义和命题的例子,并解释它们的构成和特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《定义与命题》教学设计一、导入新课1、首先请同学们看一则笑话:2、人们在进行各种沟通、交流时常需要用许多名称和术语,为了不产生歧义,对这些名称和术语的含义必须有明确的规定:例如(1)观察课本34页图8-1,指出哪个是等腰三角形,你的根据是什么?(2)有两条边相等的三角形叫做等腰三角形。

3、请尝试说出“法盲”的定义二、学习新知1、定义的得出一般地,用来说明一个名词或者一个术语的意义的语句叫做该名称或术语的定义。

例如:“具有中华人民共和国国籍的人,叫做中华人民共和国公民” 是“中华人民共和国公民”的定义“两点之间线段的长度,叫做这两点之间的距离” 是“两点之间的距离”的定义;议一议你在数学课本上学过哪些定义?你能说明定义有哪些作用吗?与同伴进行交流。

请说出下列名词的定义:(1)无理数:(2)直角三角形:(3)一次函数:(4)二元一次方程:说一说:你还学过哪些定义?(1)角:(2)角的平分线:(3)数轴:(4)一元一次方程:2、学习命题(a)、请你当判官你认为线段a与线段b哪个比较长?线段a比线段b长线段b比线段a长线段a与线段b一样长。

一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。

(b)、是否作出判断下列句子中,哪些是命题?哪些不是命题?⑴对顶角相等;⑵画一个角等于已知角;⑶两直线平行,同位角相等;⑷a、b两条直线平行吗?⑸温柔的李明明。

⑹玫瑰花是动物。

⑺若a2=4,求a的值。

⑻若a2=b2,则a=b。

(c)、判断下列语句是不是命题?是用“√”,不是用“×表示。

1)长度相等的两条线段是相等的线段吗?()2)两条直线相交,有且只有一个交点()3)不相等的两个角不是对顶角()4)一个平角的度数是180度()5)相等的两个角是对顶角()6)取线段AB的中点C()7)画两条相等的线段()思考:下图表示某地的一个灌溉系统.根据上图,你还能说出其他的命题吗?3、触类旁通两直线平行,同位角相等。

如果两直线平行,那么同位角相等。

题设(条件)结论命题可看做由题设(条件)和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

命题的构成:每一个命题都是由题设和结论两部分组成,即每一个命题都可以写成“如果…..,那么….”的形式,“如果”后的语句是“题设”,“那么”后的语句是“结论”。

指出下列命题的题设和结论(1)如果两条直线相交,那么它们只有一个交点;(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3;(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)如果两条平行线被第三条直线所截,那么内错角相等;例指出下列命题的条件和结论,并改写成“如果……那么……”的形式:⑴三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;说一说指出下列命题的条件和结论,并改写“如果……那么……”的形式:⑴两条边和它们的夹角对应相等的两个三角形全等;⑵直角三角形两个锐角互余。

比一比每个小组说出两个命题,并把它改写“如果……那么……”的形式。

看哪一组表现较好。

做一做1、下列命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果a>b,b>c,那么a=c;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)面积相等的两个三角形全等。

思考:上述的命题中,哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?与同伴交流.正确的命题称为真命题,不正确的的命题称为假命题要说明一个命题是假命题,通常可以举出一个例子,使之具备命题的条件,而不具备命题的结论,这种例子称为反例.想一想你能举出一个反例,说明“相等的角是对顶角”是假命题吗?4、练一练下列句子中哪些是命题?若是命题,并判断它是真命题还是假命题?•(1)动物都需要水;•(2)猴子是动物的一种;•(3)玫瑰花是动物;•(4)美丽的天空;•(5)三个角对应相等的两个三角形一定全等;•(6)负数都小于零;•(7)你的作业做完了吗?•(8)所有的质数都是奇数;•(9)过直线a外一点作直线a的平行线三、请同学们放松一下,笑不笑由你。

四、小组合作与交流这节课你有何收获?能与大家分享、交流你的感受吗?五、作业•(1)课本p37随堂练习1、2•(2)课本p38习题第1、2结束寄语•命题是几何学习中最基础的概念.•定义是反映事物本质意义的描述性语句.学情分析学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,他们在数学学习上已经有了一定的积累, 学生在学习上,应该具备一定的能力和水平,通过努力应该可以达到相应的教学要求,但从数学知识的产生和发展的角度来学习和理解数学中最基本的概念,对学生来说也是第一次,在教学设计上要考虑学生对知识的可接受程度。

本节课将对学生传授定义与命题的基本含义,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识。

从具体实例中,探索出定义,并了解定义在现实生活中的重要性。

从具体实例中,了解命题的概念,并会区分命题。

通过从具体例子中提炼数学概念,使学生体会数学与实践的联系。

效果分析教学中,我先以生活中的几个实例入手,关于法律和法盲的故事,激发学生的学生兴趣,让学生充分体会生活中,给出定义的必要性,引出本课的学习。

本节课是一节概念课,从内容分析,学生不易领悟。

在课堂教学组织上,更多的注意到了老师和学生的心理距离问题和情感基础问题。

通过老师的情感投入、积极的鼓励、激情的调动,激励学生主动地参与,使学生能轻松学习、愉快交流。

并在此情感基础上提高课堂教学的有效性.。

学生的课堂参与程度较高,大部分学生都能主动回答问题。

对于难点,能引导学生多方位讨论,突破难点。

对于学生的回答,能够及时作出鼓励性评价,能激发学生学习的兴趣。

总之,在整个教学过程中,我努力做到给学生留出充足的探索空间,课堂效果良好。

另外,有一些学生这节课没有主动参与,若能引导这一少部分同学参与到这个课堂中来,激发他们学习的兴趣,可能效果会更好。

教材分析定义与命题是第八章平行线的有关证明的第一节,为后面的基本事实、定理奠定基础。

命题是几何学习中最基础的概念,定义是反映事物本质意义的描述性语句,定义与命题的知识在贯穿于整个初中数学知识体系,但作为单独的章节进行学习还是首次,在设计上体现了对数学本原的思考,关注的是数学知识的产生和发展过程,目的就是为了通过本节课以及后续知识的学习,使学生感受整个数学体系的建立和完善的过程,是由实验几何向推理几何过渡的重要章节。

而作为本章节的第一课时,为学生在本章节中更好的开展学习起着至关重要的作用。

评测练习1.请说出下列名词的定义:(1)无理数:(2)直角三角形:(3)一次函数:(4)二元一次方程:2、说一说:你还学过哪些定义?(1)角:(2)角的平分线:(3)数轴:(4)一元一次方程:3、下列句子中,哪些是命题?哪些不是命题?⑴对顶角相等;⑵画一个角等于已知角;⑶两直线平行,同位角相等;⑷a、b两条直线平行吗?⑸温柔的李明明。

⑹玫瑰花是动物。

⑺若a2=4,求a的值。

⑻若a2=b2,则a=b。

4、判断下列语句是不是命题?是用“√”,不是用“×表示。

1)长度相等的两条线段是相等的线段吗?()2)两条直线相交,有且只有一个交点()3)不相等的两个角不是对顶角()4)一个平角的度数是180度()5)相等的两个角是对顶角()6)取线段AB的中点C()7)画两条相等的线段()5、指出下列命题的题设和结论(1)如果两条直线相交,那么它们只有一个交点;(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3;(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)如果两条平行线被第三条直线所截,那么内错角相等;6、练一练下列句子中哪些是命题?若是命题,并判断它是真命题还是假命题?•(1)动物都需要水;•(2)猴子是动物的一种;•(3)玫瑰花是动物;•(4)美丽的天空;•(5)三个角对应相等的两个三角形一定全等;•(6)负数都小于零;•(7)你的作业做完了吗?•(8)所有的质数都是奇数;•(9)过直线a外一点作直线a的平行线课后反思本课首先以笑话引入新课,最后以笑话结束课堂。

使学生在轻松愉悦气氛中学习,以生活中的几个实例入手,激发学生的学习兴趣,引入本课的学习。

让学生体验数学知识的发现过程、感受数学知识的研究方法,渗透数学的科学态度和科学精神。

根据大纲的要求和本节课的目标定位,以及知识的重难点分布,考虑到学生的可接受范围,本节课教学着重处理好“四个关系”:一、定义与命题的关系定义和命题之间存在一定的逻辑关系,考虑到学生的理解、接受能力,教学上我们进行了适当的处理.从定义和命题所共有的判断功能,切入命题的教学,自然在命题的定义的生成过程中,让学生尝试自主定义,强化命题的特征,体现了定义的价值.使定义和命题的学习相辅相成.二、题设与结论的关系在题设和结论的学习之前,教学上进行了铺垫,即对命题的相应位置进行置换,使学生初步感受到命题是有“固定结构”的,形成命题是由“条件”“结论”两部分构成的“心理印象”.有了这样的铺垫,对于某些命题的改写,让学生从命题的结构特征方面来思考,能有效地帮助突破命题的改写难点.三、学生和老师的关系本节课是一节概念课,从内容分析,学生不易领悟.在课堂教学组织上,更多的注意到了老师和学生的心理距离问题和情感基础问题.通过老师的情感投入、积极的鼓励、激情的调动.激励学生主动地参与,以期在学生为主体的讨论和学习中,使学生能轻松学习,愉快交流.并在此情感基础上提高课堂教学的有效性.四、定义、命题与数学知识体系的关系定义是数学思维的细胞和思维的基本形式,从定义出发思考问题的解决是数学的基本方式.而命题作为数学推理的基础,是最基本的思维形式.两者都是建立数学体系的基础.在教学中主要抓住定义的必要性、命题的形成过程以及它们的推理价值,来突出和强化这种关系.总之,在整个教学过程中,我努力做到给学生留出充足的探索空间,让学生自主地进行探索与交流,从而达到本节课的教学目标。

课标分析定义与命题是第八章平行线的有关证明的第一节,《标准》要求:通过具体实例,了解定义、命题的意义;结合具体实例,会区分命题的条件和结论;了解反例的作用,知道利用反例可以判断一个命题是错误的。

本章是证明的起始阶段,学生先前已通过观察、测量、实验、操作等活动探究得到了一些几何结论,学生也尝试进行了一些验证和说理,基本认可这些结论,但毕竟不是证明。

本章首先让学生明确认识到,这些探究的结论需要加以证明;然后明确证明需要一个话语体系,为此就有了所谓的定义、命题;定义、命题的含义,为后面的基本事实、定理奠定基础。

相关文档
最新文档