初二数学入学测试卷

合集下载

八年级下学期数学入学测试卷及答案

八年级下学期数学入学测试卷及答案

八年级下学期数学入学测试卷(考试时间:90分钟,试卷满分120分)一、选择题(本大题10小题,每小题3分,共30分)1.以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A..B..C..D..2.下列每组数据中,能作为三角形三边边长的是( ) A.3、4、8 B.8、7、15C.5、5、11D.13、12、203.分式32-x y 有意义的条件是( )A.x 0B.y 0C.x 3D.x -34.如图,1=2,AB=AD ,则ABC ≌ADC ,采用的判定方法是( )A.SSSB.SASC.ASAD.AAS5.下列分解因式正确的是( ) A.﹣a+a 3=﹣a(1+a 2)B.2a ﹣4b+2=2(a ﹣2b)C.a 2﹣4=(a ﹣2)2 D.a 2﹣2a+1=(a ﹣1)26.等腰三角形的一个角为,则顶角为( )A.040B.0100C.040或0100D.0707.下列运算中,正确的是( ) A.4m ﹣m =3 B.(﹣m 3n)3=﹣m 6n 3C.m 6m 3=m 2D.(m ﹣3)(m+2)=m 2﹣m ﹣68.如图,ABC 中,A=,ABC 的两条角平分线交于点P ,BPD 的度数是( ) A.B.C.D.9.如图,Rt ABC 中,C=,AD 平分BAC ,交BC 于点D ,AB=10,S ABD =15,则CD 的长为( ) A.3 B.4 C.5 D.610.一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。

A.b a11+B.ab 1C.ba +1D.ba ab +二、填空题(每题4分,共28分) 11.约分的结果是________.12.已知3x =5,3y =2,则3x+y 的值是_______.13. 已知m+n=-6,mn=4,则m 2-mn+n 2的值为_______. 14. 一个n 边形的内角和等于0720,则n =_______. 15. 如图,ABC ≌ADE ,若C =,D =,DAC =,则BAD =_______.16.如图,在ABC 中,ACB =,CD 是AB 边上的高,A =,AB =20,则BD =_______.(15题图) ( 16题图) (17题图)17.如图,已知ABC 中,AC =AB=5,BC =3,DE 垂直平分AB ,点D 为垂足,交AC 于点 E .那么EBC 的周长为_______.三、解答题(一)(本大题3小题,每小题6分,共18分)18.计算:()()()()33442x y x y x y xy xy +---÷19.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:BE=CD .20.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=35°,∠C=65°.求∠DAE 的度数.四、解答题(二)(本大题3小题,每小题8分,共24分)21.ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上22.今年新冠肺炎疫情在全球肆虐,为降低病亡率,某工厂平均每天比原计划多生产10台呼吸机,现在生产120台呼吸机的时间与原计划生产90台呼吸机所需时间相同.求该工厂原来平均每天生产多少台呼吸机?23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:(1)AD平分∠BAC.(2)DF=DE五、解答题(三)(本大题2小题,每小题10分,共20分)24.请认真观察图形,解答下列问题:(1)根据图中条件,试用两种不同方法表示阴影部分的面积.方法1:;方法2:.(2)从中你能发现什么结论?请用乘法公式表示该结论:.(3)运用你所得到的结论,解决问题:已知6,25)2==+xyyx(求22x y+的值.25.如图,△ABC和△ADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=∠DAE.(1)求证:BD=CE;(2)连接DC.如果CD=CE,试说明直线AD垂直平分线段BC.(1)作出ABC关于x轴对称的111A B C△,并写出点1A,1B,1C 的坐标;(2)在y轴上找点D,使得AD BD+最小。

2023-20-24八年级第一学期入学测试数学卷(解析版)

2023-20-24八年级第一学期入学测试数学卷(解析版)

2023-20-24八年级第一学期入学测试数学卷(解析版)一.选择题(共11小题)1.随着科技的进步,我国新能源汽车发展迅猛.下列新能源汽车品牌图标是轴对称图形的是( )A.B.C.D.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.2.纳米(nm)是一种长度单位,1nm为十亿分之一米.海思麒麟990处理器使用7nm工艺制造,其中7nm用科学记数法可表示为( )A.7×10﹣8m B.0.7×10﹣8m C.7×10﹣9m D.0.7×10﹣9m【解答】解:7nm用科学记数法表示为7×10﹣9.故选:C.3.下列事件中,是必然事件的是( )A.车辆随机到达一个路口,遇到红灯B.同一平面内三条直线相交,交点的个数为3个C.掷一枚质地均匀的骰子,掷出的点数不超过6D.用长度分别为8cm、7cm、15cm的三根小木棒摆成一个三角形【解答】解:A、车辆随机到达一个路口,遇到红灯,是随机事件,不符合题意;B、同一平面内三条直线相交,交点的个数为3个,是随机事件,不符合题意;C、掷一枚质地均匀的骰子,掷出的点数不超过6,是必然事件,符合题意;D、用长度分别为8cm、7cm、15cm的三根小木棒摆成一个三角形,是不可能事件,不符合题意.故选:C.4.下列运算正确的是( )A.2x+2y=4xy B.a2•a3=a6C.(﹣3pq)2=﹣6p2q2D.4a2÷a=4a【解答】解:A、2x与2y不能合并,故A不符合题意;B、a2•a3=a5,故B不符合题意;C、(﹣3pq)2=9p2q2,故C不符合题意;D、4a2÷a=4a,故D符合题意;故选:D.5.下列说法错误的是( )A.4的算术平方根是2B.是2的平方根C.﹣1的立方根是﹣1D.﹣3是的平方根【解答】解:A、4的算术平方根是2,故A正确,与要求不符;B、是2的一个平方根,故B正确,与要求不符;C、﹣1的立方根是﹣1,故C正确,与要求不符;D、=3,3的平方根是±,故D错误,与要求相符.故选:D.6.下列计算正确的是( )A.B.C.D.【解答】解:A、2+3=5,故A不符合题意;B、6﹣=5,故B不符合题意;C、2×3=12,故C不符合题意;D、2÷=2,故D符合题意;故选:D.7.端午节是我国四大传统节日之一,吃粽子是端午节的传统习俗,端午节这天小颖的妈妈买了2只红豆粽和4只红枣粽,这些粽子除了内部馅料不同外其他均相同.小颖从中随意选一个,她选到红豆粽的概率是( )A.B.C.D.【解答】解:∵妈妈买了2只红豆粽和4只红枣粽,∴P(红豆粽)==.故选:B.8.下列说法中,正确的是( )A.三角形任意两边之差小于第三边B.三角形的一条角平分线将三角形分成两个面积相等的三角形C.两边和其中一边的对角分别相等的两个三角形全等D.三角形的三条高都在三角形内部【解答】解:A、三角形任意两边之差小于第三边,正确,故A符合题意;B、三角形的一条中线将三角形分成两个面积相等的三角形,角平分线不一定将三角形分成两个面积相等的三角形,故B不符合题意;C、两边和其中一边的对角分别相等的两个三角形不一定全等,故C不符合题意;D、锐角三角形的三条高都在三角形内部、钝角三角形的两条高在三角形的外部,直角三角形的两条直角边是两条高,故D不符合题意.故选:A.9.若3a÷9b=27,则a﹣2b的值为( )A.3B.﹣3C.6D.﹣6【解答】解:∵3a÷9b=27,∴3a÷32b=3a﹣2b=33,则a﹣2b=3.故选:A.10.下列二次根式中,不能与合并的是( )A.2B.C.D.【解答】解:A、2能与合并,故A不符合题意;B、=2能与合并,故B不符合题意;C、=3不能与合并,故C符合题意;D、=3能与合并,故D不符合题意;故选:C.11.如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN ,分别交线段BC,AC于点D,E,若AE=3cm,△ABD的周长为10cm,则△ABC的周长为( )A.13cm B.14cm C.15cm D.16cm【解答】解:由作法得MN垂直平分AC,∴DA=DC,AE=CE=3cm,∵△ABD的周长为10cm,∴AB+BD+AD=10cm,∴AB+BD+DC=10cm,即AB+BC=10cm,∴△ABC的周长=AB+BC+AC=10+2×3=16(cm).故选:D.二.填空题(共6小题)12.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是 ② .【解答】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小.故选②.故答案为:②.13.一个角的余角的度数为30°,则这个角的补角的度数为 120° .【解答】解:∵一个角的余角的度数是30°,∴这个角的补角的度数是90°+30°=120°,故答案为:120°.14.一个等腰三角形的两边长分别为2cm,4cm,则它的周长为 10 cm.【解答】解:分两种情况讨论①腰长为4时,三边为4、4、2,满足三角形的性质,周长=4+4+2=10cm;②腰长为2cm时,三边为4、2、2,∵2+2=4,∴不满足构成三角形.∴周长为10cm.故答案为:10.15.若x﹣1与x+7是一个数的平方根,则这个数是 16 .【解答】解:∵x﹣1与x+7是一个数的平方根,∴x﹣1+x+7=0,解得:x=﹣3,则这个数是16,故答案为:16.16.学校开设劳动课,规划围成如图所示的长方形ABCD的菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为16米,设BC边的长为x米,AB边的长为y米,则y与x的关系式是 y=﹣x+8 (不要求写出自变量的取值范围).【解答】解:根据题意得2y+x=16,∴y=(16﹣x),即y=﹣x+8.故答案为:y=﹣x+8.17.如图,△ABC中,AB=AC=4,P是BC上任意一点,过P作PD⊥AC于D,PE⊥AB于E,若S△ABC=12,则PE+PD= 6 .【解答】解:连接AP,由图可得,S△ABC=S△ABP+S△ACP,∵PD⊥AC于D,PE⊥AB于E,S△ABC=12,∴,∴PE+PD=6.故答案为:6.三.解答题(共6小题)18.计算:(1);(2);(3).【解答】解:(1)=12+12+18=30+12;(2)=2÷2=;(3)=+++=.19.计算下列各题:(1)﹣+3;(2).【解答】解:(1)﹣+3=﹣+=;(2)=﹣=﹣=﹣1=﹣.20.先化简,再求值;x(x+2y)﹣(x+1)2+2x,其中.【解答】解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1;当,y=﹣15时,原式=2××(﹣15)﹣1=﹣2﹣1=﹣3.21.阅读下列推理过程,将空白部分补充完整,在括号中填写依据.已知:如图,在△ADC中,AD=DC,且AB∥DC,CB⊥AB于点B.CE⊥AD交AD的延长线于点E.求证:CE=CB.证明:∵AD=CD(已知),∴∠DAC=∠DCA( 等边对等角 );∵AB∥CD(已知),∴ ∠DCA=∠CAB (两直线平行,内错角相等);∴∠DAC= ∠CAB ( 等量代换 );∴AC平分∠EAB( 角平分线的定义 );∵CE⊥AE, CB⊥AB (已知),∴CE=CB( 角分线上的点到这个角两边的距离相等 ).【解答】解:∵AD=CD,∴∠DAC=∠DCA(等边对等角),∵AB∥CD(已知),∴∠DCA=∠CAB(两直线平行,内错角相等),∴∠DAC=∠CAB(等量代换),∴AC平分∠EAB(角平分线的定义),∵CE⊥AE,CB⊥AB(已知),∴CE=CB(角分线上的点到这个角两边的距离相等),故答案为:等边对等角;∠DCA=∠CAB;∠CAB;等量代换;角平分线的定义;CB⊥AB;角分线上的点到这个角两边的距离相等.22.如图表示甲步行与乙骑自行车(在同一条直线路上同向行驶)行走的路程S甲,S乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 10 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 1 小时;(3)乙从出发起,经过 3 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【解答】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为:10;(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5﹣0.5=1(小时),故答案为:1;(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为:3;(4)不一样.理由如下:乙骑自行车出故障前的速度=15千米/小时.与修车后的速度=10千米/小时.所以乙骑自行车出故障前的速度与修车后的速度不一样.23.【初步感知】(1)如图1,已知△ABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边△ADE,连接CE.求证:△ABD≌△ACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为: 平行 ;②线段EC、AC、CD之间的数量关系为: EC=AC+CD ;【拓展应用】(3)如图3,在等边△ABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP为边向右侧作等边△DPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【解答】(1)证明:∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC即∠BAD=∠CAE在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)平行,EC=AC+CD,由(1)得△ABD≌△ACE(SAS),∴∠B=∠ACE=60°,CE=BD,∴∠BAC=∠ACE,∴AB∥CE,∵CE=BD,AC=BC,∴CE=BD=BC+CD=AC+CD;(3)有最小值,在AC上截取PC=DM,连接EM,在△EPC和△EDM中,,△EPC≌△EDM(SAS),∴EC=EM,∠CEM=∠PED=60°,∴△CEM是等边三角形,∴∠CED=60°,即点E在∠ACD角平分线上运动,作点P关于CE对称点P′,连接BP′与CE交于点C,此时点E与点C重合,BE+PE≥BC+PC=5,∴最小值为5.。

江苏树人中学初二数学初入学测试试题

江苏树人中学初二数学初入学测试试题

4.下列计算中正确的是
A. a 2 a 3 2a 5 B. a 2 a 3 a 5 C. a 2 a 3 a 6 D. a 2 a 3 a 5 5.如图,将一张长方形纸片 ABCD 沿直线 BD 折叠,点 C 落在点 E 处,图中全等三角形共 n 对, 则 n 的值为 ( ) A.1 B.2 C.3 D.4
江苏树人中学初二数学初入学测试试题
姓名: 成绩:
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分.在每小题给出的 4 个选项中,只有
1 项是符合题目要求的,请将正确答案的序号填到下面的表格中). 题号 1 2 3 4 5 6 7 8 答案 1.水是生命之源,水是由氢原子和氧原子组成的,其中氢原子的直径为 0.0000000001 m ,用 科学记数法表示为 A. 1 109 m B. 1 1010 m C. 1 109 m ) ( D. 1 1010 m )
24.解:解题方法不唯一,完成表格 3 分 11 20
y 31
18
y 29 y x 20 y x 11
x
y x 18
( y 29) ( y x 20) ( y x 11) y 5' ( y 29) x ( y 31) y 7 ' x 15 解得 -----------------------8 分 y 45
25.DE=DF 证△BDE≌△CEF 得 DE=DF, 证明略. 26.应用不等式解答 27.解:(1)100 (2) 500 25% 89.6% 112 135 100 % 90% (3)1 号果树幼苗成活率为 150 85 100 % 85% 2 号果树幼苗成活率为 100 117 100 % 93.6% 4 号果树幼苗成活率为 125 ∵ 93.6% 9.% 89.6% 85% ∴应选择 4 号品种进行推广。 28.解:AD=BE 且 AD⊥BE 因为:∠D=90°,所以∠ABD+∠BAD=90° 又因为:∠ABC=90°,所以∠ABD+∠EBC=90° 所以∠BAD=∠EBC 又因为:AB=BC ∠D=∠E 所以:△ABD≌BCE(AAS) 所以:AD=BE.

金钥匙学校(东区)初二年级数学入学测试试题

金钥匙学校(东区)初二年级数学入学测试试题

金钥匙学校 八下数学入学测试姓名 分数一、选择(每题2分,共20分)1.下列各式中可以用平方差公式分解因式的是 ( )A.22y x+ B. )(22y x -- C. 22y x -- D. )(22y x -+2、如果x 2-xy-4m 是一个完全平方式,那么m 应为 ( ) A 、-161y2B 、61y 2C 、-81y2D 、41y 23、如图,已知AB=AC ,PB=PC ,AE 、BC 相交于D ,下列结论:(1)EB=EC ;(2)AD ⊥BC ;(3)AE 平分∠BEC ;(4)∠PBC=∠PCB ,其中正确结论的个数为( )A 、1个B 、2个C 、3个D 、4个 4、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 5、反比例函数y=xk(k>0)在第一象限内的图象如图,点M 是图象 上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( )A .1 B.2 C.4D. 6、已知关于x 的函数y=k(x-1) 和ky x=-(0)k ≠,它们在同一坐标系中的图象大致是( )7、如图是三个反比例函数x k y 1=,xk y 2=,x k y 3=在x 轴上方的图象,由此观察得到k 、k 、3k 的大小关系为( ) A 、 321k k k >> B 、 123k k k >> C 、 132k k k >> D 、 213k k k >> 8、正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 轴于B,CD ⊥y 轴于D(如图),则四边形ABCD 的面积为( ) A.1 B.32C.2D.52 9、如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行多少米.( )A .6 B. 8 C.10 D.1210、如图,长方形ABCD 中,AB=3,BC=4,若将该矩形折叠,使C 点与A 点重合 ,•则折叠后痕迹EF 的长为( )A .3.25B .3.75C .4.25D .4.75二、填空题:(每空3分,共27分)11、反比例函数的图像在所在象限内y 随x的增大而增大,则n= 。

西南大学附属中学校2022-2023学年八年级下学期入学测试数学试题

西南大学附属中学校2022-2023学年八年级下学期入学测试数学试题

西南大学附属中学校2022-2023学年八年级下学期入学测试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .B ..D .3.由下列三条线段组成的三角形中,能构成直角三角形的是()A .3,4,5B .23,24,25C .3,4,5D .4.下列计算中,正确的是()A .()233x y x y +=B .()2355+⨯=⨯C .()(423424+-=D .232555+=5.平面直角坐标系内有一点(),M x y ,已知x ,所在的象限是()A .第一象限B 6.下列说法正确的是(A .一组对边平行,另一组对边相等的四边形是平行四边形B .平行四边形的对角互补D .平行四边形的对角线平分每一组对角7.用图像法解某二元一次方程组时,在同一平面直角坐标系中作出相应的两个一次函数的图像(如图),则所解的二元一次方程组是()A .2436y x y x =+⎧⎨=--⎩B .446y x y x =+⎧⎨=--⎩C .436y x y x =+⎧⎨=--⎩D .2446y x y x =+⎧⎨=--⎩8.如图,在平面直角坐标系内,点A 、B 的坐标分别为()3,0、()0,4,将OAB 沿x 轴向左平移,当点B 落在直线35y x =--上时,线段AB 扫过的区域所形成图形的周长为()A .12B .15C .16D .189.周末,小附和小钟相约骑自行车沿同一路线从A 地出发前往B 地,小附以a 千米/小时的速度匀速行驶,途中自行车出现故障后停车维修,修好后以b 千米/小时的速度继续匀速行驶;小钟在小附修好车的同时开始以c 千米/小时的速度匀速前往B 地.设小附、小钟两人与A 地之间的路程为y (千米),小附离开A 地的时间为x (小时),y 与x 之A.1个B.2个C.3个∠的边OM与y轴正半轴重合,其中10.如图,MON的定点,点P是ON上的动点.点B是OA的中点,要使()A.2B.3二、填空题13.函数12yx=-中,自变量x14.现有五张正面分别标有数字全相同.将卡片背面朝上洗匀后,则两次取出的卡片上的数字乘积是负数的概率为15.如图,在矩形ABCD中,点E叠后,点A恰好落在CF上的点G24AD=,则GH=.16.随着神舟十五号载人航天飞船的发射成功,中国航天系列模型备受欢迎.某商店在12月份开始售卖中国航天系列的四款模型,(天舟货运飞船模型)、C款(梦天实验舱模型)与(1)求作:BAE ∠的平分线AP 交(要求保留作图痕迹,不写作法)(2)若6AB =,60ABF ∠=︒,求其中选择A 社团的同学打分数据如下(单位:分)8,7,7,10,9,9,6,8,10,6根据题目信息回答以下问题:(1)若50BCF ∠=︒,求ADC ∠的度数;(2)求证:四边形AECF 为平行四边形.22.缙云苍苍,嘉陵泱泱,为迎接校园歌手大赛的到来,学校向某商家订购了甲、乙两种荧光棒,其中购买甲种荧光棒花费荧光棒的销售单价比甲种荧光棒贵数量少20%.(1)求甲、乙两种荧光棒的销售单价;(1)求线段OC 的长;(2)若点E 是点C 关于y 轴的对称点,求(3)已知y 轴上有一点P ,若以点。

麓山国际学校初二数学入学考试卷

麓山国际学校初二数学入学考试卷

麓山国际实验学校初二入学测试卷(数学试卷)满分:120分 考试时间:120分钟一、选择题(共10小题,每题3分)1.下列图形中,不是运用三角形的稳定性的是( )A .屋顶支撑架B .自行车三脚架C .伸缩门D . 旧木门钉木条2.下列调查中,不适合采用抽样调查的是( )A .了解岳麓区中小学生的睡眠时间B .了解长沙市初中生的兴趣爱好C .了解湖南省中学教师的健康状况D .了解“天宫二号”飞行器零部件的质量3.长沙市岳麓区参加中考的考生有25000名,为了了解数学考试情况从中随机抽查了1800名学生的数学成绩进行统计分析.下列描述正确的是( )A .25000名学生是总体,每名学生是总体的一个个体B .1800名学生的数学成绩是总体的一个样本C .样本容量是25000D .以上调查是全面调查4.方程是关于的二元一次方程,则的值为( )A .B .C .D .5.下列各组数中,不可能成为一个三角形三边长的是( )A .2, 3, 4B .5, 7, 7C .5, 6, 12D .6, 8, 10 6.在平面上将边长相等的正方形、正五边形和正六边形按如图所示的位置摆放,则∠1的度数为( )A .B .C .D .第6题图 第7题图 第8题图7.如图,已知BE ⊥AD ,CF ⊥AD ,垂足分别为E ,F ,则在下列条件中选择一组,其中不能判定Rt △ABE ≌Rt △DCF 的是( )A .AB =DC ,∠B =∠C B . AB =DC ,AB ∥CD C . AB =DC ,BE =CF D . AB =DF ,BE =CF8.如图,在△ABC 中,∠BAC =x °,∠B =2x °,∠C =3x °,则∠BAD =( )A .145°B .150°C .155°D .160°()229(3)0m x x m y -+-+=,x y m 3±33-932o 36o 40o 42o9.在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C④∠A=∠B=2∠C⑤∠A=2∠B=3∠C.能判定△ABC为直角三角形的条件有()A.2个B.3个C. 4个D. 5个10.两组邻边分别相等的四边形我们称它为筝形。

八年级入学数学试卷分班

一、考试说明本试卷共分为两部分,第一部分为基础知识测试,主要考察学生对八年级数学基础知识的掌握程度;第二部分为能力提升测试,主要考察学生的数学思维能力和解题技巧。

考试时间为120分钟,满分100分。

二、考试内容第一部分:基础知识测试(共40分)1. 选择题(每题2分,共20分)(1)下列各数中,属于有理数的是()A. √3B. πC. 2/3D. 无理数(2)下列等式中,正确的是()A. a² = b²B. a³ = b³C. a² + b² = a²b²D. a² - b² = (a + b)(a - b)(3)若m、n是方程2x² - 3x + 1 = 0的两根,则m + n的值为()A. 1B. 2C. 3D. 4(4)下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = √x(5)下列各式中,不是同类项的是()A. 3a²bB. 5ab²C. 4abD. -2ab2. 填空题(每题2分,共20分)(1)若x² - 4x + 3 = 0,则x的值为______。

(2)若a² + b² = 25,且a - b = 3,则ab的值为______。

(3)函数y = -2x + 3的图象经过第一、二、四象限,则k的值为______。

(4)在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B的度数为______。

(5)若x = 3是方程2x² - 5x + 2 = 0的解,则方程的另一解为______。

第二部分:能力提升测试(共60分)1. 解题题(每题6分,共36分)(1)已知二次函数y = ax² + bx + c(a≠0)的图象与x轴交于A、B两点,且A、B两点坐标分别为(1,0)和(-2,0),求该二次函数的解析式。

初二数学入学测试卷(含答案)

初二数学试卷(A )1. 0312=++-y x ,则2()xy -的值为 ( ) A .-6B . 9C .6D .-92.在50,20,50,30,50,25,35这组数据中,众数和中位数分别是 ( ) A .50,20 B .50,30 C .50,35 D .35,503.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面 的点数为偶数的概率为 ( )A .61 B .31 C .41 D .214.解不等式组: ()20213 1.x x x ->⎧⎨+≥-⎩,5.如图,A 、B 为反比例函数xky =(0<x )图象上的两个点. (1)求k 的值及直线AB 的解析式;(2)若点P 为x 轴上一点,且满足△OAP 的面积为3, 求出P 点坐标.①②6.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A、B两种户型.已知所有A户型窗户改造的总费用为54万元,所有B户型窗户改造的总费用为48万元,且B户型窗户的每户改造费用比A户型窗户的每户改造费用便宜500元.问A、B两种户型的每户窗户改造费用各为多少元?7.问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空:四边形DFCE的面积S=,△DBF的面积S=,1△ADE的面积S=.2探究发现(2)在(1)中,若BF a=,DG=,FC b与BC间的距离为h.直接写出S=(用2S的代数式表示).含S、1拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利用....求□DEFG的..(2.)中的结论面积,直接写出结果.8.已知关于x的方程0+kxxk.+-k+23)1(2=(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程2(4)10y a k y a+-++=的整数根(a为正整数).9.已知:正方形ABCD 中,45MAN ∠=o ,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .(1)如图1,当MAN ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当MAN ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.10.已知:在△ABC 中,BC =2AC ,∠DBC =∠ACB ,BD =BC ,CD 交线段AB 于点E . (1)如图l ,当∠ACB =90°时,直接写出线段DE 、CE 之间的数量关系; (2)如图2,当∠ACB =120°时,求证:DE =3CE ;(3)如图3,在(2)的条件下,点F 是BC 边的中点,连接DF ,DF 与AB 交于G ,△DKG 和△DBG 关于直线DG 对称(点B 的对称点是点K ),延长DK 交AB 于点H .若BH =10,求CE 的长.图 1ED ACB 图 2EDACBF GKH图 3EDACB答案1、 B (5分)2、 C (5分)3、 D (5分)4、 由不等式①解得 2x >, …………………………3分由不等式②解得 3x ≤. …………………………6分 因此不等式组的解集为23x <≤. …………………………9分 5、解:(1)由题意得,21-=k∴k= -2. ……………………………3分 设AB 的解析式为y=ax+b. 由题意得,⎩⎨⎧=+-=+-212b a b a解得,⎩⎨⎧==31b aAB 的解析式为y= x+3 ……………………….6分(2)设点P (x ,0)由题意得,S △OAP =121⋅⋅OP =3 OP=6………………………………9分点P 坐标为(-6,0)或(6,0)………………………….13分6.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 2分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 6分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 8分7、解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 9分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 12分(3)□DEFG 的面积为12. ………………………………………… 15分8、解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 3分∵方程有两个不相等的实数根,∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. ……………………………………8分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 13分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =g (p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=. 不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…15分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 17分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 20分9、解:(1)答:(1)中的结论仍然成立,即 BM DN MN +=.证明:如图2,在MB 的延长线上截取BE =DN ,连结AE .易证 ABE ADN △≌△ (SAS ). ∴ AE =AN ;∠EAB=∠NAD.90,45,45.45.BAD NAM BAM NAD EAB BAM ∠=∠=∴∠+∠=∴∠+∠=o o ooQ∴EAM NAM ∠=∠.又AM 为公共边, ∴AEM ANM △≌△. ME MN ∴=.MN ME BE BM DN BM ∴==+=+即 DN BM MN +=. ------------------------------------10分 (2)猜想:线段BM DN ,和MN 之间的等量关系为:DN BM MN -= .证明:如图3,在DN 延长线上截取DE =MB ,连结A E .易证 ABM ADE △≌△(SAS ). ∴ AM =AE ;∠MAB =∠EAD . 易证 AMN AEN △≌△(SAS ).MN EN ∴= .∵DN DE EN -=,∴DN BM MN -=. ----------------------------10分 10.(1)DE=2CE………………………2分 (2)证明:过点B 作BM ⊥DC 于M ∵BD=BC ,∴DM=CM, ………………………..5分∴∠DMB=∠CMB=90°,∠DBM=∠CBM=21∠DBC=60° ∴∠MCB=30° BM=21BC ∵BC=2AC ,∴BM=AC. ∵∠ACB=120°, ∴∠ACE=90°. ∴∠BME=∠ACE ∵∠MEB=∠AEC ∴△EMB ≌△ECA ∴ME=CE=21CM ………………………10分 ∴DE=3EC ………………………………12分(3) 过点B 作BM ⊥DC 于M ,过点F 作FN ⊥DB 交DB 的延长线于点N.图 2MEDACB∵∠DBF=120°, ∴∠FBN=60°. ∴FN=23BF,BN=21BF ……5分 ∵DB=BC=2BF, DN=DB+BN=25BF ∴DF=7BF ∵AC=21BC,BF=21BC ∴AC=BF∵∠DBC=∠ACB ∴△DBF ≌BCA ∴∠BDF=∠CBA. ∵∠BFG=∠DFB, ∴△FBG ∽△FDB ∴DBBGDF BF BF FG == ∴FD FG BF ⋅=2,∴77=FG BF ∴DG=776BF,BG=772BF ∵△DKG 和△DBG 关于直线DG 对称,∴∠GDH=∠BDF.∠ABC=∠GDH. ∵∠BGF=∠DGA, ∴△BGF ∽△DGH. ∴GHGFDG BG =. ∴GH=773BF. ∵BH=BG+GH=775BF=10, ∴BF=72. ……………………………15分 ∴BC=2BF=47 ,CM=212 ∴CD=2CM=214. ∵DE=3EC ∴EC=41CD=21 …………………………….20分 NM 图 3HK G F EDACB。

人教初中数学初二经典入学测试(含答案)

初二数学测评卷姓名:测评时间:30分钟(满分100)一、单项选择(每题3分,共27分)1、若|a-3|-3+a=0,则a的取值范围是()A、a≤3B、a<3C、a≥3D、a>32、的平方根是()A.±9 B.9 C.±3 D.33、已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是()A.2a B.-2b C.2a+2b D.2b-2c4、以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个 B.2个 C.3个 D.4个5、如图,∠A+∠B+∠C+∠D+∠E=()A.150°B.180° C.135° D.120°6.如图, 在△ABC中, AD是它的角平分线, AB = 8 cm,AC = 6 cm,则 S△ABD : S△ACD= ( )A. 4 : 3B. 3 : 4C. 16 : 9D. 9 : 16C D6题7、(太原市)已知一个多项式与的和等于,则这个多项式是()A.B.C.D.8、已知,则的值是( )A .0B .2C .5D .89、若M ()14,y -、N ()22,y -、P ()32,y 三点都在函数x ky =(k<0)的图象上,则321y y y 、、的大小关系为( )A 、2y >3y >1yB 、2y >1y >3yC 、3y >1y >2yD 、3y >2y >1y二、填 空(每题3分,共27分)1. 的平方根是______.2.点A在数轴上距原点的距离为个单位,点B在数轴上和原点相距3个单位,则A、B两点之间的距离为______.3.若x+3=7-y,a、b互为倒数,则的值为___________.4、已知x=2时,代数式ax5+bx3+cx-2的值为6,那么当x=-2时,该代数式为_________5.如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则S阴.影=________6、已知过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k 条对角线,则(m-k)n=___7、已知二次函数y=ax 2+bx +c 的图像大致如图所示,那么直线y=bx +(a +c)不经过第_________象限.8、已知抛物线y=x 2-2x +a 的顶点A 在直线y=-x +3上,直线y=-x +3与x 轴的交点为B ,则△AOB 的面积(O 是原点)为_________.9.若反比例函数k y x =(k ≠0)经过点2007,20082008⎛⎫- ⎪⎝⎭,则该反比例函数的解析式为___________。

八年级入学考试 (数学)(含答案解析)075852

八年级入学考试 (数学)试卷考试总分:130 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各式:,,,,, ,其中分式共有( )A.个B.个C.个D.个2. 如图,,要使,下列补充的条件正确的个数有 ( )①;②;③;④.A.个B.个C.个D.个3. 下列等式成立的是( )A.B.C.D.4. 每到春天,许多地方柳絮如雪花般漫天飞舞,据测定,柳絮纤维的直径约为,把写成(,为整数)的形式,则为 A.B.12018+x x 225x πa 2a 03x+y x+1y1234AB =AC,∠1=∠2△ABD ≅△ACE ∠B =∠C ∠D =∠E AD =AE BD =CE 12342+=22–√2–√=()a 2b 32a 4b 6=+(a +)1a 2a 21a 25y−2y =3x 2x 20.0000105m 0.0000105a ×10n 1 a <10n n ()4−4C.D.5. 在,,,,,中,无理数有( )个.A.B.C.D.6. 不等式的解集在数轴上表示正确的是( )A.B.C.D.7. 如图,中,是的垂直平分线,,的周长为,则的周长为( )A.B.C.D.8. 在月日玉树发生的地震导致公路破坏,为抢修一段米的公路,施工队每天比原来计划多修5−5−3.141592610−−√2279π5–√58–√334562x−1<1△ABC DE AC AE =5cm △ABD 16cm △ABC 26cm21cm28cm31cm414120米,结果提前天通了汽车,问原计划每天修多少米?若设原计划每天修米,则所列方程正确的是A.B.C.D.9. 关于的一元一次不等式组的解集是,则的取值范围是( )A.B.C.D.10. 如图,在中,,,为此三角形的一条角平分线,若,则三角形的面积为( )A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11. 在中,,,,在上取一点,使,过点作交的延长线于点,若,则________.54x ()−=4120x 120x+5−=4120x+5120x −=4120x−5120x −=4120x 120x−5x {2x−1>3(x−2),x<m x <5m m>5m≥5m<5m≤5△ABC ∠B =90∘AC =10AD BD =3ADC 3101215Rt △ABC ∠ACB =90∘BC =2cm CD ⊥AB AC E EC =BC E EF ⊥AC CD F EF =5cm AE =cm12. 观察下列各式:,,…,请你将猜到的规律用含自然数的代数式表示出来是________.13. 关于的方程无解,则________.14. 写出命题“等边三角形的三个角都是”的逆命题________.15. 当________时,分式的值为零.16. 将面积为的正方形按如图方式放在数轴上,以原点为圆心,正方形的边长为半径,用圆规画出数轴上的一个点,点表示的数是________(填“有理数”或“无理数”).17. 下列是三种化合物的结构式及分子式(下面的,就是分子式),请按其规律,写出第个化合物的分子式为________.18. 如图,点为正方形外一点,,与相交于点.若,则________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )19.=21+13−−−−−√13−−√=32+14−−−−−√14−−√=43+15−−−−−√15−−√n(n ≥1)x +=25x x−43+mx 4−xm=60∘x =3−x 2x+32A A CH 4⋯C 2H 6n E ABCD ED =CD AE BD F ∠CDE =52∘∠DCF =∘计算: ;解方程:.20. 解一元一次不等式组,并把它的解集在数轴上表示出来21. 先化简,再求值:,其中 .22.【猜想】如图①,在平行四边形中,点是对角线的中点,过点的直线分别交,于点,.若平行四边形的面积是,则四边形的面积是________.【探究】如图②,在菱形中,对角线相交于点,过点的直线分别交,于点,,若,,求四边形的面积;【应用】如图③,在中, ,延长到点,使,连接,若,,直接写出的面积.23. 、两座城市相距千米,甲骑自行车从城出发前往城,小时后,乙才骑摩托车从城出发前往城,已知乙的速度是甲的倍,且乙比甲早分钟到城,求甲、乙两人的速度各是多少? 24. 观察以下等式:第个等式:,第个等式:,第个等式:,第个等式:,第个等式:,……按照以上规律,解决下列问题:写出第个等式:________;写出你猜想的第个等式:________(用含的等式表示),并证明.(1)−|−4|++(−1)2019(3.14−π)0()13−1(2)−=1x x−12−1x 2 2x+1≥x ,−>−1.3−x 62x−24÷+2x−1x 2−1x 2+x x 2x−1x =2ABCD O AC O AD BC E F ABCD 12CDEF ABCD O O AD BC E F AC =6BD =8ABFE Rt △ABC ∠BAC =90∘BC D DC =BC AD AC =6AD =13△ABD A B 40A B 1A B 2.530B 1=+2111112=+2312163=+25131154=+27141285=+2915145(1)6(2)n n25. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,本文学名著和本动漫书共需元,本文学名著比本动漫书多元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).求每本文学名著和动漫书各多少元?若学校要求购买动漫书比文学名著多本,而且文学名著不低于本,总费用不超过元,请求出所有符合条件的购书方案. 26. 如图,,,三点在一条直线上, 和均为等边三角形,与交于点,与交于点 .求证:;若把绕点任意旋转一个角度,中的结论还成立吗?请说明理由.204016002020400(1)(2)20252000B C E △ABC △DCE BD AC M AE CD N (1)AE =BD (2)△DEF C (1)参考答案与试题解析八年级入学考试 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】分式的定义【解析】根据分式的定义分析题目所给的代数式即可得出答案.【解答】解:是一个数,属于整式;是整式;是整式;分母中含有字母,是分式;是一个数,属于整式;分母中含有字母,是分式;分母中含有字母,是分式.综上所述,其中分式共有个.故选.2.【答案】C【考点】全等三角形的判定【解析】12018+x x 225x πa 2a 03x+y x+1y3C【解答】解:∵,∴.当时,∴,故①符合题意;当时,∴,故②符合题意;当时,∴,故③符合题意;当时,不构成三角形全等的条件,故④不符合题意.故选.3.【答案】B【考点】幂的乘方与积的乘方合并同类项二次根式的加减混合运算完全平方公式【解析】利用根式的运算,积的乘方,完全平方公式和合并同类项逐一分析选项即可.【解答】解:,和不能合并,故该选项错误;,,该选项正确;,,该选项错误;,,该选项错误.故选.4.∠1=∠2∠CAD =∠CAD∠BAD =∠CAE ∠B =∠C ∠B =∠C ,AB =AC ,∠BAD =∠CAE ,(ASA)△ABD ≅△ACE ∠D =∠E ∠D =∠E ,∠BAD =∠CAE ,AB =AC ,(AAS)△ABD ≅△ACE AD =AE AD =AE ,∠BAD =∠CAE ,AB =AC ,(SAS)△ABD ≅△ACE BD =CD BD =CD ,AB =AC ,∠BAD =∠CAE ,C A 22–√B =()a 2b 32a 4b 6C =++2(a +)1a 2a 21a 2D 5y−2y =3y x 2x 2x 2B【答案】D【考点】科学记数法--表示较小的数【解析】绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.【解答】解:柳絮纤维的直径约为,该数值用科学记数法表示为.所以为.故选.5.【答案】A【考点】无理数的判定【解析】根据无理数的定义,可得答案.【解答】解:,,是无理数,故选:.6.【答案】A【考点】解一元一次不等式在数轴上表示不等式的解集1a ×10−n 00.0000105m 1.05×10−5n −5D 10−−√9π5–√5A【解析】先解出不等式的解集,即可解答本题.【解答】解:,移项,得,系数化为,得,故其在数轴上的表示为:故选.7.【答案】A【考点】线段垂直平分线的性质【解析】根据线段垂直平分线的概念和性质得到=,==,根据三角形的周长公式计算,得到答案.【解答】解:∵是的垂直平分线,∴,,∵的周长为,∴,∴的周长.故选.8.【答案】A【考点】由实际问题抽象为分式方程【解析】要求的未知量是工作效率,有工作路程,一定是根据时间来列等量关系的.关键描述语是:“提前天开通了列车”;等量关系为:原来所用的时间-实际所用的时间.3x−2<12x−1<12x <21x <1A DA DC AC 2AE 10DE AC DA =DC AC =2AE =10(cm)△ABD 16cm AB+BD+AD =AB+BD+DC =AB+BC =16(cm)△ABC =AB+BC +AC =16+10=26(cm)A 4=4【解答】解:设原计划每天修米,可得:.故选.9.【答案】B【考点】解一元一次不等式组【解析】先求出第一个不等式的解集,再根据不等式组的解集为,就可得出的取值范围.【解答】解:解不等式得,不等式组的解集为,.故选.10.【答案】D【考点】等腰三角形的判定与性质角平分线的性质【解析】由是角平分线,于,,根据角平分线的性质,可得是等腰三角形;继而证得是等腰三角形,又由,易求得,即可证得和是等腰三角形.【解答】解:作交于点,如图:x −=4120x 120x+5A x <5m 2x−1>3(x−2)x <5∵x <5∴m≥5B AD DE ⊥AC E ∠ABC =90∘△BDE △ABE ∠C =30∘∠CBE =∠C =∠CAD =30∘△BEC △DAC DE ⊥AC AC E∵是角平分线,,∴,∵,∴.故选.二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11.【答案】【考点】全等三角形的性质与判定【解析】根据直角三角形的两锐角互余的性质求出,然后利用“角边角”证明和全等,根据全等三角形对应边相等可得,再根据,代入数据计算即可得解.【解答】解:∵,∴,∵,∴,∴(等角的余角相等),在和中,,∴,∴,∵,,,∴.故答案为:.12.【答案】AD ∠ABC =90∘DB =DE =3AC =10=×10×3=15S △BDE 12D 3∠ECF =∠B △ABC △FCE AC =EF AE =AC −CE ∠ACB =90∘∠ECF +∠BCD =90∘CD ⊥AB ∠BCD+∠B =90∘∠ECF =∠B △FCE △ABC∠ECF =∠B EC =BC ∠ACB =∠FEC =90∘△ABC ≅△FCE(ASA)AC =EF AE =AC −CE BC =2cm EF =5cm AE =5−2=3cm 3(n+1)(n ≥1)−−−−−−−−−−−−−【考点】规律型:数字的变化类算术平方根【解析】根据式子的特点,式子左边被开方数中第一个数与分数的分母相差,而等式的右边,根号外的式子与等号左边,被开方数中第一个数的差是,右边,被开方数中的分母与左边根号内左边的数相差,据此即可写出.【解答】解:用含自然数的等式表示为:.故答案为:.13.【答案】或【考点】分式方程的解【解析】当时,方程显然无解;当时,,使,求出的范围.【解答】解:去分母得,,移项得,,合并同类项得,,当时,方程显然无解;当时,把系数化为得,,∵方程无解,∴,∴,=(n+1)(n ≥1)n+1n+2−−−−−−−−√1n+2−−−−−√212n(n ≥1)=(n+1)(n ≥1)n+1n+2−−−−−−−−√1n+2−−−−−√=(n+1)(n ≥1)n+1n+2−−−−−−−−√1n+2−−−−−√3174m=3m≠3x =5m−3x =4m 5x−3−mx =2(x−4)5x−mx−2x =3−8(3−m)x =−5m=3m≠31x =5m−3+=25x x−43+mx 4−x x =4=45m−3=17∴,故满足题意的为或.故答案为:或.14.【答案】三个角都是的三角形是等边三角形【考点】命题与定理【解析】逆命题就是原命题的题设和结论互换,找到原命题的题设为等边三角形,结论为三个内角相等,互换即可.【解答】解:命题“等边三角形的三个角都是”的逆命题是“三个角都是的三角形是等边三角形”.故答案为:三个角都是的三角形是等边三角形.15.【答案】【考点】分式值为零的条件【解析】根据若分式的值为零,需同时具备两个条件:(1)分子为;(2)分母不为计算即可.【解答】依题意得:且.解得,16.【答案】无理数【考点】数轴m=174m m=3m=174317460∘60∘60∘60∘3003−x =02x+3≠0x =3无理数的识别【解析】由勾股定理解得正方形边长,进而得解论.【解答】解:因为正方形的面积为,所以其边长为,所以点表示,且是无理数.故答案为:无理数.17.【答案】【考点】规律型:图形的变化类【解析】此题暂无解析【解答】此题暂无解答18.【答案】【考点】全等三角形的性质与判定正方形的性质等腰三角形的性质【解析】根据正方形性质和已知得:,利用等腰三角形性质计算,由“”可证,可得【解答】解:四边形是正方形,,,22–√A 2–√2–√19AD =DE ∠DAE =19∘SAS △ADF ≅△CDF ∠DAE =∠DCF =19∘∵ABCD ∴AD =DC ∠ADC =90∘,,,,,,在和中,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题5 分 ,共计40分 )19.【答案】解:原式.方程两边都乘以,得:,解得:.检验:当时, ,所以原方程无解.【考点】零指数幂、负整数指数幂绝对值解分式方程【解析】暂无暂无【解答】解:原式∴∠ADB =∠BDC =45∘∵DC =DE ∴AD =DE ∴∠DAE =∠DEA ∵∠ADE =+=90∘52∘142∘∴∠DAE =19∘△ADF △CDF AD =DC,∠ADB =∠BDC,DF =DF,∴△ADF ≅△CDF (SAS)∴∠DAE =∠DCF =19∘19(1)=−1−4+1+3=−1(2)−1x 2x(x+1)−2=−1x 2x =1x =1−1=0x 2(1)=−1−4+1+3.方程两边都乘以,得:,解得:.检验:当时, ,所以原方程无解.20.【答案】解:解不等式①得,,解不等式②得,,,.原不等式组的解集为.该解集在数轴上表示如图所示:【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式①得,,解不等式②得,,,.原不等式组的解集为.该解集在数轴上表示如图所示:21.=−1(2)−1x 2x(x+1)−2=−1x 2x =1x =1−1=0x 2 2x+1≥x ,①−>−1.②3−x 62x−24x ≥−12(3−x)−3(2x−2)>−12−8x >−24x <3∴−1≤x <3 2x+1≥x ,①−>−1.②3−x 62x−24x ≥−12(3−x)−3(2x−2)>−12−8x >−24x <3∴−1≤x <3【答案】解:原式.当时,原式.【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式.当时,原式.22.【答案】四边形是菱形,,,,,,,,在和中,,,.延长到使,如图,在与中,,,,=1x x =2=12=1x x =2=126(2)∵ABCD ∴AD//BC AO =CO =AC =312BO =BD =412∠AOD =90∘∴AB ==5B +O O 2A 2−−−−−−−−−−√∠OAE =∠OCF ∠OEA =∠OFC △AOE △COF ∠OAE =∠OCF,∠AEO =∠CFO,AO =CO.∴△AOE ≅△COF(AAS)∵AC ⊥BD ==AC ⋅BO =×6×4=12S 四边形ABFE S △ABC 1212(3)AC E CE =AC =6△ABC △EDC AC =CE,∠ACB =∠DCE,BC =CD.∴△ABC ≅△EDC(SAS)∴∠E =∠BAC=90∘∴DE ==5A −A D 2E 2−−−−−−−−−−√=AE ⋅DE =×12×5=30ABD AED 11.【考点】三角形的面积全等三角形的性质与判定平行四边形的性质菱形的性质勾股定理【解析】左侧图片未给出解析.【解答】解:四边形是平行四边形,,,,,在和中,,四边形的面积▱的面积.故答案为:.四边形是菱形,,,,,,,,在和中,,,.延长到使,∴==AE ⋅DE =×12×5=30S △ABD S △AED 1212(1)∵ABCD ∴AD//BC OA =OC ∴∠EAO =∠FCO ∠AEO =∠CFO △AOE △COF∠EAO =∠FCO,∠AEO =∠CFO,AO =CO,∴△AEO ≅△CFO(AAS)∴CDEF ==S △ACD 12ABCD =66(2)∵ABCD ∴AD//BC AO =CO =AC =312BO =BD =412∠AOD =90∘∴AB ==5B +O O 2A 2−−−−−−−−−−√∠OAE =∠OCF ∠OEA =∠OFC △AOE △COF ∠OAE =∠OCF,∠AEO =∠CFO,AO =CO.∴△AOE ≅△COF(AAS)∵AC ⊥BD ==AC ⋅BO =×6×4=12S 四边形ABFE S △ABC 1212(3)AC E CE =AC =6如图,在与中,,,,.23.【答案】甲的速度为,乙的速度为【考点】分式方程的应用【解析】直接利用甲乙所用时间得出等式进而得出答案.【解答】设甲的速度为,则乙的速度为.根据行驶时间的等量关系,得,解得:=,检验:当=时,;所以=是原方程的解;乙的速度为=,24.【答案】【考点】规律型:数字的变化类【解析】△ABC △EDC AC =CE,∠ACB =∠DCE,BC =CD.∴△ABC ≅△EDC(SAS)∴∠E =∠BAC =90∘∴DE ==5A −A D 2E 2−−−−−−−−−−√∴==AE ⋅DE =×12×5=30S △ABD S △AED 121216km/h 40km/hxkm/h 2.5xkm/h −=1+0.540x 402.5x x 16x 16 2.5x ≠0x 16 2.5x 40=+21116166=+22n−11n 1n(2n−1)(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:由规律易得第个等式为:.故答案为:.猜想的第个等式:.证明:∵右边左边.∴等式成立.故答案为:.25.【答案】解:设每本文学名著元,每本动漫书元,根据题意可得:解得:答:每本文学名著元,每本动漫书元;设学校要求购买文学名著本,则购买动漫书本,根据题意可得:解得:.因为为整数,所以可取,.方案一:文学名著本,动漫书本;方案二:文学名著本,动漫书本.【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设每本文学名著元,每本动漫书元,列出方程组即可解决问题;(2)设学校要求购买文学名著本,动漫书为本,构建不等式组,求整数解即可;【解答】解:设每本文学名著元,每本动漫书元,=+22n−11n 1n(2n−1)(1)6=+21116166=+21116166(2)n =+22n−11n 1n(2n−1)=+1n 1n(2n−1)=2n−1+1n(2n−1)==22n−1=+22n−11n 1n(2n−1)(1)x y {20x+40y =1600,20x−20y =400,{x =40,y =20.4020(2)x (x+20){x ≥25,40x+20(x+20)≤2000,25≤x ≤2623x x 252625452646x y x (x+20)(1)x y 20x+40y =1600,根据题意可得:解得:答:每本文学名著元,每本动漫书元;设学校要求购买文学名著本,则购买动漫书本,根据题意可得:解得:.因为为整数,所以可取,.方案一:文学名著本,动漫书本;方案二:文学名著本,动漫书本.26.【答案】解:∵,均为等边三角形,∴,,,∴,即,∵在和中,∴,∴.成立;如图:∵,均为等边三角形,∴,,,∴,即,∵在和中,∴,∴.【考点】全等三角形的性质与判定等边三角形的性质{20x+40y =1600,20x−20y =400,{x =40,y =20.4020(2)x (x+20){x ≥25,40x+20(x+20)≤2000,25≤x ≤2623x x 252625452646(1)△ABC △DCE BC =AC CD =CE ∠BCA =∠DCE =60∘∠BCA+∠ACD =∠DCE+∠ACD ∠BCD =∠ACE △ACE △BCD AC =BC,∠BCD =∠ACE,CD =CE,△ACE ≅△BCD(SAS)AE =BD (2)△ABC △DCE BC =AC CD =CE ∠BCA =∠DCE =60∘∠BCA+∠ACD =∠DCE+∠ACD ∠BCD =∠ACE △ACE △BCD AC =BC,∠BCD =∠ACE,CD =CE,△ACE ≅△BCD(SAS)AE =BD【解析】(1)根据等边三角形边长相等的性质和各内角为的性质可求得,根据全等三角形对应边相等的性质即可求得.(2)根据题意画出图形,证明方法与(1)相同.【解答】解:∵,均为等边三角形,∴,,,∴,即,∵在和中,∴,∴.成立;如图:∵,均为等边三角形,∴,,,∴,即,∵在和中,∴,∴.60∘△BCD ≅△ACE AE =BD (1)△ABC △DCE BC =AC CD =CE ∠BCA =∠DCE =60∘∠BCA+∠ACD =∠DCE+∠ACD ∠BCD =∠ACE △ACE △BCD AC =BC,∠BCD =∠ACE,CD =CE,△ACE ≅△BCD(SAS)AE =BD (2)△ABC △DCE BC =AC CD =CE ∠BCA =∠DCE =60∘∠BCA+∠ACD =∠DCE+∠ACD ∠BCD =∠ACE △ACE △BCD AC =BC,∠BCD =∠ACE,CD =CE,△ACE ≅△BCD(SAS)AE =BD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学入学测试卷
一、填空题(每小题2分,共24分)
1、如果9=x ,那么x =________;如果92
=x ,那么=x ________
2、若)4,2(表示教室里第2列第4排的位置,则)2,4(表示教室里第 列,第 排的位
置。

3、81的平方根是_______,4的算术平方根是_________,
4、若一个数的平方根是8±,则这个数的立方根是 ;
5、已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为 .
6、 点A (-1,2)关于y 轴的对称点坐标是 ;点A 关于原点的对称点的坐标是 。

7、若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
8、已知点M (x ,y )与点N (-2,-3)关于x 轴对称,则______=+y x
9、已知0)3(122=++-b a ,则=33
2ab ; 10、21++a 的最小值是________,此时a 的取值是________.
11、12+x 的算术平方根是2,则x =________.
12、 A (-3,-2)、B (2,-2)、C (-2,1)、D (3,1)是坐标平面内的四个点,则线段AB 与CD 的关系是_________________
二、选择题(每小题2分,共26分)
1、在平面直角坐标系中,点(-1,2
m +1)一定在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
2、下列说法错误的是( )
A 、1)1(2=-
B 、()1133-=-
C 、2的平方根是2±
D 、81-的平方根是9±
3、2)3(-的值是( ). A .3- B .3 C .9- D .9
4、设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )
A 、1
B 、9
C 、4
D 、5
5、下列各数没有平方根的是( ).
A .-﹙-2﹚
B .3)3(-
C .2)1(-
D .11.1
6、若点P (x,y )的坐标满足xy=0(x ≠y),则点P 在( )
A .原点上
B .x 轴上
C .y 轴上
D .x 轴上或y 轴上
7、点P (m +3, m +1)在直角坐标系得x 轴上,则点P 坐标为( )
A .(0,-2)
B .( 2,0)
C .( 4,0)
D .(0,-4)
8、已知03)2(2=++-b a ,则),(b a P --的坐标为 ( )
A 、 )3,2(
B 、)3,2(-
C 、)3,2(-
D 、)3,2(--
9、计算3825-的结果是( ).
A.3
B.7
C.-3
D.-7
10、若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).
A.a >b >c
B.c >a >b
C.b >a >c
D.c >b >a
11、如果53-x 有意义,则x 可以取的最小整数为( ).
A .0
B .1
C .2
D .3
12、一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )
A 、32210+
B 、3425+
C 、32210+或3425+
D 、无法确定
13、已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是( )
A 、(-2,2),(3,4),(1,7)
B 、(-2,2),(4,3),(1,7)
C 、(2,2),(3,4),(1,7)
D 、(2,-2),(3,3),(1,7)
三、利用平方根、立方根来解下列方程解方程(每小题4分,共16分)
(1)4(3x+1)2-1=0; (2)
12
(2x+3)3= -4
四、计算(每小题5分,共10分) (1) )131)(951()3
1(32--+- + 242 (2) 312564-38+-10013064.0
五、(本题7分)若74-a 和24+b 互为相反数,试求a+b 的值.
六、(本题10分)在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8)D(12,0)求出这个四边形的面积。

七.如图,在△ABC 中,AB=AC 、D 是AB 上一点,E 是AC 延长线上一点,且CE=BD ,连结DE 交BC 于F 。

(1)猜想DF 与EF 的大小关系;(2)请证明你的猜想。

相关文档
最新文档